
Optimal Utility Based Multi-User Throughput
Allocation subject to Throughput Constraints

Matthew Andrews
Bell Laboratories, Lucent Technologies

Murray Hill, NJ 07974.
andrews@research.bell-labs.com

Lijun Qian
Prairie View A&M University

Prairie View, TX 77446.
lqian@pvamu.edu

Alexander Stolyar
Bell Laboratories, Lucent Technologies

Murray Hill, NJ 07974.
stolyar@research.bell-labs.com

Abstract— We consider the problem of scheduling multiple
users sharing a time-varying wireless channel. (As an example,
this is a model of scheduling in 3G wireless technologies, such
as CDMA2000 3G1xEV-DO downlink scheduling.) We intro-
duce an algorithm which seeks to optimize a concave utility
function

∑
i
Hi(Ri) of the user throughputs Ri, subject to

certain lower and upper throughput bounds: Rmin
i ≤ Ri ≤

Rmax
i . The algorithm, which we call the Gradient algorithm

with Minimum/Maximum Rate constraints (GMR) uses a token
counter mechanism, which modifies an algorithm solving the
corresponding unconstrained problem, to produce the algorithm
solving the problem with throughput constraints. Two impor-
tant special cases of the utility functions are

∑
i
log Ri and∑

i
Ri, corresponding to the common Proportional Fairness and

Throughput Maximization objectives.
We study the dynamics of user throughputs under GMR

algorithm, and show that GMR is asymptotically optimal in the
following sense. If, under an appropriate scaling, the throughput
vector R(t) converges to a fixed vector R∗ as time t → ∞ then
R∗ is an optimal solution to the optimization problem described
above. We also present simulation results showing the algorithm
performance.

Key words and phrases: Scheduling, wireless, CDMA, 3G,
time varying channel, QoS, Gradient algorithm, Proportional
Fair, Maximum Throughput, rate constraints, guaranteed rate

I. INTRODUCTION

We consider a variable channel scheduling model that is
motivated by the 3G1xEV-DO system for high-speed wireless
data. A channel serves I traffic flows and operates in discrete
(slotted) time. In each time slot a scheduler chooses one flow
to serve. The channel state is random, and it determines the
service rates of each flow in the current time slot, if that flow
is chosen for service.

high SNR
low SNR

Fig. 1. A wireless system.

In the wireless context, the traffic flows correspond to the
downlink data flows from a basestation to multiple mobile
users. (See Figure 1). If the signal-to-noise ratio (SNR) for
user i is high, then if user i is picked for service in time slot t
it can receive data at a high rate. Conversely, if the signal-to-
noise ratio is low it can only receive data at a low rate. The
scheduler resides at the basestation. In the EV-DO system the
scheduler knows the feasible service rates because each user
measures a pilot signal-to-noise ratio and reports back to the
basestation in a Data Rate Control message (DRC). We shall
sometimes use DRCi(t) to denote the rate at which user i can
be served at time t if it is chosen for service. We emphasize
that this rate is both user-dependent and time-varying.

In this paper we shall work in an infinitely backlogged
model in which for each flow there is always data available for
service. The set of all feasible long-term average service rate
vectors R = (R1, . . . , RI) is called the system rate region, V .
Rate region is a convex polyhedron in the positive orthant.

Past work in the infinitely backlogged model has considered
scheduling algorithms that optimize (over rate region V ) a
certain utility function of the average rates R. For example,
the Proportional Fair algorithm [20], [3] aims to optimize the
function

∑
i log Ri. However, this optimization provides no

guarantees to individual users. Each user may at times receive
unacceptably bad service.

In this paper we demonstrate how to rectify this problem
by presenting scheduling algorithms that optimize a utility
function of the rate vector R, subject to minimum and
maximum rate constraints on the individual components Ri.
More precisely, we are interested in solving the following
optimization problem:

max H(R) (1)

subject to
R ∈ V (2)

Ri ≥ Rmin
i , i ∈ I, (3)

Ri ≤ Rmax
i , i ∈ I, (4)

for utility functions of the form

H(R) =
∑

i

Hi(Ri), (5)



where each Hi(x) is an increasing concave continuously
differentiable function defined for x ≥ 0. (We also allow
the case limx↓0 Hi(x) = Hi(0) = −∞.) The rate constraint
parameters Rmin

i and Rmax
i are fixed constants such that

0 ≤ Rmin
i ≤ Rmax

i and Rmax
i > 0.

A. Our Results

In Section IV we propose an algorithm, called the Gradient
algorithm with Minimum/Maximum Rate constraints (GMR)
that aims to solve the problem (1)-(4). In time slot t, GMR
always serves flow,

i ∈ arg max
i∈I

eaiTi(t)H ′
i(Ri(t))DRCi(t) ,

where Ri(t) is the current average service rate received by
queue i, Ti(t) is a token counter for queue i, and ai > 0 is a
parameter. The token counter Ti(t), which we define precisely
in Section IV, is the key mechanism by which we enforce the
rate constraints. In each time slot it is incremented at rate
either Rmin

i or Rmax
i and it is decremented whenever flow i is

served. If in some finite time interval, flow i receives service
less than Rmin

i then Ti(t) has a positive drift and so flow i
is more likely to be served. If flow i receives service more
than Rmax

i then Ti(t) has a negative drift and so flow i is less
likely to be served. (See Remark 2 in Section V on the form
of GMR algorithm.)

There are two special cases of the utility (objective) function
that are of particular interest.

1) The Proportional Fair objective1 which corresponds to
H(R) =

∑
i log Ri. In this special case, GMR always

serves flow,

i ∈ arg max
i∈I

eaiTi(t)
DRCi(t)
Ri(t)

.

We refer to this special case of the algorithm as Propor-
tional Fair with Minimum/Maximum Rates (PFMR). We
remark that if the rate constraints are trivial, i.e. Rmin

i =
0 and Rmax

i = ∞ for all i, then PFMR reduces to the
standard Proportional Fair algorithm of [20], [3] (i.e. it
always serves flow i ∈ arg maxi∈I DRCi(t)/Ri(t).

2) The Throughput Maximization objective which corre-
sponds to H(R) =

∑
i Ri. In this case, GMR always

serves flow,

i ∈ arg max
i∈I

eaiTi(t)DRCi(t).

and we refer to the algorithm as Maximum Throughput
with Minimum/Maximum Rates (MTMR).

In Section V we show asymptotic optimality of GMR in the
sense that if, under an appropriate scaling, R(t) converges to a

1The reason this objective can be desirable is that multiplying user i’s rate
by some factor c has the same effect on the objective as multiplying user j’s
rate by c. Alternatively, if Ri are the rates that maximize this objective, then
for any other feasible set of rates R′

i that satisfy the constraints we must have,

∑
i

R′
i − Ri

Ri
≤ 0.

fixed vector R∗ as t → ∞ then R∗ is a solution to the problem
(1)-(4). (See Remarks 2 and 3 in Section V on this notion of
asymptotic optimality, and on the convergence properties of
GMR and related algorithms.)

In Section VI we present simulation results to illustrate the
behavior of PFMR and MTMR.

B. Motivation for Minimum/Maximum Rate Constraints

A guarantee on minimum bandwidth is arguably the sim-
plest possible Quality-of-Service guarantee. Therefore we be-
lieve it is natural that subscribers to an expensive mobile high-
speed data service would expect such an assurance. Other
reasons why we feel it is important to provide minimum rate
constraints are:

1) Some applications need a minimum rate in order to
perform well. For example, streaming audio and video
can become unusable if the bandwidth is too small.

2) Even for static TCP-based applications such as web
browsing if the bandwidth is too small then we typically
get a large queue buildup which can lead to TCP time-
outs and poor performance. Such effects were discussed
by Chakravorty et al. in [7].

3) Providing a minimum rate guarantee can help to smooth
out the effects of a variable wireless channel.

4) Providing a minimum rate can allow us to ensure that
a slot-based service such as EV-DO is no worse than
circuit-based data systems such as wireline dialup or
3G1X wireless service.

5) By setting Rmin
i differently for different users we can

ensure that high-paying premium customers receive bet-
ter service than regular customers.

At first, it might seem counterintuitive that a system operator
would want to provide maximum rate constraints. However,
some possible reasons are:

1) If a user has only paid for a cheap data service, the
operator might wish to cap their data rate in order to
give them an incentive to upgrade to a more expensive
premium service.

2) The first user that signs up for a data service will have
the system all to themselves. Then, as more customers
sign up, the service to the first user will typically
deteriorate as it has to share bandwidth with all the new
users. One solution to this deterioration is to cap all
users’ maximum rates to some reasonable level so that
they do not experience perfromance degradation when
more users subscribe. (Of course, doing this may involve
wasting time slots which might not be so desirable.)

We remark that if the system operator does not wish to have
maximum rate constraints then this is easily accomplished by
setting Rmax

i to infinity (or some suitably large value).

C. Previous Work

The most closely related work is that of [16], [17], [5],
where the Gradient algorithm was studied and proved optimal
(under various models and other assumptions) for our problem



without mimimim and maximum rate constraints. (See [5]
for the results in our model setting.) This “unconstrained”
Gradient algorithm is a special case of GMR. We therefore
have a very natural question: “Why not use the unconstrained
Gradient algorithm for our problem as well, and deal with
the rate constraints simply by modifying the utility function
in a way that penalizes rate constraint violations?” As we
demonstrate later in the paper, such an approach does not
work well. Roughly, the reason is that an algorithm with a
modified utility function typically “overreacts” to temporary
rate constraint “violations,” and this significantly degrades the
achieved value of the utility function.

The problem of utility based throughput allocation was also
previously considered in [18], [19]. In particular, these papers
addressed throughput allocation subject to certain constraints.
There are two key differences between our algorithm and those
in [18], [19]. First, GMR optimizes a concave utility function
of the average throughputs, while schemes in [18], [19] are
in essence restricted to linear utility functions. Secondly, our
token counter mechnism for average rate constraints enforce-
ment is substantially different from the stochastic approxima-
tion based schemes of [18], [19].

A solution to the problem of maintaining service rates in
desired proportions to one another was presented in [12]. A
higher-level problem in which each user has a finite amount of
data to serve and it leaves the system once this data is served
is studied in [13].

Recall that we are concerned with the service rates provided
to each user. Our model assumes that whenever a user is
scheduled it always has data to serve. Now we would like to
contrast our algorithm with algorithms for a different, much
studied, model, where each user has a queue that is fed by
an arrival process. In this setting, the most widely studied
algorithms are Max-Weight type algorithms [8], [9], [1]. In our
setting, the “queue-length-based” version of such an algorithm
always serves the user that maximizes DRCi(t)Qi(t) where
Qi(t) is the amount of data in the queue for user i. This
algorithm is known to be stable2, which roughly means that
it keeps the queues from running away to infinity whenever
possible. Other stable algorithms include the “delay-based”
version of MaxWeight [9], [1] and the EXP algorithm [10],
[11]. The “delay-based” MaxWeight always serves the user
that maximizes DRCi(t)Wi(t) where Wi(t) is the Head-of-
Line delay for user i. EXP is a more complex algorithm that
aims to have more control over the delay distributions.

Despite the difference of the above problem from ours, we
note that the above stable algorithms such as Max-Weight
could be applied, for example, to provide minimum rate con-
traints in our problem, since they could operate on the token
counters rather than the actual queue lengths. However, in this
case all token counter stabilty means is that the minimum
rate constraints are indeed enforced. Such a solution would
not optimize an objective function subject to minimum rate

2We remark that in this model Proportional Fair is known to be not
stable [14].

constraints.
We finally remark that in our model the channel rate process

is governed by a stationary stochastic process. The problem of
scheduling over a non-stationary wireless channel is addressed
in [15].

II. VARIABLE CHANNEL SCHEDULING MODEL

We consider the following model introduced in [1]. There
is a finite set I = {1, 2, . . . , I} of “traffic” flows served by a
channel. (We will use the same symbol I for both the set and
the number of its elements.) Each flow i consists of discrete
customers (“bits of data”), which we sometimes call type i
customers. In this paper we assume that there is always a
sufficient “supply” of customers of each flow to serve.

The system operates in discrete time t = 0, 1, 2, . . .. By
convention, we will identify an (integer) time t with the unit
time interval [t, t+1), which will sometimes be referred to as
the time slot t.

The channel has a finite set of channel states M . In each
time slot, the channel is in one of the states m ∈ M ; and
the sequence of states m(t), t = 0, 1, 2, . . ., forms an (irre-
ducible) finite state Markov chain with stationary distribution
{πm, m ∈ M},

πm > 0, ∀m ∈ M,
∑

m∈M

πm = 1 .

If at time t the channel is in state m ∈ M and it chooses
queue i for service, then an integer number µm

i ≥ 0 of
type i customers (e.g., bits of data) are served and depart the
system at time t + 1. We use µm .= (µm

1 , . . . , µm
I ) to denote

the corresponding vector of service rates, and we assume
that for each flow i, there is at least one state m such that
µm

i > 0. (Sometimes, we will write DRCi(t) = µ
m(t)
i for

the service rate available to user i in slot t, if it were to
be picked for service. This notation, which we already used
in the Introduction, is standard in the CDMA2000 1xEV-
DO literature.) Note that the model in which channel state
m(t) is in fact a combination of independently randomly
varying (according to independent Markov chains) channel
states mi(t) of individual users is essentially a special case
of our model (up to very mild assuptions guaranteeing that
Markov chain m(t) is irreducible).

Suppose a stochastic matrix φ = (φmi,m ∈ M, i =
1, . . . , I) is fixed, which means that φmi ≥ 0 for all m and i,
and

∑
i φmi = 1 for every m. Consider a Static Service Split

(SSS) scheduling rule, parameterized by the matrix φ. When
the server is in state m, the SSS rule chooses for service queue
i with probability φmi. (Sometimes, we call the matrix φ itself
an SSS rule.) Clearly, the vector v = (v1, . . . , vI) = v(φ),
where

vi =
∑

πmφmiµ
m
i ,

gives the long term average service rates allocated to different
flows under an SSS rule φ.

We define the system rate region to be the set V of all
vectors v(φ) for all possible SSS rules φ. Thus V is the set of



long-term service rate vectors which the system is capable
of providing. Rate region V is a convex closed bounded
polyhedron in the positive orthant. (See [4].) By V ∗ we denote
the subset of maximal elements of V : namely, v ∈ V ∗ if
conditions v ≤ u (componentwise) and u ∈ V imply u = v.
Clearly, V ∗ is a part of the outer (“north-east”) boundary of
V .

The subset V cond ⊆ V of elements v ∈ V satisfying
conditions Rmin

i ≤ vi ≤ Rmax
i (i.e. conditions (3) and (4))

for all i, is also a convex closed bounded set.
Since each function Hi(Ri) is continuous and increasing,

we have the following simple fact.
Proposition 1: If V cond is non-empty, then at least one

solution R∗ of problem (1)-(4) exists. If V cond contains at
least one point of the set V ∗, then any solution R∗ ∈ V ∗.
If all functions Hi(Ri) are strictly concave (for example,
Hi(Ri) = log(Ri)), a solution R∗ is unique.

III. BASIC NOTATION AND CONVENTIONS

The sets of real numbers and non-negative real numbers are
denoted by R and R+ respectively; RI and RI

+ denote their
I times products.

For vectors x, y ∈ RI ,

x · y .=
∑

i

xiyi is scalar product,

x × y
.= (x1y1, . . . , xIyI) is component-wise product,

exp(x) .= (exp(x1), . . . , exp(xI)) .

The Euclidean norm ‖x‖ .=
√

x · x defines metric ‖x− y‖ on
RI .

The gradient of the function H is denoted by ∇H , i.e.

∇H(x) = (H ′
1(x1), . . . , H ′

I(xI)).

For a function ξ = (ξ(t), t ≥ 0), θdξ denotes its backward
shift by time d ≥ 0, namely

[θdξ](t) = ξ(t + d), t ≥ 0.

IV. GMR ALGORITHM

We now formulate the Gradient algorithm with Mini-
mum/Maximum Rate constraints (GMR), which seeks to
solve the optimization problem (1)-(4). (Recall that µ

m(t)
i =

DRCi(t) is the service rate available to user i in the time slot
t, if this user were to be chosen for service.)

GMR: In a time slot t, serve queue

i ∈ arg max
i∈I

eaiTi(t)H ′
i(Ri(t))µ

m(t)
i , (6)

where Ri(t) is the current average service rate received by
queue i, Ti(t) is a “token counter” for queue i, and ai > 0
is a parameter. The values of average rate Ri are updated as
in the Proportional Fair algorithm [20], [3]:

Ri(t + 1) = (1 − β)Ri(t) + βµi(t) ,

where β > 0 is a small fixed parameter, and µi(t) = µ
m(t)
i (=

DRCi(t)) if user i was actually served in slot t and µi(t) = 0
otherwise. The token counter Ti is updated as follows:

Ti(t + 1) = Ti(t) + Rtoken
i − µi(t) , (7)

where Rtoken
i = Rmin

i if Ti(t) ≥ 0, and Rtoken
i = Rmax

i if
Ti(t) < 0.
If Rmax

i = ∞ (i.e. constraint (4) is absent) for some i, the
token counter update rule (7) is simplified for this i to:

Ti(t + 1) = max{0, Ti(t) + Rmin
i − µi(t)} . (8)

If Rmin
i = 0 for some i, the rule (7) is simplified for this i to:

Ti(t + 1) = min{0, Ti(t) + Rmax
i − µi(t)} . (9)

Remark. The choice of the units for different variables
and parameters used by the GMR algorithm is a matter of
implementation convenience. One choice of the units (which
is the one we used in the similations, presented in Section VI)
is as follows. Amounts of data are measured in bits and the
time is measured in slots. Consequently, all data rates Ri(t),
µ

m(t)
i = DRCi(t), µi(t), Rmin

i , Rmax
i , Rtoken

i are measuted
in bits/slot (or bits, if a calculation involves amount of data
served or arrived at the corresponding rate in one slot, as in
(7)-(9)). Finally, token counters Ti(t) are measured in bits, and
parameters ai are in 1/bits.

As we mentioned earlier, we refer to the special cases
of the GMR algorithm, corresponding to utility functions
H(R) =

∑
i log(Ri) and H(R) =

∑
i Ri, as PFMR and

MTMR algorithms, respectively. By specializing (6), we see
that
the PFMR scheduling rule is

i ∈ arg max
i∈I

eaiTi(t)
DRCi(t)
Ri(t)

, (10)

and MTMR rule is

i ∈ arg max
i∈I

eaiTi(t)DRCi(t) . (11)

The token counter Ti provides the key mechanism trying to
ensure that the user i received (long term) service rate stays
between Rmin

i and Rmax
i . The dynamics of the token counter

process Ti(t) (see (7)) is roughly described and interpreted as
follows. There is a virtual “token queue” (which may take
negative values) corresponding to each flow i. The tokens
“arrive in the (token) queue” (i.e. Ti is incremented) at the
rate Rmin

i or Rmax
i per slot, if Ti(t) is positive or negative,

respectively. (For this reason, we sometimes refer to Rmin
i

and Rmax
i as the token rates.) If user i is served in slot t,

then µ
m(t)
i = DRCi(t) tokens are “removed from the queue”

(i.e. Ti is decremented). Thus, if in a certain time interval,
the average service rate of flow i is less than Rmin

i , the token
queue size Ti has “positive drift”, and therefore the chances
of flow i being served in each time slot gradually increase. If
the average service rate of flow i is above Rmax

i , then Ti has
negative drift, thus gradually decreasing the chances of user



i being picked for service. If average service rate of flow i is
between Rmin

i and Rmax
i , then Ti has positive drift when Ti

is negative and negative drift when Ti is positive; as a result,
in this case Ti will stay “around 0.”

V. USER THROUGHPUT DYNAMICS UNDER GMR WITH

SMALL PARAMETERS β AND ai

In this section we consider the dynamics of user throughputs
and token counters under the GMR algorithm when parameters
β and ai are small. Namely, we consider the asymptotic
regime such that β converges to 0, and each ai = βαi with
some fixed αi > 0. We study the dynamics of fluid sample
paths (FSP), which are (roughly speaking) possible trajectories
(r(t), τ(t)) of a random process which is a limit of the process
(R(t/β), βT (t/β)) as β → 0. (Thus, r(t) approximates the
behavior of the vector of throughputs R(t) when β is small
and we “speed-up” time by the factor 1/β; τ(t) approximates
the vector T (t) scaled down by factor β, and with 1/β time
speed-up.) The main result of this section is a “necessary
condition for throughput convergence” (Theorem 1), which
roughly says that if FSP is such that the vector of throughputs
r(t) converges to some vector R∗ as t → ∞, then R∗ is
necessarily a solution to the problem (1)-(4).

We now define the asymptotic regime and an FSP more
precisely. Consider a sequence of positive values of β, con-
verging to 0, and assume that ai = βαi, αi > 0, for each β.
(We will denote α

.= (α1, . . . , αI).) For each β we consider a
realization (that is, a fixed sample path) of the channel state
process mβ = (mβ(t), t = 0, 1, 2, . . .). We assume that
the sequence of (fixed realizations) mβ satisfies the law of
large numbers condition, namely, that for any t > 0 and any
m ∈ M ,

1
t/β

∑
0≤n≤t/β

I{mβ(n) = m} → πm, (12)

where I{·} denotes here the indicator function. For each β,
let Rβ(·) and T β(·) be the realizations of the throughput
and token counter vector-processes corresponding to the GMR
algorithm. They are uniquely defined by the realization mβ

and the fixed initial states Rβ(0) and T β(0). Finally, we extend
the domain of functions Rβ(t) and T β(t) to all real t ≥ 0 by
adopting the convention that they are constant within each
time slot [t, t+1) for all integer t, and consider the following
rescaled rate and token counter trajectories:

rβ(t) = Rβ(t/β), τβ(t) = βT β(t/β), t ≥ 0.

A pair of vector-functions (r = (r(t), t ≥ 0), τ = (τ(t), t ≥
0)) is called a fluid sample path (FSP), if the uniform on
compact sets (u.o.c.) convergence

(rβ , τβ) → (r, τ)

holds for at least one sequence (rβ , τβ) defined as above. (In
our case, the u.o.c. convergence means that for any fixed b ≥ 0,
the convergence is uniform over t ∈ [0, b].)

We can now formulate the main result of this section.

Theorem 1: Suppose FSP (r, τ) is such that

r(t) → R∗ as t → ∞
and τ(t) remains uniformly bounded for all t ≥ 0. Then,
R∗ is a solution to the problem (1)-(4) and, moreover, R∗ ∈
V cond ∩ V ∗ �= ∅.

Remark 1. It is easy to show using FSP properties described
below in Lemmas 1 and 2, that if V cond ∩ V ∗ = ∅, then for
any FSP the vector τ(t) cannot remain bounded and in fact
‖τ(t)‖ → ∞ as t → ∞. Therefore, the uniform boundedness
of τ(t) alone implies that V cond ∩ V ∗ �= ∅.

Remark 2. It will be easy to see from our proofs that
Theorem 1 still holds if factor eaiTi(t) in the GMR rule (6) is
replaced by α(aiTi(t)), where α(x) is an arbitrary continuous,
strictly increasing function, such that α(0) = 1, α(x) ↓ 0 as
x ↓ −∞, and α(x) ↑ ∞ as x ↑ ∞. Moreover, the theorem
still holds if rule (6) has the following “additive form:”

i ∈ arg max
i∈I

[H ′
i(Ri(t)) + ν(aiTi(t))]µ

m(t)
i , (13)

where ν(x) is an arbitrary continuous, strictly increasing
function, such that ν(0) = 0, ν(x) ↓ −∞ as x ↓ −∞, and
ν(x) ↑ ∞ as x ↑ ∞. In this paper we choose to work with the
specific form (6) of GMR algorithm, to simplify the exposition
to some degree, and also because this specific “multiplicative”
form shows good convergence properties in our simulations
and is in fact very convenient for practical implementation.

Remark 3. We remind that Theorem 1 does not assert that
the convergence of throughputs r(t) to the set of optimal
solutions of the problem (1)-(4) in fact holds. (Our simulation
experiments show good convergence properties of the GMR
in the form (6).) Subsequently to the present work, it has been
proved recently in [6] that such convergence does hold for a
quite general Greedy Primal-Dual (GPD) algorithm, which,
for our model, specializes roughly to the scheduling rule

i ∈ arg max
i∈I

[H ′
i(Ri(t)) + aiTi(t)]µ

m(t)
i . (14)

We note however, that the GPD algorithm convergence proof
in [6] does not apply to the GMR algorithm (6).

To prove Theorem 1, we will first describe the basic FSP
properties in Lemmas 1 and 2. Then we prove two special
(increasingly general) cases of Theorem 1 in Lemmas 3 and
4, and conclude this section with the proof of Theorem 1 itself.

Lemma 1: For any fluid sample path, all its component
functions are Lipschitz continuous in [0,∞), with the Lip-
schitz constant upper bounded by C + ‖r(0)‖, where C > 0
is a fixed constant depending only on the system parameters.

Proof is analogous to that in [5].

Since all component functions of an FSP are Lipschitz,
they are absolutely continuous, and therefore almost all points
t ≥ 0 (with respect to Lebesgue measure) are such that all
component functions of an FSP have derivatives.

Lemma 2: The family of fluid sample paths satisfies the
following additional properties.



(i) For almost all t ≥ 0 (with respect to Lebesgue measure)
we have:

r′(t) = v(t) − r(t), (15)

where

v(t) ∈ arg max
v∈V

[exp(α × τ(t)) ×∇H(r(t))] · v , (16)

and
τ ′(t) = α(rtoken(t) − v(t)) , (17)

where the components rtoken
i (t), i = 1, . . . , I of vector

rtoken(t) are such that

rtoken
i (t)




= Rmin
i if τi(t) > 0,

∈ [Rmin
i , Rmax

i ] if τi(t) = 0,
= Rmax

i if τi(t) < 0.
(18)

(ii) “Shift property.” If (r, τ) is an FSP, then for any d ≥ 0,
(θdr, θdτ) is also an FSP.
(iii) “Compactness.” If a sequence of FSPs (r(j), τ (j)) →
(r, τ) uniformly on compact sets as j → ∞, then (r, τ) is
also an FSP.

The proof of properties (i)(15) and (iii) is completely
analogous to that of the corresponding FSP properties in [5].
Property (i)(17) is easy to verify directly, using the definition
of an FSP - we omit the proof to save space. The shift
property (ii) (as well as compactness (iii)) is an inherent
property of fluid sample paths, valid for FSPs defined in
many different settings (see for example [4] for a proof); and
it is easily verified directly as well.

Lemma 3: Suppose (r, τ) is a stationary FSP, namely

r(t) ≡ R∗ and τ(t) ≡ τ∗ for all t ≥ 0.

Then, R∗ is a solution to the problem (1)-(4) and R∗ ∈
V cond ∩ V ∗ �= ∅.

Proof. Let vector η ∈ RI be defined as η
.= exp(α × τ∗).

In view of property (15), it follows from r(t) ≡ R∗ that we
have v(t) ≡ R∗ as well. By (16), for almost all t ≥ 0 we have

v(t) ∈ arg max
v∈V

[η ×∇H(r(t))] · v.

We see (since v(t) ≡ R∗ and r(t) ≡ R∗) that v = R∗ solves
the problem

max
v∈V

[η ×∇H(R∗)] · v (19)

or, equivalently, the problem

max
v∈V

[∇H(R∗) · v + λmin · v − λmax · v] , (20)

where the vectors λmin, λmax ∈ RI
+ have the following

components:

λmin
i = max{(ηi − 1)H ′

i(R
∗
i ), 0} ≥ 0,

λmax
i = −min{(ηi − 1)H ′

i(R
∗
i ), 0} ≥ 0 .

Adding the constant −λmin · Rmin + λmax · Rmax to the
objective function in (20), we see that v = R∗ maximizes the
Lagrangian

∇H(R∗) · v + λmin · (v − Rmin) − λmax · (v − Rmax)

for the optimization problem

max
v∈V

[∇H(R∗) · v] (21)

subject to constraints

v ≥ Rmin and v ≤ Rmax . (22)

Moreover, the complimentary slackness conditions are satis-
fied for the (Lagrange multipliers) λmin

i and λmax
i . Indeed, if

for some i we have R∗
i > Rmin

i , then τ∗
i ≤ 0 (otherwise, by

(17)-(18), τi(t) could not possibly be constant), and therefore
ηi ≤ 1. This means that R∗

i > Rmin
i implies λmin

i = 0.
Using an analogous argument, we see that R∗

i < Rmax
i implies

λmax
i = 0.
Thus, by the Kuhn-Tucker theorem (cf. [2]), v = R∗ solves

the problem (21)-(22), which is equivalent to the problem

max
v∈V cond

∇H(R∗) · v . (23)

This in turn means that point R∗ is a maximal point of the
set V cond (i.e., it lies on its outer - “north-east” - boundary),
and that vector ∇H(R∗) is normal to the (convex) set V cond

at point R∗. This implies that R∗ is a solution to (1)-(4).
Since R∗ solves the problem (19), R∗ is a point on the

outer boundary of the entire rate region V , i.e. R∗ ∈ V ∗.
This implies that R∗ belongs to the (non-empty) intersection
of V cond and V ∗.

Lemma 4: Suppose FSP (r, τ) is such that

r(t) ≡ R∗ for all t ≥ 0

and τ(t) remains uniformly bounded for all t ≥ 0. Then, R∗

is a solution to the problem (1)-(4) and R∗ ∈ V cond∩V ∗ �= ∅.
Proof. As shown in the proof of Lemma 3, v(t) ≡ R∗.

Then, it follows from (17)-(18) that R∗
i ∈ [Rmin

i , Rmax
i ] for

each i - otherwise τi(t) could not remain bounded. Consider
a function τi(·). If τi(0) ≥ 0 and R∗

i = Rmin
i then (from (17)-

(18)) τi(t) ≡ τi(0) for t ≥ 0. If τi(0) ≥ 0 and R∗
i > Rmin

i

then τi(t) will decrease linearly at the rate Rmin
i − R∗

i until
it hits 0, and then will stay at 0. Similarly, if τi(0) ≤ 0, τi(t)
either stays at τi(0) (in the case R∗

i = Rmax
i ) or increases

linearly until it hits 0 and then stays at 0 (in the case
R∗

i < Rmax
i ). Thus, for some fixed d ≥ 0 and a fixed vector

τ∗, we must have τ(t) ≡ τ∗ for t ≥ d. The time shifted path
(θdr, θdτ) is also an FSP, and, as we have shown above, it is
stationary. An application of Lemma 3 completes the proof.

Proof of Theorem 1. For each integer d ≥ 0, consider
the FSP (r(d), τ (d)) .= (θdr, θdτ), which is a time shifted
version of (r, τ). Since all component functions of all FSPs
(r(d), τ (d)) are uniformly Lipschitz continuous (because
‖r(t)‖ is uniformly bounded) and the sequence of functions
r(d)(·) converges uniformly to the function identically equal
to R∗, we can choose a subsequence (r(j), τ (j)) converging
(uniformly on compact sets) to a path (r◦, τ◦) such that
r◦(t) ≡ R∗ and τ◦(·) being uniformly bounded. But, the path
(r◦, τ◦) is also an FSP. Application of Lemma 4 completes



the proof.

VI. SIMULATIONS

A. Achieving minimum rates

In this section we report on simulation results for our
algorithms. The DRC traces that we use are determined by
a DRC predictor. At each time slot t, the predictor gives the
value of DRCi(t) for each user i based on user position and
a simulated channel fading process. The possible values for
DRCi(t) are (in kbits per second), {0, 38.4, 76.8, 153.6, 307.2,
614.4, 921.6, 1228.8, 1843.2, 2457.6}. The average value of
DRCi(t) for each user is presented in Figure 2.
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Fig. 2. The average DRC value for each user.

The 3G1xEV-DO system for high-speed data has two fea-
tures that for simplicity of exposition we did not consider in
the earlier theoretical sections of this paper. (In practice they
have little effect on actual system performance.) First, if the
basestation decides to transmit at a low rate (e.g. 38.4kbps),
we are forced to assign multiple time slots (e.g. 16 slots)
to the same user. Otherwise, the amount of data transmitted
would be too small, which would lead to implementation
problems. Second, if the basestation decides to serve user i, the
actual data transmission rate might be slightly different from
DRCi(t), due to the error-correcting coding schemes that are
employed. In our simulations we do take these two features
into account.

We also remark that PFMR and MTMR as described in
Section IV are designed to provide constraints on the long term
received service rates. In practice we wish to bound the service
rate received over shorter time intervals. We achieve this by
slightly increasing the token rate, Rtoken

i , when Ti(t) ≥ 0.
(For the definition of Rtoken

i see Equation 7.) In particular, for
our simulations we set Rtoken

i = 1.2×Rmin
i when Ti(t) ≥ 0.

We run the traces for 90 seconds. At the end of each 10
second interval we calculate the average data rate that the
user received during that interval. We then plot the cumulative
distribution function of all these rates for all users. We discard
the measurements for the first 10 seconds in order that our
results are not skewed by transient effects.

In Figure 3 we show cumulative distribution functions of
these rates on a logarithmic scale for 10, 20, 30 and 40 users.

We show plots for Proportional Fair [20], [3], PFMR and
MTMR. For the latter two algorithms we take Rmin

i = 9.6kbps
for all i and so the token rate for each user is 1.2 × 9.6kbps
= 11.52kbps. For these initial plots we do not impose a
maximum rate constraint (i.e. we set Rmax

i = ∞ for all i).
The length of the time slot is 1.667ms. The value of ai is
6.25 × 10−5 for all users.
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Fig. 3. (Top) Proportional Fair. (Middle) PFMR with Rmin
i = 9.6kbps.

(Bottom) MTMR with Rmin
i = 9.6kbps.

The top plots show the cumulative distribution functions
for Proportional Fair. We can see that as the number of users
increases, the minimum of the rate distribution decreases.
The middle plot shows the curves for PFMR. We see that
now, regardless of the number of users, the minimum of the
distribution is clipped at around 9.6kbps. We note that for



the case of 10 users, the curve for PFMR is almost identical
to the curve for Proportional Fair. This is because for this
small number of users, Proportional Fair already achieves
Rmin

i = 9.6kbps for all users. Hence for PFMR the token
levels remain small and so the two algorithms are essentially
the same. However, for the cases of 20, 30 and 40 users,
Proportional Fair cannot provide Rmin

i = 9.6kbps for all users.
In this case, some of the token levels in PFMR rise to become
nonzero so as to increase the rates of the low rate users. In
the bottom plot we show the curves for MTMR. Here we also
clip the minimum of the distribution. However, the curves are
a different shape from the curves for PFMR. This is because
more of the service is given to a few users with the best DRC
values.

We recall that the aim of PFMR is to maximize
∑

i log Ri

subject to the Rmin
i constraints. The aim of MTMR is to

maximize
∑

i Ri subject to the Rmin
i constraints. In the

following table we show the values of these objective functions
for the case of 30 users. We see that Proportional Fair has a
slightly higher value of

∑
i log Ri than PFMR since it is not

trying to satisfy the Rmin
i constraints. We also note that PFMR

has a higher value of
∑

i log Ri than MTMR but MTMR has
a higher value of

∑
i Ri. ∑

i log Ri

∑
i Ri

Prop. Fair 303.1 940262
PFMR 300.4 776563
MTMR 291.5 1181069

In Figure 4 we change the minimum rate constraint so
that Rmin

i = 30.0kbps for all users. We show cumulative
distribution functions for 6, 8, 10 users under Proportional
Fair, PFMR and MTMR. Once again, both PFMR and MTMR
achieve the minimum rate constraints whereas Proportional
Fair does not. (Note that we consider smaller numbers of users
than before since no algorithm could provide a 30.0kbps rate
constraint to larger numbers of users).

In Figure 5 we study how PFMR peforms when we have
a maximum rate constraint. In particular we show simulation
results for the PFMR algorithm with Rmin

i = 9.6kbps and
Rmax

i = 50.0kbps for all users. (Compare this figure to
the middle of Figure 3, which corresponds to exactly same
simulation scenario, but with Rmax

i = ∞.) We see that users’
throughputs are indeed ”capped” at 50 kbps, as desired.

B. The token processes

In Figure 6 we illustrate the behavior of the token processes
for PFMR in the 30 user case with Rmin

i = 9.6kbps and
Rmax

i = ∞. User 7 has small DRC values and so it would not
be able to achieve Rmin

7 = 9.6kbps under Proportional Fair.
Hence the token level for this user stabilizes in a range that is
strictly above zero. This increases the likelihood that user 7 is
served in each time slot. In contrast, user 29 has larger DRC
values which means that it would achieve Rmin

29 = 9.6kbps
under Proportional Fair. For this user the token level falls to
zero since it does not need “extra help” from the tokens to
obtain the minimum service rate.
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Fig. 4. (Top) Proportional Fair. (Middle) PFMR with Rmin
i = 30.0kbps.

(Bottom) MTMR with Rmin
i = 30.0kbps.

We note that in any finite time interval, the user can actually
get a rate that is slightly less than the token rate (which is
11.52kbps). If in some interval the token level rises then its
service rate is slightly less than than the token rate. If the token
level falls then the service rate is slightly higher than the token
rate. We illustrate this in the plot of user 7 in Figure 6. Service
rates are given for two intervals of length 10 seconds. This
phenomenon is also the reason why the minimum rates for
MTMR in Figure 3 are slightly less than 9.6kbps. However, we
emphasize that for longer time intervals the minimum service
rates become closer to the token rate whenever the token levels
are bounded. In particular, consider a time interval [t1, t2].
Let T (t1) and T (t2) be the token levels at time t1 and t2,
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Fig. 6. The token processes for users 7 and 29.

respectively, and assume for simplicity that T (t) never hits 0
in this interval. Then the service rate that the user receives in
the interval [t1, t2] is equal to,

(Token rate) +
T (t1) − T (t2)

t2 − t1
.

If T (t1) and T (t2) remain bounded as t2 − t1 becomes large,
then the second term approaches zero and so the service rate
approaches the token rate. (If T (t) sometimes hits 0 in t2−t1,
boundedness of T (t1) and T (t2) implies that the service rate
becomes at least the token rate.)

C. Differentiating users
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Fig. 7. Service rates for two classes of users.

In Figure 7 we show that by using PFMR we can achieve
different values of Rmin

i for different users. In particular we
assume that in the 30 user case, two users have paid extra so
that they are assigned an Rmin

i value of 48kbps. The remaining
users have Rmin

i = 9.6kbps. The token rate for the two
“premium” users is 1.2 × 48kbps = 57.6kbps. We show in
the figure that the distribution of rates for these users is lower
bounded by 48kbps. For the remaining users, the minimum of
the rate distribution is clipped around 9.6kbps.

D. Comparision to enforcing rate constraints via modified
utility function

Recall that in Section I-C we discussed that a plausible
method for achieving minimum rates would be to modify the
utility function so that rate constraint violations are penalized.
As an example, suppose that we modify Proportional Fair so
that it aims to maximize the utility function,

H(R) =

∑
i

(
log Ri − 1

3
[
max{0, 1.2 × Rmin

i − Ri}
]3)

.

(Here we use 1.2 × Rmin
i , as opposed to just Rmin

i , as a
threshold below which we impose penalty on the “low” values
of Rmin

i . The reason for doing that is the same as the reason
for using 1.2 × Rmin

i as the token rate in PFMR.) The
corresponding Gradient algorithm always tries to serve flow,

i ∈ arg max
i∈I

DRCi(t)×

(
1

Ri(t)
+ [max{0, 1.2 × Rmin

i − Ri}]3
)

.

In Figure 8 we compare this algorithm with PFMR for the case
of 30 users and Rmin

i = 9.6kbps. We can see that it is less
effective than PFMR at providing minimum rates and achieves
significantly less system throughput.
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Fig. 8. Comparison of PFMR with a modified version of Proportional Fair
that attempts to enforce minimum rates via a penalty in the utility function.

VII. DISCUSSION

We have proposed the GMR algorithm and proved an
optimality result showing that if the user throughputs con-
verge, then the corresponding stationary throughputs do in
fact maximize the desired utility function, subject to min-
imum/maximum rate constraints. The rate constraints are
enforced via a very generic token counter mechanism. We note
that token counters provide a very natural overload detection
and control mechanism. A large positive value of a user’s
token counter indicates that this user “needs help” to reach the
desired minimum throughput. A large number of such users
indicates that air interface resources are “stretched” in trying
to provide minimum rate for all users - this can serve as a
trigger of an overload control action.

Our simulation results show good performance and robust-
ness of the algorithm, which, along with its simplicity and
“compatibility” with the widely employed Proportional Fair
algorithm, make this algorithm very attractive for practical use.
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