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Abstract

We consider a queueing system with multi-type customers and non-homogeneous

exible servers, in the heavy traÆc asymptotic regime and under a complete resource

pooling (CRP) condition. For the input-queued (IQ) version of such a system (with cus-
tomers being queued at the system \entrance," one queue per each type), it was shown
in [12] that a simple parsimonious Gc� scheduling rule is optimal in that it asymp-
totically minimizes the system customer workload and some strictly convex queueing
costs. In this paper we consider a di�erent - output-queued (OQ) - version of the model,
where each arriving customer must be assigned to one of the servers immediately upon
arrival. (This constraint can be interpreted as immediate routing of each customer to
one of the \output queues," one queue per each server.) Consequently, the space of
controls allowed for an OQ-system is a subset of that for the corresponding IQ-system.

We introduce the MinDrift routing rule for OQ-systems (which is as simple and
parsimonious as Gc�), and show that this rule, in conjunction with arbitrary work-
conserving disciplines at the servers, has asymptotic optimality properties analogous
to those Gc�-rule has for IQ-systems. A key element of the analysis is the notion
of system server workload, which, in particular, majorizes customer workload. We
show that (i) MinDrift-rule asymptotically minimizes server workload process among
all OQ-system disciplines and (ii) this minimal process matches the minimal possible
customer workload process in the corresponding IQ-system. As a corollary, MinDrift
asymptotically minimizes customer workload among all disciplines in either the OQ-
or IQ-system.

Key words and phrases: Flexible servers, MinDrift, optimal dynamic routing, load balancing,
queueing networks, heavy traÆc (di�usion) limit, resource pooling
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1 Introduction

1.1 The problem.

We consider a queueing system with multiple customer 
ows (types) i = 1; : : : ; I and non-
homogeneous 
exible servers j = 1; : : : ; J . This means that the mean service time ��1ij of a
type i customer by server j depends on both the customer type and the server. We study the
\heavy traÆc" asymptotic regime, when the system is close to be \critically loaded," and
assume that a certain Complete Resource Pooling (CRP) condition holds. Associated with
the CRP condition, is the notion of system workload, which in this paper is called system
customer workload.

The \input-queued" (IQ) version of the model (see [8, 3, 9, 20, 12]) is such that arriving
customers are placed in \input" queues, one queue per each type i, where they await for
service without being pre-assigned to any particular server until they are actually \taken
for service" by one of them. It is shown in [12], that an IQ-system can be asymptotically
optimally controlled in heavy traÆc (and under CRP condition) by a very simple and par-
simonious Gc� scheduling rule, which, in particular, minimizes customer workload among
virtually all service disciplines.

In this paper we consider a di�erent - \output-queued" (OQ) - version of the model, where
each arriving customer must be assigned (or routed) to one of the servers immediately upon
arrival. (This can be viewed as immediate routing of each arriving customer to one of the
\output" queues, one per each server.) Such models arise in various applications, includ-
ing wireless networks, manufacturing systems, call centers. A wireless application exam-
ple is a system where data packets (\customers") need to be delivered to multiple mobile
users/destinations (which determine \customer types") via a set of transmitters (\servers");
and transmission (\service") rates depend on the (di�erent) channel qualities between dif-
ferent transmitters and users.

Due to the above immediate routing (IR) constraint, the space of controls allowed for an
OQ-system is a (strict) subset of that for the corresponding IQ-system. (Gc� is not a valid
discipline for OQ-systems.) A natural question is: \Is it possible to control OQ-system in
heavy traÆc as eÆciently as the corresponding IQ-system could be controlled? For example,
are there OQ-system controls, which are as parsimonious as Gc�, but still able to minimize
the system customer workload?" The results of this paper demonstrate that the answer to
the latter question is 'yes' - we introduce the MinDrift routing rule, which, in particular,
minimizes the system customer workload in heavy traÆc. We will describe our results shortly,
after a brief literature review.
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1.2 Previous work.

The IQ-version of our system (with non-homogeneous 
exible servers) and the de�nition
of the heavy traÆc asymptotic regime for it (in terms of a certain linear program) were
introduced in [8] (for a special two-server system) and in in [9, 20] (for the general setting).
For the system in heavy traÆc, these papers also de�ne the CRP condition and associated
with it notion of customer workload, de�ned as X(t) =

P
i �
�
iQi(t); t � 0, where Qi(t) is the

type i queue length at time t, and ��i > 0 is the �xed constant called workload contribution of a
type i customer. Papers [8, 9] propose discrete-review scheduling policies which, in the heavy
traÆc and under CRP condition, asymptotically minimize customer workload and a linear
holding costs. In papers [3, 20], continuous-review threshold policies are proposed which are
asymptotically optimal, in the same sense and also under CRP condition. (The asymptotic
optimality proofs are given for a special two-server system.) The common feature of discrete-
review and continuous-review threshold policies is that they require a priori knowledge of
the 
ows' mean arrival rates �i.

In [12], it is proved that a very simple generalized c� (Gc�) scheduling rule (which, in
particular, does not require the knowledge of arrival rates �i) asymptotically minimizes
customer workload and strictly convex holding costs in a general IQ-system under CRP
condition. Moreover, in the limit, the (appropriately rescaled) queue length vector-process
(Q1(t); : : : ; QI(t)) exhibits state space collapse (SSC) - it \lives" on a one-dimensional man-
ifold. (The results of [12] are closely related to earlier results in [14] for a discrete time
generalized switch model. Also, they generalize the earlier Gc� optimality results for a
single-server system.) Following [14], paper [12] provides equivalent (geometric) character-
ization of the CRP condition. Namely, let M be the system service rate region, which is
roughly the set of all vectors, representing feasible long-term average service rates the sys-
tem is capable of jointly providing to di�erent types. Then, the vector �� = (��1 ; : : : ; �

�
I ) of

workload contributions is the unique (up to scaling) outer normal vector to the boundary of
M at the point � = (�1; : : : ; �I).

Most of the previous work on OQ-systems is concentrated on load balancing schemes for
systems with homogeneous servers. Much less work has been done on heavy traÆc regime
in systems with non-homogeneous 
exible servers. Probably the �rst was [10], where a
two-server system is considered, resource pooling in heavy traÆc is discussed, and threshold-
based policies are proposed. In a recent paper [16] a two-server system (di�erent from that in
[10]) with exponential service times is considered, and asymptotic optimality of a threshold
routing policy in proved, under linear holding costs. We refer reader to [16] for a more
extensive review of the previous work on OQ-systems.

1.3 Our results.

In this paper we consider a general OQ-system in heavy traÆc regime and under CRP condi-
tion. First, we give further equivalent characterization of the CRP condition, which is natural
and convenient for the analysis of OQ-systems. Namely, we consider the server utilization
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region K, which is the set of potential server utilization vectors, which can be imposed by the
input 
ows with mean rates �i or greater. Then, CRP condition, in particular, implies the
uniquenes (up to scaling) of the vector normal to K at the boundary point (1; : : : ; 1). The
components ��j > 0 of the vector �� = (��1; : : : ; �

�
J), opposite of the mentioned above normal

vector, we call server workload contributions of di�erent servers, and we call by system server
workload the quantity uX(t) =

P
j �

�
jUj(t), where Uj(t) is the un�nished work of server j

at time t. We establish the relations between customer and server workload contributions,
which show that the asymptotic relation X(t) � uX(t) between customer workload and
server workload exists.

We assume that a strictly convex increasing function Cj(�) is de�ned for each server j, which
is interpreted as the cost rate incurred by the un�nished work on server j.

We introduce two versions of the MinDrift routing rule. The MinDrift(U) assigns an arriving
type i customer to a server

j 2 argmin
j

��1ij C
0
j(Uj(t)) : (1)

(This version may not be practical in many cases, because it assumes exact knowledge of
the un�nished work values Uj(t).) The MinDrift(Q) rule is the same as MinDrift(U), except
Uj(t) in (1) is replaced by the Q-estimated un�nished work qU j(t) =

P
m ��1mjQmj(t) of server

j, where Qij(t) denotes the number of type i customers in server j queue. (MinDrift(Q) is
a more practical version.)

Our main result (see Theorems 1 and 2) is that, in OQ-system in the heavy traÆc asymp-
totic limit and under CRP condition, the MinDrift rule (either version), in conjunction with
virtually arbitrary work-conserving scheduling disciplines at the servers, minimizes (among
all service disciplines) the server workload and the instantaneous and cumulative costs corre-
sponding to the cost rate

P
j Cj(Uj(t)). Moreover, in the limit, the (rescaled) un�nished work

vector-process (U1(t); : : : ; UJ(t)) exhibits SSC such that the vector (C 01(U1(t)); : : : ; C
0
J(UJ(t)))

is always proportional to ��. (This behavior is analogous to that exhibited by IQ-systems
in [12, 14], but with the server un�nished works replacing \input" queue lengths, and server
workload contrubutions replacing customer workload contributions.) In addition, the min-
imal server workload process (attained under MinDrift) matches the minimal possible cus-
tomer workload process in the corresponding IQ-system. As a corollary, MinDrift(Q) (asymp-
totically) minimizes customer workload among all disciplines in either the OQ- or IQ-system
(see Theorem 3). In this sense, MinDrift rule controls an OQ-system as eÆciently as the
corresponding IQ-system (allowing a wider class of disciplines) can possibly be controlled.

Essentially as another corollary of the main results, we obtain a necessary condition (The-
orem 4) for any OQ-system service discipline to have (asymptotic) workload minimization
property. Using this condition we demonstrate (in Section 13) that even some very natu-
ral service disciplines in OQ-systems, known to guarantee stability of the queues (if such is
feasible at all), do not minimize system workload in heavy traÆc.

Another contribution of the paper is that, in addition to the CRP condition, we in fact
identify and characterize a weaker First-Order-CRP (FO-CRP) condition. The purpose of
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doing this is two-fold. First, FO-CRP is suÆcient to establish convergence properties of

uid sample paths, which arise in the 
uid limit asymptotic regime and (in addition to being
an important step in proving the main heavy traÆc results) are of independent interest.
Secondly, this clari�es the role of the additional assumption, which strengthens FO-CRP to
CRP, in proving the heavy traÆc results.

Finally, we would like to point out that, despite the fact that the technical development in
this paper is in many ways analogous to that in [14, 12], some parts of it are quite di�erent. In
particular, the representation of the server workload process in Sections 9 and 10 (roughly,
as a sum of the \driving" and \regulation" processes) is substantially di�erent from the
representation of customer workload processes in [14, 12].

1.4 Paper outline.

In Section 2 we set basic notations and conventions. The OQ-system model is formally
introduced in Section 3. In Section 4 we de�ne the (two versions of) MinDrift routing rule,
discuss its basic intuition and some examples. The de�nition and characterization of FO-
CRP and CRP conditions in terms of an IQ-system are presented in Section 5. The following
Section 6 gives an equivalent characterization of FO-CRP and CRP conditions in terms of an
OQ-system, and establishes relations between customer and server workload contributions.
The heavy traÆc asymptotic regime is de�ned in Section 7, which also contains the de�nitions
of and the relations between customer workload and server workload. Section 8 contains
formulations of our main results (Theorems 1-4), described earlier. The analysis of 
uid
sample paths is the subject of Section 9. Section 10 contain the proof of Theorem 1, regarding
the asymptotic optimality of MinDrift(U) rule. The proof of Theorem 2 (regarding the
MinDrift(Q) rule) can essentially be reduced to that of Theorem 1 - a detailed outline of this
reduction is given in Section 11. Theorem 4 - a necessary condition for asymptotic workload
minimization - is proved in Section 12. We conclude in Section 13 with a discussion of the
relation between stability and heavy traÆc optimality properties of service disciplines.

2 Basic Notation and Conventions

We use the standard notations R and R+ for the sets of real and real non-negative numbers,
respectively; and the not quite standard R++ for the set of strictly positive real numbers.
Corresponding N -times product spaces are denoted RN , RN

+ , and RN
++. The space RN is

viewed as a standard vector-space, with elements x 2 RN being row-vectors x = (x1; : : : ; xN).
We write simply 0 for the zero vector in RN , and 1

:
= (1; 1; : : : ; 1) for a vector with all unit

coordinates. (The dimensions of vectors 0 and 1 are either speci�ed explicitly or are clear
from the context.)
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The scalar product (dot-product) of x; y 2 RN , is

x � y :
=

NX
i=1

xiyi ;

and the norm of x is
kxk :

=
p
x � x :

Vector inequalities are to be understood component-wise. As an example, for 
; x 2 RN ,

 < x means 
i < xi, i = 1; : : : ; N . Also


 � x
:
= (
1x1; : : : ; 
NxN ) ;

and if 
 2 RN
++, we slightly abuse notation by writing

1=

:
= (1=
1; : : : ; 1=
N) :

We denote the minimum and maximum of two real numbers �1 and �2 by �1 ^ �2 and �1 _ �2,
respectively.

Let D([0;1); R) be the standard Skorohod space of right-continuous left-limit (RCLL) func-
tions, de�ned on [0;1) and taking real values. (See, for example, [7] for the de�nition of
this space and its associated topology and �-algebra.)

The symbol
w! denotes convergence in distribution of random processes (or other random

elements), i.e. weak convergence of their distributions. Typically, we consider convergence
of processes in D([0;1); R), or its N -times product space DN([0;1); R) equipped with
product topology and �-algebra.

The symbol
u:o:c:! (or the abbreviation u.o.c. after a convergence statement) stands for con-

vergence that is uniform on compact sets, for elements ofD([0;1); R) or its N -times product
DN([0;1); R). For functions with a bounded domain A � R, the u.o.c. convergence means
uniform convergence.

We reserve the symbol ) for weak convergence of elements in the space D([0;1); �R); the
latter is the space of RCLL functions taking values in the set �R of real numbers, extended
to include the two \in�nite numbers" +1 and �1 (with the natural topology on �R). If
h; g 2 D([0;1); �R), then h ) g means h(t) ! g(t) for every t > 0 where g is continuous.
(Convergence at t = 0 is not required.) We shall not need any characterization of the
topology on D([0;1); �R), beyond the de�nition of convergence given above.

3 The Model

We consider a queueing system with a �nite number I of customer types, and a �nite number
J of 
exible servers. For notational convenience we use the symbol I also for the set of types
f1; : : : ; Ig. Similarly, J also denotes the set of servers f1; : : : ; Jg.
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The arrival process for each type i 2 I is a renewal process with the time (from the initial
time 0) until the �rst arrival being ui(0), and the rest of the interarrival times being an i.i.d.
sequence ui(n); n = 1; 2; : : : . Let �i = 1=E[ui(1)] > 0 denote the arrival rate for type i and
�2
i = V ar[ui(1)].

The service times of type i customers by server j 2 J form an i.i.d. sequence vij(n); n =
1; 2; : : : . Let �ij = 1=E[vij(1)] < 1 and �2

i = V ar[vij(1)]. The convention �ij = 0 is used
when server j can not serve type i.

All arrival and service processes are assumed mutually independent.

A version of such 
exible (parallel) server model, which received most attention in the
previous work (see [8, 9, 20, 3, 12] and references therein) is the input-queued (IQ) model.
In input-queued model, customers of each type i that await service are waiting in a separate
\input" queue i of in�nite capacity. This in particular means that customers do not have
to be assigned to the servers while waiting in the input queue - such server assignment is
(irreversibly) done when the customer is \pulled" for service by one of the servers.

In this paper we concentrate on a di�erent - output-queued (OQ) - model, satisfying the
following (additional) immediate routing (IR) condition:

(IR) Each new customer arriving in the system must be assigned to one of the servers j
immediately upon arrival, and after that the customer can only be served by the server it is
assigned to.

A natural way to interpret (IR)-condition (and this interpretation is in fact the main mo-
tivation for the OQ-model) is that, upon arrival, each new customer must be routed to one
of the servers or, more precisely, into the \output" queue associated with (or, \located at")
that server.

Remark 1. It should be clear that the (IR)-condition de�nes the only di�erence between
an OQ-system and the corresponding IQ-system. Therefore, in general, the class of controls
(or, service disciplines) for an OQ-system is a strict subset of that for the corresponding
IQ-system. For example, the Gc� discipline for IQ-systems, studied in [12], does not satisfy
(IR)-condition and, consequently, is not a valid discipline for OQ-systems.

A service discipline in an output-queued system consists of two parts: routing (server as-
signment) algorithm and scheduling rule employed by each server (and, generally speaking,
depending on the server) to determine which customer to serve from its queue, i.e., among
the customers assigned to it.

We will consider the class of service disciplines satisfying (in addition to (IR)) the following
condition on the routing algorithm:

(d0) The realizations of a customer service requirements are not known at the time when
routing decision (server assignment) for this customer is made. (The distributions of the
service requirements at di�erent servers are known.)
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Sometimes, but not always, we will further restrict the class of service disciplines by imposing
the following conditions on the server scheduling rules:

(d1) Scheduling rule of each server is non-preemptive within each customer type. Namely,
a server can not take for service a new customer of type i if it already has another type i
customer \in service" (with both elapsed and residual service times being non-zero). Conse-
quently, at any given time, a server can not have in service more than one customer of any
given type.
(d2) A server does not \know" the realization of a customer service time before the customer
service starts.

Note that conditions (d1) and (d2) do allow a server idling (even if it has customers in
service) or preemption of service of one customer by another customer but of a di�erent
type. They also allow server-sharing by several customers but, again, each of a di�erent
type.

Remark 2. Note that the class of IQ-system service disciplines, satisfying conditions (d0)-
(d2) (but not (IR)), is well de�ned, and it, �rst, belongs to the class of disciplines studied
in [12], and, second, contains the Gc� discipline (see [12]). Moreover, this class is obviously
a superset of the de�ned above class of OQ-system disciplines satisfying (d0)-(d2) and (IR).

4 The MinDrift Routing Rule

4.1 Notation.

Let Uj(t) denote the (un�nished) work of server j at time t, namely, the total amount of
un�nished processing time of all customers of all types present in server j queue at time t.
We denote by Qij(t) the number of type i customers in queue j at time t, including those
customers whose service already started but not yet completed. The quantity

qU j
:
=
X
i

(1=�ij)Qij(t)

we will call Q-estimated (un�nished) work of server j. Finally, by Qi(t) we will denote the
total number of type i customers in the system at time t. In the OQ-system, we always have

Qi(t) =
X
j

Qij(t) ;

but we note that Qi(t) is well de�ned for both the OQ- and IQ-systems.

4.2 MinDrift Rule De�nition.

Suppose that, for each server j, a cost function Cj(�); � � 0, is given. Assume that the cost
functions have the following properties:
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Cj(�) is continuous strictly-increasing convex, with Cj(0) = 0;
moreover, the �rst derivative C 0j(�) is continuous strictly-increasing, with C 0j(0) = 0;
�nally, the second derivative C 00j (�) is strictly positive continuous in the open interval (0;1),
with C 00j (0) = lim�#0C

00
j (�) � 0, where C 00j (0) is either �nite or is +1.

The MinDrift rule routes (assigns) customers to the servers as follows. When a new customer
of type i arrives in the system, it is routed to a server j such that

j 2 argmin
j2J

C 0j(Uj(t))=�ij : (2)

Ties are broken arbitrarily: for example, in favor of the smallest index j. Also, by convention,
a type i customer can never be routed to a server j if �ij = 0. (Throughout this paper we
also adopt a related convention that any expression involving division by �ij holds under the
additional assumption that �ij > 0, even if we do not state this explicitly.)

De�ned above by (2) is the basic version of MinDrift rule - we will refer to it as a MinDrift(U)
rule.

A version of MinDrift rule, with Uj in (2) replaced by qU j, will be called MinDrift(Q) rule.
Namely, MinDrift(Q) rule routes an arriving type i customer to a server j such that

j 2 argmin
j2J

C 0j(
qU j(t))=�ij: (3)

4.3 Nature of MinDrift Rule.

The nature of MinDrift rule is simple - it \myopically" (or, \greedily") tries to minimize
the average drift of the aggregate cost function

P
j Cj(Uj(t)). Indeed, C 0j(Uj(t))=�ij (see

(2)) approximates the expected increment of the aggregate cost function, caused by routing
one type i customer (arrived at time t) to server j; therefore, by (2), MinDrift(U) routes
new arrivals in the way such that the (approximate) expected increment of

P
j Cj(Uj(t))

is minimized. In other words, MinDrift(U) routing tries to minimize the average rate of
increase of

P
j Cj(Uj(t)), due to placement of new work (or, load) to the servers. Note

that, in the OQ-system, the \best" a service discipline can do to maximize the rate at whichP
j Cj(Uj(t)) is decremented due to processing of the un�nished work, is to never idle servers

when they have work to do. Thus, MinDrift(U) routing rule (in conjunction with arbitrary
work-conserving scheduling rules at the servers) strives to minimize the average drift of the
aggregate cost.

The MinDrift(Q) rule is based on the same principle as MinDrift(U), except that instead of
using the exact values Uj of un�nished work (which may not be available in many applica-
tion), it uses their (estimated) average values qU j (which may be more readily available).
As we will demonstrate, in the heavy traÆc asymptotic regime we consider, the two versions
MinDrift(U) and MinDrift(Q) of the rule are in a certain sense \indistinguishable," under
non-restrictive additional conditions.
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The Gc� scheduling rule for IQ-systems, studied in [12], is the rule which myopically tries
to minimize the drift of the aggregate cost function

P
i Ci(Qi(t)) of the queue lengths Qi,

with Ci(�) being cost functions having the same properties as functions Cj(�) de�ned above.
Consequently, Gc� is such that a server j always tries to serve a queue

i 2 argmax
i2I

C 0i(Qi(t))�ij;

thus maximizing the average rate at which
P

iCi(Qi(t)) is decreased due to departures of
served customers. The Gc� does not - and cannot - exercise any control over the rate of
increase of

P
iCi(Qi(t)) due to new arrivals. Therefore, although both Gc� (in an IQ-

system) and MinDrift (in an OQ-system) strive to minimize drifts of certain cost functions,
they di�er in that they control di�erent system state variables: Gc� controls the rates at
which queue lengths Qi are depleted due to service, and MinDrift controls the rate at which
un�nished works Uj are increased due to new arrivals.

4.4 Examples.

Consider a special case when the cost functions have the form Cj(�) = 
j�
�+1, with some

�xed � > 0 and 
j > 0. Then MinDrift(U) rule becomes: route an arriving type i customer
to a server

j 2 argmin
j2J


j(� + 1)
[Uj(t)]

�

�ij
; (4)

and similarly for MinDrift(Q).

Consider a special case of the system such that, for any given pair (ij), we have either �ij = 0
or �ij = �j > 0. In other words, the system is such that each server j has a (depending on
j) subset of types i which it can serve, but the average service rates of all types within this
subset are same and equal to �j. (And server cannot serve at all any types i outside the
subset.) For this system, the MinDrift(Q) version of (4), with � = 1, becomes:

j 2 argmin
j2J

2
j

P
iQij(t)

�2j
: (5)

Since parameters 
j > 0 can be set arbitrarily, we see from (5) that, for this special system,
such \popular" routing rules as \Join a server j with the shortest queue":

j 2 argmin
j2J

X
i

Qij(t) ; (6)

and \Join a server j with the smallest expected un�nished work":

j 2 argmin
j2J

P
iQij(t)

�j
; (7)
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are special cases of MinDrift(Q). (We remind that, in both cases, routing customers to servers
where they cannot be served at all is prohibited. Also note that, if we further assume that
each server employs �rst-in-�rst-out (FIFO) scheduling, then rule (7) is equivalent to the
\Join the shortest expected delay" routing rule.)

It should be clear that in a general system, where service rates �ij depend on both i and
j more generally than in the special system described above, the Join-shortest-queue and
Join-smallest-expected-un�nished-work routing rules are not special cases of MinDrift. Con-
sequently, the heavy traÆc optimality properties (which we prove in this paper for MinDrift)
may not (and typically do not) hold for these rules.

5 Complete Resource Pooling Condition

In this section we present the de�nition of the Complete Resource Pooling (CRP) condition
and related notions and results, which are \oriented towards" the analysis of the IQ-model,
and basically follow those in [12]. However, the development in this section is more general
than that in Section 5 of [12]. In particular, we consider the notion of First-Order-CRP
(which is a weaker form of CRP), and prove some additional properties related to this
notion. (The results of this section provide a \reference point" for the next section, which
gives an equivalent characterization of First-Order-CRP and CRP conditions \in terms of"
the OQ-model.)

Consider an I � J matrix � = f�ij; i 2 I; j 2 Jg, with all �ij � 0. Each element �ij
can be interpreted as the average rate at which server j time is allocated to the service of
type i customers, in the long run. We do not call elements �ij \fractions" of server j time,
because, for the reasons which will become clear in Section 6, it will be convenient for us not
to assume a priori that

P
i �ij � 1, or even that �ij � 1.

With a given � we associate the vector �(�) = (�1(�); : : : ; �I(�)), whose coordinates are

�i(�)
:
=
X
j

�ij�ij; i 2 I ; (8)

this is the vector of mean long-run service rates provided to the types i 2 I, if each server j
allocates its time to serving serving type i at the average rate �ij.

Consider also a di�erent vector-function of a matrix �. Namely, let the vector �(�) =
(�1(�); : : : ; �J(�)) 2 RJ be de�ned as follows:

�j(�)
:
=
X
i

�ij 8j 2 J : (9)

Each component �j(�) is naturally interpreted as the total \utilization" of server j, given
the average rates at which its time is allocated to service of di�erent types i are given by
�ij. (Again, we do not assume a priori that �j(�) � 1.)
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De�nition 1 We de�ne M to be the set of �(�) corresponding to all possible �, satisfying
the condition

�(�) � 1 : (10)

Further let M� denote the set of all maximal elements � 2 M such that � 2 RI
++. (� 2 M

is maximal if � � � 2 M implies � = �.)

Note thatM is a bounded convex polyhedron in RI
+. We assume thatM is non-degenerate

(i.e., has dimension I), which is equivalent to assuming that each customer type i can be
served at non-zero rate �ij by at least one server j. The set M is in fact the closure of our
system's stability region M0, which is the set of arrival rate vectors � = (�1; : : : ; �I) such
that � < �(�) for some � satisfying (10). (Cf. [15, 13, 6, 2, 1, 14].)

De�nition 2 We say that the condition of First Order Complete Resource Pooling (FO-
CRP) holds for a vector �, if � lies within the interior of one of the ((I � 1)-dimensional)
outer faces of M and � 2 M�. If, in addition, the matrix � such that � = �(�) and (10)
hold is unique, then we say that Complete Resource Pooling (CRP) condition holds.

Remark. The CRP condition given above is the same as in [12], and it is equivalent to that
introduced earlier in [9, 20] (see Assumption 3.4, Theorem 5.3 and Corollary 5.4 in [20] for a
summary). The fact of equivalence will, in particular, follow from the results of this section.

When the FO-CRP condition holds, let us denote by � = (�1; : : : ; �I) the (unique up to
a scaling) \outer" normal vector to the polyhedron M at the point �. Note, that � 2
RI

++. (Otherwise, if some �i � 0, a small increase of the component �i would produce a
vector �0 � �, �0 6= �, and such that �0 2 M - a contradiction to the maximality of �.)
For concreteness we use the normal vector ��, which is the vector de�ned uniquely by the
additional requirement that k��k = 1. The components ��i of the vector �� are sometimes
called the workload contributions of customers of the di�erent types i (see [9, 20, 12]); in this
paper will call them customer workload contributions, to make a distinction from the server
workload contributions introduced in Section 6.

The FO-CRP condition for � implies, in particular, that

�� � � = max
�2M

�� � � = max
�: �(�)�1

�� � �(�) ; (11)

this in turn implies that, for any matrix � such that (10) holds and � = �(�), in fact, the
equality in (10) must hold, namely, we have

� = �(�) and �(�) = 1 : (12)

Given � satisfying FO-CRP condition, for each j 2 J , let us denote

Ij = argmax
i

��i �ij
:
= fi 2 I j ��i �ij = max

l
��l �ljg:

12



Any pair (ij) such that i 2 Ij is called basic activity; therefore Ij indicates the set of basic
activities for server j. It is easy to see from (11), that, for any � satisfying (12), �ij > 0
implies i 2 Ij.

Lemma 1 If � satis�es the FO-CRP condition, then the corresponding graph G� with nodes
being types i and servers j, and arcs being basic activities, is connected.

Proof. Suppose not. Consider any breakdown of the graph G� into two components, G(1)

and G(2), disconnected from each other. For m = 1; 2, denote by I(m) and J (m) the set of
types and servers, respectively, within the component G(m). By our construction, for any
m = 1; 2, j 2 J (m) implies Ij � I(m).

Consider any � satisfying (12). Recall that �ij > 0 implies i 2 Ij. Let us �x a small
Æ > 0, and consider vector ��� which is obtained from �� by the following modi�cation:
���i = ��i (1 + Æ) if i 2 I(1), and ���i = ��i if i 2 I(2). Since there is no arc connecting G(1) and
G(2), if Æ is small enough, then � solves the problem

max
�: �(�)�1

��� � �(�)

as well as the problem in the RHS of (11). In other words, � = �(�) solves the problem
max�2M ��� � �, as well as max�2M �� � �. This means that ��� is a normal (di�erent from
��) to the boundary of M at point � - a contradiction to the FO-CRP condition.

Now, with any matrix � let us associate graph G(�) with nodes being types i and servers j,
and arcs (ij) corresponding to pairs (ij) with �ij > 0.

Lemma 2 (i) If FO-CRP holds, then there exists � satisfying (12) and such that �ij > 0 if
and and only if i 2 Ij.

(ii) The FO-CRP condition for � holds if and only if � 2 M� and there exists � such that
(12) holds and the graph G(�) is connected.
(iii) If CRP condition holds, then � satisfying (12) is unique, the graph G(�) = G� (that is,
�ij > 0 if and only if i 2 Ij), and this graph is a tree.

Proof. (i) Consider arbitrary �0 satisfying �(�0) = 1, and such that �0ij > 0 if and and only
if i 2 Ij. Note that �

� � �(�0) = �� � �, because the condition on �0 guarantees that �0 solves
the problem in the RHS of (11). Let

�00 =
�� �(Æ�0)

1� Æ
;

where 0 < Æ < 1 is �xed. We have

�� � �00 = �� � �� Æ�� � �(�0)
1� Æ

= �� � �;

13



and we can always choose Æ to be small enough, so that �00 lies in the interior of the same
face of M as � does. Then, there exists �00 such that �00 = �(�00), �(�00) = 1, and �00ij > 0
implies i 2 Ij. It is easy to verify directly that � = (1 � Æ)�00 + Æ�0 is a matrix with the
properties we seek.

(ii) Necessity follows from (i). Let us prove suÆciency. Let � be a matrix such that (12)
holds, � 2 M�, and the graph G(�) is connected. Since � 2 M�, there exists an outer
normal vector �� to the boundary of M at point �, and it is such that �� 6= 0, �� 2 RI

+.
Consequently, � solves the problem (in the RHS of) (11). From this we conclude that
�� 2 RI

++ - otherwise (if ��i = 0 for some i), � could not be a solution to (11), since G(�) is
connected. Finally, the normal �� must be unique (up to scaling). Indeed, consider any other
vector ��� 2 RI

++, which is not a scaled version of ��, that is, maxi �
��
i =��i > mini �

��
i =��i .

Then, connectedness of G(�) easily implies that, since � solves (11), it cannot possibly solve
(11) with �� replaced by ���. Therefore, ��� cannot be a normal to M at point �.

(iii) The de�nition of CRP and statements (i) and (ii) of the lemma immediately apply the
uniqueness of � satisfying (12), the fact that G(�) = G� and that this graph is connected. It
remains to show that G(�) must be a tree. Suppose not. Let us pick any cycle on this graph.
It is easy to see that we can \perturb" the (strictly positive) elements �ij along the arcs of
the cycle, so as to produce a matrix �0 6= �, such that �(�0) = �(�) = � and �(�0) = 1, a
contradiction to the uniqueness of �.

Remark. Just as in the case of Gc� scheduling rule, studied for an input-queued model
in [12], we emphasize here that the notion of a basic activity is not utilized in any way
(neither explicit nor implicit) by the MinDrift routing algorithm. (The algorithm need not
know which activities are basic.) It is only used as a tool for the analysis of the algorithm.
Similarly, the algorithm need not know the values of workload contributions.

6 Equivalent Characterization of CRP Condition in

Terms of the Output-Queued Model

In this section we give an equivalent (\dual") characterization of the CRP condition, and
introduce notions and results which will be used in the analysis of our OQ-model.

First, let us give a somewhat di�erent (although closely related) interpretation of the matrix
� and functions �(�) and �(�), de�ned in Section 5. Suppose a matrix � is given, and assume
that customers of a type i arrive (routed) to a server j at the average rate �ij�ij. Then,
�i(�); i 2 I, is the total average rate at which type i customers arrive in the system, and

�j(�) =
X
i

�ij �
X
i

(�ij�ij)�
�1
ij ; j 2 J;

is the average rate at which the work (i.e., the required amount of processing time) arrives
(routed) to server j. (We used the convention that (�ij�ij)�

�1
ij = 0 if �ij = 0.)
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De�nition 3 We de�ne the server utilization region K � RJ
+ to be the set of all possible

values of �(�) with � satisfying condition

�(�) � � : (13)

Further let K� denote the set of all minimal elements � 2 K such that � 2 RJ
++. (� 2 K is

minimal if � � � 2 K implies � = �.)

Region K is a convex polyhedron in RJ
+, and it is non-degenerate (i.e., has dimension J)

as long as M is non-degenerate. Note that K is unbounded, but it is of course \bounded
below", say by 0, since it lies in the positive orthant.

Lemma 3 (i) The FO-CRP condition for a �xed vector � holds if and only if the following
is true:
(a) vector 1 2 RJ lies within the interior of one of the ((J � 1)-dimensional) faces of K,
(b) 1 2 K�.
(ii) When FO-CRP condition for � (or, equivalently, (i)(a) and (i)(b)) holds, then the unique
(up to a scaling by positive constant) outer normal vector ��� to the polyhedron K at the
point 1 is such that �� = (��1; : : : ; �

�
J) 2 RJ

++, and �� is related to the vector �� as follows:

��j = max
i

�ij�
�
i ; j 2 J; (14)

��i = min
j

��j=�ij; i 2 I: (15)

In addition:
(c) i 2 Ij (that is, activity (ij) is basic) if and only if j 2 Ji, where

Ji
:
= argmin

j
��j=�ij; (16)

(d) any matrix � satisfying �(�) = 1 and (13), in fact, satis�es (12);
(e) we have

�� � 1 = �� � �: (17)

(iii) The CRP condition for a �xed vector � holds if and only if (i)(a), (i)(b) and the following
property hold:
(f) the matrix � satisfying �(�) = 1 and (13) is unique.
When CRP does hold, the matrix � is in fact the unique solution of (12).

Proof. (i) Let us prove the necessity of (a) and (b). Consider the vector �� de�ned by (14).
(Note that �� 2 RJ

++.) Then (15) holds. Indeed, for a �xed i, we have ��j = �ij�
�
i if (ij) is

basic, and ��j > �ij�
�
i otherwise. (Incidentally, this means that i 2 Ij is equivalent to j 2 Ji.)
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Let choose any matrix � which solves (12) and such that G(�) = G�. (Recall that graph G�
is connected.) Then, since this � is such that �ij > 0 implies j 2 Ji, it is easy to observe
that � solves the problem

min
�: �(�)��

�� � �(�); (18)

or, equivalently, 1 solves the problem

min
�2K

�� � �: (19)

(Compare problems (18) and (19) to problem (11).) This means, in particular, that 1 is
a minimal element of K, and �� is a normal to the region K at point 1. Since G(�) is
connected, it is easy to see from (18) that � = 1 could not possibly solve the problem (19)
with �� replaced by any other non-zero vector ��� 2 RJ

+, unless �
�� = c�� for some c > 0.

This completes the proof of necessity of (a) and (b).

The suÆciency of (a) and (b) follows simply by the symmetry between the de�nitions of
FO-CRP condition (for �) and condition (a)-(b) (expressed in terms of vector 1). Namely,
if for the vector �1 and the region �K we de�ne a condition analogous to FO-CRP for �
and regionM, this will be exactly the condition (a)-(b). Thus, from this condition ((a)-(b))
we can obtain a condition analogous to (a)-(b), but with 1 and K replaced by �� and �M,
respectively; this latter condition is exactly our original FO-CRP.

(ii) As part of the proof of (i), we already proved all the properties stated in (ii), except (d)
and (e). If (d) would not hold, then � could not be a maximal element of M. Property (e)
follows from the fact that any matrix �, chosen as in the proof of (i), satis�es (12) and solves
both problems (11) and (18).

(iii) This follows from (i), (ii) and the de�nition of CRP.

When FO-CRP condition holds, the components ��j of the vector �� we will call server
workload contributions of di�erent servers j.

7 The Heavy TraÆc Regime

In this section we introduce the notion of a sequence of queueing systems in heavy traÆc.
Suppose a vector � satisfying the CRP condition is �xed. Associated with this � are the
unique matrix � satisfying (12), and the corresponding normal vectors �� 2 RI and �� 2 RJ .
(We remark, that all the de�nitions and facts in this section are valid when the weaker FO-
CRP condition holds, with arbitrary �xed � satisfying (12). However, for our main results
in Section 8 the stronger CRP condition is essential.)
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The quantity

X(t)
:
=

IX
i=1

��iQi(t); t � 0 ;

we will call customer workload of the system. The customer workload process X(�) is of the
primary interest in the analysis of the input-queued model [8, 9, 20, 3, 12].

For the output-queued model, we de�ne a di�erent (although closely related, in the sense
speci�ed later) notion of server workload:

uX(t)
:
=

JX
j=1

��jUj(t); t � 0:

In addition, we de�ne Q-estimated server workload as

qX(t)
:
=

JX
j=1

��j
qU j(t); t � 0:

Informally speaking, for a service discipline satisfying constraints (d0)-(d2), qX(t) is a \good"
(asymptotically exact) estimate of the server workload uX(t).

Since for any pair of i 2 I and j 2 J the inequality ��j=�ij � ��i holds, we observe that the
Q-estimated server workload cannot be less than customer workload:

qX(t) �
IX

i=1

JX
j=1

(��j=�ij)Qij � X(t) : (20)

We also have the following inequality, which we record for future reference:

qXr(t) � C0X
r(t); t � 0; (21)

with

C0 = max
(ij):�ij>0

��j=�ij

��i
: (22)

We now consider a sequence of queueing systems, indexed by r 2 R = fr1; r2; : : : g, where
rn > 0 for all n and rn " 1 as n!1. (Hereafter in this paper, \r!1" means that r goes
to in�nity along the sequence R, or some subsequence of R; the choice of the subsequence
will be either explicit or clear from the context.) Each system r 2 R has, as before, I
customer types and J servers. The primitives and the processes corresponding to a system
r 2 R will be appended with a superscript r.

Assume that, for each type i, the mean arrival rate �ri = 1=E[uri (1)] is such that

r(�ri � �i)! bi ; r!1 ; (23)
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where bi 2 R is a �xed constant. Assume also convergence of the variance, that is

[�r
i ]
2 ! �2

i ; r !1 : (24)

In addition, we make the following technical assumption, needed, in particular, to apply
Bramson's weak law estimates [4] (and establish (75) later on):
uniformly over i and r,

E[(uri (1))
21furi (1) > xg] � �(x) ; x � 0 ; (25)

where �(�), is a �xed function, �(x)! 0 as x!1.

For the initial interarrival times we assume that, for each i,

uri (0)=r! 0; r!1:

Let F r
i (t); t � 0, denote the number of type i customers arrived in the system by time t,

excluding \initial" customers present at time 0. Assumptions (23), (24) and (25) imply a
functional central limit theorem (FCLT) for these arrival processes:

fr�1(F r
i (r

2t)� �ri r
2t); t � 0g w! f�iB(t); t � 0g ; (26)

where �2i = �3i�
2
i , B(�) is a standard (zero drift, unit variance) Brownian motion, and

w!
denotes convergence in distribution (for processes in the standard Skorohod space of RCLL
functions).

The service time distributions do not change with the parameter r. (This in particular means
that the condition analogous to (25) trivially holds for the service times vri;j(1), uniformly
on (i; j) and r.)

Let us denote by

�V
r

ij(l)
:
=

lX
m=1

vrij(m); l = 0; 1; 2; : : : ;

the total amount of work (i.e., total service time) brought to server j by the �rst l (newly
arriving) type i customers routed to it. We extend the domain of �V

r

ij(�) to all real non-

negative t � 0 by adopting the convention that �V
r

ij(t) =
�V

r

ij(btc). (We will use same
domain extension convention throughout the paper, for other functions, which are originally
de�ned on the integers, as well.) For �V

r

ij we have the following FCLT:

fr�1(�V r

ij(r
2t)� ��1ij r

2t); t � 0g w! f�ijB(t); t � 0g : (27)

For each i 2 I, let us �x a set of integer valued non-decreasing non-negative functions
(sN ij(l); l = 0; 1; 2; : : : ); j 2 J , satisfying the following conditions:X

j

sN ij(l) = l; l = 0; 1; 2; : : : ; (28)
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max
l�0

jsN ij(l)� �ij�ij
�i

lj <1; j 2 J; (29)

sN ij(l) � 0 for l = 0; 1; 2; : : : ; j 62 Ji: (30)

The value of sN ij(l) is interpreted as the number of type i customers routed to server j, out
of the �rst l type i customers arrived in the system. Then, it is clear that, for each 
ow i,
the functions sN ij(�) de�ne a �xed (\static") pattern of routing customers to the servers in
Ji, such that, for any l, the fractions of customers routed to di�erent servers j 2 Ji closely
track the values �ij�ij=�i; recall that

P
j �ij�ij=�i = 1. (The MinDrift rule does not require

any knowledge of this static routing pattern - it is only used as a tool for the analysis!) Such
functions can be, for example, constructed recursively as follows. We set sN ij(0) = 0 for all
j 2 Ji. For each l = 1; 2; : : : , we set sN ij(l) =

sN ij(l � 1) + 1 for one of the j 2 Ji with the
smallest value of sN ij(l � 1) � (�ij�ij=�i)l, and

sN ij(l) =
sN ij(l � 1) for all other j. (The

\ties" between j are broken arbitrarily, for example, in favor of the smallest one.)

For i 2 I, let us denote by

Ar
i (t)

:
=
X
j2J

��j
�V

r

ij(
sN ij(F

r
i (t))) �

X
j2J

��j

sN ij(F r
i (t))X

m=1

vrij(m); t � 0;

the total amount of server workload brought to the system by the new arrivals of 
ow i by
time t � 0 assuming the arrivals would be routed according to the (�xed) functions sN ij(�).
From (26)-(30) we obtain the following FCLT for the sequence of processes Ar

i (�):

fr�1(Ar
i (r

2t)� �ri

P
j �ij�

�
j

�i
r2t); t � 0g w! fu�iB(t); t � 0g ; (31)

where

u�2i
:
= �i[

X
j

�ij�
�
j ]
2�2

i +
X
j

�ij�ij�
2
ij[�

�
j ]
2 (32)

= [��i ]
2[�3i�

2
i +

X
j

�ij�
3
ij�

2
ij] :

From (31) and (17) we obtain the following FCLT for the sequence of processes
P

iA
r
i (�):

fr�1(
X
i

Ar
i (r

2t)� [
X
j

��j ]r
2t); t � 0g w! fat + �B(t); t � 0g ; (33)

where

�2
:
=
X
i

u�2i ; a
:
= �� � b : (34)
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8 Main Results

For each value of the (scaling) parameter r 2 R, let us consider the following processes. Let
U r(�) and qU r(�) be the (vector) processes, representing (un�nished) work and Q-estimated
(un�nished) work, respectively, at di�erent servers; let uXr(�), qXr(�), and Xr(�) denote the
scalar processes representing server workload, Q-estimated server workload, and customer
workload, respectively.

Assume that, in a system with index r 2 R, each server j, at any time t, incurs a holding
cost at the (instantaneous) rate of

Cr
j (U

r
j (t)) = Cj(U

r
j (t)=r) ;

where Cj(�) are �xed convex increasing functions, with the additional properties described
in Section 4.

Note that in our asymptotic regime the cost function is \rescaled" as the parameter r changes.
(In other words, in a system with index r, the holding cost rate corresponding to the un�n-
ished work U r

j (t) is Cj(U
r
j (t)=r) instead of Cj(U

r
j (t)).) Notice, however, that in the special

case (described in Section 4.4) when Cj(�) = 
j�
�+1, with some �xed � > 0 and 
j > 0,

the form of the corresponding MinDrift rule does not change with r. Indeed, in this case,
replacing in (2) C 0j(U

r
j (t)) with C 0j(U

r
j (t)=r)=r simply does not change the routing rule.

For our main results, we need the notion of a �xed point. A vector Æu 2 RJ
+ will be called a

�xed point if,

[C 01(
Æu1); : : : ; C

0
J(
ÆuJ)] = c �� ; (35)

for some constant c � 0. If we recall that each derivative C 0j(�) is continuous strictly increas-
ing with C 0j(0) = 0, one deduces the following:
A �xed point Æu corresponding to each c � 0 exists and is unique. Moreover, Æu = 0 for
c = 0, and Æu 2 RI

++ (i.e. has all components strictly positive) for any c > 0.

Thus, the set of �xed points forms a one-dimensional manifold, which can be parameterized
for example by the corresponding server workload values �� �Æ u. In addition, it is easy to
verify the following property:
A �xed point Æu is the unique vector that minimizes

P
j Cj(uj) among all vectors u 2 RJ

+

with the same server workload, i.e. satisfying condition �� � u = �� �Æ u.
Indeed, if Æu = 0, the property is trivial. If Æu 2 RJ

++, condition (35) implies that the
(Lagrangian) function X

j

Cj(uj)� c[�� � u� �� �Æ u]

has zero gradient (with respect to u) at point Æu. Since this Lagrangian is strictly convex
in RJ

+, it is minimized by Æu. Then, the desired property follows from the Kuhn-Tucker
theorem.
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Let us de�ne the di�usion scaling operator ~�r, which acts on a scalar function � = (�(t); t �
0) as follows:

(~�r�)(t)
:
=

1

r
�(r2t) ; (36)

and is applied to vertor-functions componentwise.

Let us consider the following di�usion-scaled processes: ~ur = ~�r U r, q~ur = ~�r qU r, u~xr =
~�r uXr, q~xr = ~�r qXr, ~xr = ~�r Xr.

8.1 Optimality of MinDrift(U) Rule.

Assume that the initial (scaled) amounts of un�nished work are deterministic and converging:

~ur(0)! ~u(0) ; (37)

where ~u(0) is a �xed point, as de�ned above. Consequently, u~xr(0) = �� � ~ur(0)! �� � ~u(0) :
=

~w(0).

Let us de�ne the following one-dimensional re
ected Brownian motion ~x = f~x(t); t � 0g:

~x(t) = ~w(0) + at + �B(t) + ~y(t) ; (38)

where B(�) is a standard Brownian motion,

~y(t)
:
= �[0 ^ inf

0���t
f ~w(0) + a� + �B(�)g] ; (39)

and the drift a and di�usion coeÆcient � are given in (34) and (32).

Theorem 1 Consider the sequence of queueing systems in heavy traÆc, as introduced in
Section 7. Assume initial condition (37). Let ~x be a re
ected Brownian motion de�ned by
(38)-(39).

(i) Suppose that the service discipline is such that the routing rule is MinDrift(U) with cost
functions Cr

i (�), for each value of the parameter r, and each server employs an arbitrary
work-conserving scheduling rule (namely, the server is not allowed to idle when there is
un�nished work in its queue). Then, as r!1,

u~xr
w! ~x ;

and
~ur

w! ~u ;

where, for each t � 0, the vector ~u(t) is the �xed point that is (uniquely) determined by
�� � ~u(t) = ~x(t).
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(ii) The service discipline de�ned in (i) is asymptotically optimal within the class of service
disciplines satisfying condition (d0) in that it minimizes the server workload and the un�n-
ished work cost rate at all times. More precisely, let ~urG and u~xrG be the scaled un�nished work
and server workload processes corresponding to an arbitrary service discipline G (and appro-
priately constructed on a common probability space with the sequence of processes de�ned in
(i)). Then, with probability 1, for any time t � 0,

lim inf
r!1

inf
�2[0;t]

[u~xrG(�)� ~x(�)] � 0 (40)

and

lim inf
r!1

X
j

Cj(~u
r
j;G(t)) �

X
j

Cj(~uj(t)) : (41)

As a corollary, with probability 1, for any T > 0,

lim inf
r!1

Z T

0

X
j

Cj(~u
r
j;G(t))dt � lim

r!1

Z T

0

X
j

Cj(~u
r
j(t))dt =

Z T

0

X
j

Cj(~uj(t))dt : (42)

The proof of Theorem 1 is the subject of Sections 9 and 10.

8.2 Optimality of MinDrift(Q) Rule.

Assume that for each r the initial state of the system at time 0 is deterministic, and it
conforms to the conditions (d1) and (d2) on a service discipline (which are assumed in
Theorem 2 below). In particular, for each pair of i and j, server j has in its queue at most
one customer of type i whose service has already started, and the realizations of service
times of the customers whose service has not yet started are not known to the server. For
the initial residual service times vri;j(0) (if any) of the customers whose service has already
started, we assume

vri;j(0)=r! 0; r !1:

Finally, assume that the initial (scaled) amounts of Q-estimated un�nished work are con-
verging:

q~ur(0)! ~u(0) ; (43)

where ~u(0) is a �xed point, as de�ned above.

It follows from the above initial conditions that

q~xr(0) = �� � q~ur(0)! �� � ~u(0) :
= ~w(0) (44)

and, in addition, with probability 1,

~ur(0)! ~u(0) and u~xr(0)! ~w(0) : (45)
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For the �xed ~w(0), we consider a one-dimensional re
ected Brownian motion ~x = f~x(t); t �
0g, de�ned in (38).

Theorem 2 Consider the sequence of queueing systems in heavy traÆc, as introduced in
Section 7, and with the initial conditions described above in Section 8.2.

(i) Suppose that the service discipline is such that the routing rule is MinDrift(Q) with cost
functions Cr

j (�), for each value of the parameter r, and each server employs an arbitrary
work-conserving scheduling rule satisfying conditions (d1)-(d2). Then, as r !1,

q~xr
w! ~x; u~xr

w! ~x;

and
q~ur

w! ~u; ~ur
w! ~u;

where, for each t � 0, the vector ~u(t) is the �xed point that is (uniquely) determined by
�� � ~u(t) = ~x(t).

(ii) The service discipline de�ned in (i) is asymptotically optimal within the class of service
disciplines satisfying conditions (d0)-(d2) in that it minimizes the both the server workload
and the Q-estimated server workload, and the un�nished work cost rate at all times. More
precisely, let ~urG,

q~urG,
u~xrG and q~xrG be the scaled un�nished work, Q-estimated un�nished

work, server workload, and Q-estimated server workload processes, respectively, correspond-
ing to an arbitrary service discipline G satisfying (d0)-(d2) (and appropriately constructed
on a common probability space with the sequence of processes in (i)). Then, with probability
1, for any time t � 0,

lim inf
r!1

inf
�2[0;t]

[q~xrG(�)� ~x(�)] = lim inf
r!1

inf
�2[0;t]

[u~xrG(�)� ~x(�)] � 0 (46)

and

lim inf
r!1

X
j

Cj(
q~urj;G(t)) = lim inf

r!1

X
j

Cj(~u
r
j;G(t)) �

X
j

Cj(~uj(t)) : (47)

As a corollary, with probability 1, for any T > 0,

lim
r!1

Z T

0

X
j

Cj(
q~urj(t))dt = lim

r!1

Z T

0

X
j

Cj(~u
r
j(t))dt =

Z T

0

X
j

Cj(~uj(t))dt (48)

and

lim inf
r!1

Z T

0

X
j

Cj(
q~urj;G(t))dt = lim inf

r!1

Z T

0

X
j

Cj(~u
r
j;G(t))dt �

Z T

0

X
j

Cj(~uj(t))dt : (49)

The proof of Theorem 2 is essentially a slightly modi�ed (and extended) version of that of
Theorem 1. It is outlined in Section 11.
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8.3 Customer Workload Minimization under MinDrift(Q) Rule.

Suppose we are within the conditions of Theorem 2. For the initial customer workloads ~xr(0)
we \automatically" (by (20) and (44)) have

lim sup
r

~xr(0) � lim
r

q~xr(0) = ~w(0) :

Suppose, in addition, that, in fact, ~xr(0) converges to the same limit as q~ur(0) does:

lim
r
~xr(0) = lim

r

q~xr(0) = ~w(0) ; (50)

which is equivalent to the condition that limr ~q
r
ij(0) = 0 for every non-basic activity (ij).

Now, any service discipline in the OQ-system, satisfying conditions (d0)-(d2), is within the
class of disciplines for the corresponding IQ-system studied in [12] (see Remark 2 in Section 3
of this paper). In particular, Theorem 1 in [12] establishes that an RBM with exactly same
distribution as the RBM ~x (de�ned in this paper by (38)) is in fact the stochastic lower bound
of any limit of the customer workload process ~xr, under any service discipline satisfying
conditions (d0)-(d2) (but not necessarily (IR)), which includes service disciplines for both
OQ- and IQ-systems.

However, from (20) we have a pathwise relation

~xr(t) � q~xr(t); t � 0; (51)

and, by Theorem 2(i), under MinDrift(Q) rule, q~xr
w! ~x. Thus, ~x is both the lower and

upper (stochastic) bound of ~xr and, therefore, ~xr
w! ~x. We have proved the following result,

which basically says that MinDrift(Q) rule minimizes customer workload among virtually all
service disciplines in either the OQ- or IQ-system.

Theorem 3 Suppose, the conditions of Theorem 2 and, in addition, condition (50) hold.

(i) For the service discipline described in Theorem 2(i), we in addition have

~xr
w! ~x: (52)

(ii) The service discipline described in Theorem 2(i) asymptotically minimizes customer
workload among all service disciplines, satisfying conditions (d0)-(d2), in either OQ- or
IQ-system. Namely, the customer workload process ~xrG under any such discipline G can be
constructed on a common probability space with the RBM ~x, so that, with probability 1, for
any time t � 0,

lim inf
r!1

inf
�2[0;t]

[~xrG(�)� ~x(�)] � 0 :
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8.4 A Necessary Condition for Workload Minimization under Any
Service Discipline: Vanishing Non-Basic Queues.

Theorems 2 and 3 show that, roughly speaking, the MinDrift(Q) rule minimizes both server
and customer workload in the heavy traÆc limit. The following Theorem 4 demonstrates
that (either customer or server) workload in an OQ-system can be minimized by some disci-
pline only if, under this discipline, the (scaled) queue lengths ~qrij corresponding to non-basic
activities (ij) vanish in the limit.

Theorem 4 Suppose, the conditions of Theorem 2 and, in addition, condition (50) hold.
Suppose, under some service discipline in OQ-system, satisfying conditions (d0)-(d2), either
(52) or

u~xr
w! ~x (53)

or

q~xr
w! ~x (54)

holds. Then, for any t � 0,

~qrij(t)
P! 0 for any non-basic activity (ij): (55)

The proof is presented in Section 12.

9 Fluid Sample Paths under the MinDrift Rule

9.1 Fluid Sample Paths: De�nition and Basic Properties.

In this section we study the sequence of processes introduced in the previous section under
the 
uid (or \law of large numbers") scaling and under the MinDrift-rule. More precisely,
we need to consider only sample paths of the processes under this scaling, and then their
limits, which we formally de�ne below and call 
uid sample paths (FSP). The key property
of FSPs that must be established (in Theorem 5 below) is that, as time increases to in�nity,
the queue length vector converges to a �xed point. This attraction property is used to prove
(in the next section) the state space collapse property, i.e. the property that the limit of the
sequence of di�usion scaled processes is a process \living" on the manifold of �xed points.

Throughout Section 9 we assume the CRP condition. However, all de�nitions and results
of this section hold under the weaker FO-CRP condition, with arbitrary �xed � satisfying
(12) and G(�) = G�; in other words, the FSP de�nition and key properties do not require a
solution � of (12) to be unique.
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First, we introduce some additional (random) functions, associated with the process for each
value of the scaling parameter r. (The functions F r

i (t), Q
r
i (t), and Xr(t), have already been

de�ned earlier.)

Denote by Gr
ij(t) the amount of time within [0; t] that server j was serving type i customers.

For each pair (i; j) we de�ne N r
ij(n) as the number of type i arrivals actually routed to server

j, out of the �rst n new type i arrivals, and denote

Hr
ij(t)

:
= N r

ij(F
r
i (t))� sN r

ij(F
r
i (t)) :

Here, for any pair (i; j), sN r
ij(�) � sN ij(�) for all r, where sN ij(�) are non-random functions

�xed earlier and satisfying conditions (28)-(30).

We de�ne (server workload) regulation process as follows:

Y r(t)
:
= Y r

idle(t) + Y r
route(t) ; t � 0 ;

where
Y r
idle(t)

:
=
X
j

��j(t�
X
i

Gr
ij(t));

Y r
route(t)

:
=
X
i

Y r
route;i(t);

Y r
route;i(t)

:
=
X
j

��j�
�1
ij H

r
ij(t):

Function Y r
idle is the regulation component due to physical idleness of the servers, Y r

route is
the regulation component due to (possible) routing of customers to non-basic servers, and
functions Y r

route;i representing the contributions into Y r
route due to di�erent 
ows i 2 I.

The regulation component Y r
idle(t) is clearly non-negative non-decreasing. It is easy to verify

that, each regulation component Y r
route;i(t) is also non-negative and non-decreasing. (And

such is, therefore, Y r
route(t).) Moreover, Y r

route;i(t) is a piece-wise constant function, which is
constant between type i customer arrivals, and jumps by the value ��j=�ij � ��i � 0 when a
type i arrival is routed to server j; note that the size of the jump is strictly positive if and
only if server j is non-basic for type i. Finally, note that Y r(t) does not increase over some
time interval if and only if, during that interval, none of the servers idles and all new arrivals
are routed to the corresponding basic servers.

We record the above facts (along with their obvious generalization) in the following lemma
for future reference.

Lemma 4 For each value of the scaling parameter r, consider a pair of time points 0 � tr1 <
tr2 <1, and denote

Br
0
:
=

Y r(tr2)� Y r(tr1)

tr2 � tr1
;
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Br
1;i

:
=
X
j 62Ji

F r
ij(t

r
2)� F r

ij(t
r
1)

tr2 � tr1
;

Br
2;j

:
=
X
i2I

Gr
ij(t

r
2)�Gr

ij(t
r
1)

tr2 � tr1
:

Then, Br
0 = 0 if and only if Br

1;i = 0 for all i and Br
2;j = 1 for all j. Also, limr!1Br

0 = 0 if
and only if limr!1Br

1;i = 0 for all i and limr!1Br
2;j = 1 for all j.

Let us consider the process Zr = (U r; uXr; F r; �V
r
; sN r; N r; Gr; Hr; Y r; Y r

idle; Y
r
route), where

U r = (U r
j (t); t � 0; j 2 J);

uXr = (uXr(t); t � 0);

F r = (F r
i (t); t � 0; i 2 I) ;

�V
r
= (�V

r

ij(l); l � 0; i 2 I; j 2 J);
sN r = (sN r

ij(l); l � 0; i 2 I; j 2 J);

N r = (N r
ij(l); l � 0; i 2 I; j 2 J);

Gr = (Gr
ij(t); t � 0; i 2 I; j 2 J);

Hr = (Hr
ij(t); t � 0; i 2 I; j 2 J);

Y r = (Y r(t); t � 0) ;

Y r
idle = (Y r

idle(t); t � 0) ;

Y r
route = (Y r

route(t); t � 0) :

For each r consider the 
uid scaled process

�rZr :
= zr = (ur; uxr; f r; �v

r
; snr; nr; gr; hr; yr; yridle; y

r
route) ;

where the 
uid scaling operator �r is applied componentwise, and acts on a scalar function
� = (�(t); t � 0) as follows:

(�r�)(t)
:
=

1

r
�(rt) :

De�nition 4 A �xed set of functions z = (u; ux; f; �v; sn; n; g; h; y; yidle; yroute) will be called
a 
uid sample path (FSP) if there exists a sequence Rf of values of r, and a sequence of
sample paths (of the corresponding processes) fzrg such that, as r!1 along the sequence
Rf ,

zr ! z; u:o:c: ;

and, in addition,
ku(0)k <1 ;

(f ri (t); t � 0)! (�it; t � 0) u:o:c: ; i 2 I; (56)

(�v
r

ij(t); t � 0)! (��1ij t; t � 0) u:o:c: ; i 2 I; j 2 J : (57)
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Remark. A sequence Rf existence of which is required in the above de�nition, may be
completely unrelated to the sequence R we introduced earlier in the de�nition of the heavy
traÆc regime.

The following lemma establishes some basic properties of 
uid sample paths. We omit the
simple proof, which is a direct consequence of the de�nitions involved.

Lemma 5 For any 
uid sample path z, all its component functions are Lipschitz continuous
and, in addition,

fi(t) = �it ; t � 0 ; i 2 I;

�vij(t) = ��1ij t ; t � 0 i 2 I; j 2 J;

snij(t) = (�ij�ij=�i)t ; t � 0 i 2 I; j 2 J;

uj(t) = uj(0) +
X
i

��1ij nij(�it)�
X
i

gij(t) ; t � 0 ; j 2 J;

ux(t) = �� � u(t) = ux(0) + y(t) ; t � 0:

Furthermore, both y(�) and ux(�) are non-decreasing (with y(0) = 0).

Since all component functions of an FSP are Lipschitz, they are absolutely continuous, and
therefore for almost all points t 2 R+ (with respect to the Lebesgue measure) the following
property holds:
each component function of z has (�nite) �rst derivative at t, and each function nij(�) has
(�nite) �rst derivative at �it.
We refer to such time points t as regular. We adopt a convention that t = 0 is not a regular
point (i.e., in the de�nition of regular points, we require that proper derivatives exist).

The dynamics of u(t) satis�es the following di�erential equation and additional conditions
at every regular point t:

d

dt
u(t) = �in(t)� �out(t) ; (58)

where the components of the J-dimensional vectors �in(t) and �out(t) are de�ned as

�inj (t)
:
=
X
i

��1ij �in
0
ij(�it) 2 K ; (59)

�outj (t)
:
=
X
i

g0ij(t) 2 [0; 1] ; (60)

and for �out we have

�outj (t) = 1 if uj(t) > 0 : (61)

28



9.2 Uniform Attraction of Fluid Sample Paths.

For u 2 RJ
+, denote

�A(u)
:
= max

j
C 0j(uj)=�

�
j ; �A(u)

:
= min

j
C 0j(uj)=�

�
j ;

�(u)
:
= 1� �A(u)=

�A(u) if u 6= 0, and �(0)
:
= 0 by convention.

Consider the following functions associated with a �xed FSP. First de�ne

J�(t) = fj 2 J j C 0j(uj(t))=��j = �A(u(t))g
and similarly J�(t) (with

�A replaced by �A). Next introduce

�uj(t)
:
= f� � 0 j C 0j(�)=��j = �A(u(t))g ;

and note that �uj(t) is well de�ned since each function C 0j(�) is strictly increasing continuous.
Let �x(t)

:
= �� � �u(t), where �u(t) = (�u1(t); : : : ;

�uJ(t)), and note that ux(t) � �x(t) for all
t � 0.

Finally, note that, at any time t, the following �ve conditions for u(t) are all equivalent:
u(t) is a �xed point;
�A(u(t)) = �A(u(t));
�(u(t)) = 0;
�x(t) = ux(t);
�u(t) = u(t).

The following sequence of lemmas establishes further properties of 
uid sample paths, which
are less obvious than the basic properties of Lemma 5. The form of the MinDrift rule is used
in the proofs in an essential way.

Lemma 6 Consider a �xed FSP z. Suppose t > 0 is a regular point and u(t) 6= 0. Then
the following properties hold at this t:

(i) uj(t) > 0 for all j 2 J.

(ii) We have X
j2J�(t)

��ju
0
j(t) � 0 ;

X
j2J�(t)

��ju
0
j(t) � 0 : (62)

(iii) Moreover, there exists a constant �1 > 0, which depends on system parameters only,
such that if, in addition, u(t) is not a �xed point (i.e. �A(q(t)) > �A(q(t))), thenX

j2J�(t)

��ju
0
j(t) � ��1 ;

X
j2J�(t)

��ju
0
j(t) � �1 : (63)
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Proof. Let us �rst prove (iii). Thus, consider regular time point t > 0 and suppose that
�A(u(t)) > �A(u(t)).

The following observation is true:

If i 2 I and j 2 J�(t) n Ji; then n0ij(�it) = 0 : (64)

Indeed, according to the MinDrift-rule and Lemma 3(ii)(c), for all suÆciently large r, the
prelimit path zr is such that in a small interval [t; t + �], � > 0, new arriving customers of
type i cannot be routed to a server j 2 J�(t) nJi. This easily implies that the corresponding
FSP component nij(�) cannot increase in a small interval to the right of �it, and therefore
n0ij(�it) = 0 since t is regular. Using similar argument, it is also easy to prove the following
property:

If i 2 I; Ji n J�(t) 6= ;; and j 2 J�(t); then n0ij(�it) = 0 : (65)

Let us denote by I�(t) the (non-empty) subset of types i such that Ji \ J�(t) 6= ;. Since
graph G(�) = G� is connected, there exists at least one i 2 I�(t) such that Ji n J�(t) 6= ;, in
which case (by (65)) we have strict inequality:X

j2J�(t)

��j�
�1
ij �in

0
ij(�it) = 0 <

X
j2J�(t)

��j�ij : (66)

If i 2 I�(t) and Ji n J�(t) = ;, i.e., Ji � J�(t), thenX
j2J�(t)

��j�
�1
ij �in

0
ij(�it) �

X
j2J�(t)

��j�ij : (67)

Indeed, using (64), the fact that ��j�
�1
ij is same across all j 2 Ji,

P
j2J n

0
ij(�it) � 1, andP

j2Ji
�ij�ij=�i = 1, we can write:

X
j2J�(t)

��j�
�1
ij �in

0
ij(�it) =

X
j2Ji

��j�
�1
ij �in

0
ij(�it)

�
X
j2Ji

��j�
�1
ij �i

�ij�ij
�i

=
X
j2Ji

��j�ij =
X

j2J�(t)

��j�ij :

As a corollary from (64), we also obtain the following property:

If i 62 I�(t) and j 2 J�(t); then n0ij(�it) = 0 : (68)

We will now show that X
j2J�(t)

��ju
0
j(t) � �� (69)
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where � > 0 depends only on the subset J�(t). Indeed,X
j2J�(t)

��ju
0
j(t) =

X
j2J�(t)

��j
X
i2I

��1ij �in
0
ij(�it)�

X
j2J�(t)

��j ;

and (using (68), (66) and (67)) we have:X
j2J�(t)

��j
X
i2I

��1ij �in
0
ij(�it) =

X
i2I�(t)

X
j2J�(t)

��j�
�1
ij �in

0
ij(�it)

<
X

i2I�(t)

X
j2J�(t)

��j�ij =
X

j2J�(t)

��j
X

i2I�(t)

�ij �
X

j2J�(t)

��j : (70)

We have proved (69), with � > 0 depending only on the subset J�(t) � J . Since there is
only a �nite number of subsets of J , we have proved the �rst inequality in (63), with some
�xed �1 > 0.

The second inequality in (63) is proved analogously. We denote by I�(t) the (non-empty)
subset of types i such that Ji \ J�(t) 6= ;. Then we use the following property (obtained
using the argument analogous to that leading to (64) and (65)):

If i 2 I�(t) and j 62 Ji \ J�(t); then n0ij(�it) = 0 :

We omit details.

The proof of the non-strict inequalities in property (ii) is a straightforward extension of the
proof of (iii). Namely, we need to consider an additional (degenerate) case when J�(t) =
J�(t) = J . In this case, for example to prove the �rst inequality in (62), we observe that the
non-strict inequality (67) always applies, and (70) holds with the strict inequality replaced
by a non-strict one.

Finally, (i) is proved by contradiction. Suppose, uj(t) = 0 for some j 2 J . Obviously, the
set of such j is exactly J�(t). Since u(t) 6= 0, u(t) is not a �xed point. Therefore, the second
inequality in (63) should hold. However, this is impossible, because we must have u0j(t) = 0
for all j 2 J�(t). Indeed, the condition uj(t) = 0 and the existence of u0j(t) imply that
u0j(t) = 0. (Otherwise uj(�) would be negative just before or right after time t.)

Lemma 7 Consider a �xed FSP. Suppose a time interval [t1; t2], with 0 � t1 < t2, is such
that

min
t1�t�t2

min
j2j

uj(t) > 0 :

Then, over [t1; t2], the functions �A(q(t)), �A(q(t)),
�x(t), and �uj(t) for all j 2 I, are

Lipschitz continuous. Moreover, for almost all t 2 [t1; t2],

d

dt
[�A(u(t))] � 0;

d

dt
[�A(u(t))] � 0;

d

dt
[�x(t)] � 0; (71)
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and if, in addition, �A(u(t)) > �A(u(t)) (i.e. u(t) is not a �xed point), then

d

dt
[�x(t)] � ��1 ; (72)

where �1 > 0 is de�ned in Lemma 6.

Proof. First of all, the Lipschitz continuity of each function C 0j(ui(t)) in [t1; t2] follows from
Lipschitz continuity of uj(�) and the fact that, for the range of possible values of uj(t) in
[t1; t2], C

00
j (�) is continuous bounded away from both in�nity and 0. (This is the only place

where we use the assumption that the functions Ci(�) are twice continuously di�erentiable.)

This implies that for an arbitrary �xed subset Ĵ � J , the following functions are also
Lipschitz continuous in [t1; t2]:

max
i2Ĵ

C 0j(uj(t))=�
�
j ; min

i2Î

C 0j(uj(t))=�
�
j :

In particular, �A(q(t)) and �A(q(t)) are Lipschitz, which (along with the fact that the second
derivatives C 00j (�) are bounded away from 0) implies that all �uj(t) and

�x(t) are Lipschitz.

We see that almost all points t 2 [t1; t2] are regular (as de�ned earlier) and, in addition,
are such that all the max and min functions in the last display, for all (non-empty) subsets
Ĵ � J , have derivatives. Within the present proof, let us call such points t strictly regular.

Consider an arbitrary strictly regular point t 2 [t1; t2]. The proof will be complete once we
prove (71) and (72) for this point t.

Since t is strictly regular, the derivatives d=dt[�A(u(t))] and d=dt[C 0j(uj(t))=�
�
j ] for j 2 J�(t),

are all equal. (In particular, this implies that �u0j(t) = u0j(t) for all j 2 J�(t).)

We cannot have d=dt[�A(u(t))] > 0 because this would imply that u0j(t) > 0 for all j 2 J�(t),
which would contradict (62). This proves the �rst (and with it the last) inequality in (71).
The second inequality in (71) is proved analogously.

We can now write

d

dt
[�x(t)] =

X
j2J

��j
�u0j(t) �

X
j2J�(t)

��j
�u0j(t) =

X
j2J�(t)

��ju
0
j(t);

where the inequality follows from the fact that �u0j(t) � 0 for all j 2 J (which is implied
by (71)), and the second equality is because �u0j(t) = u0j(t) for j 2 J�(t). In the case
�A(q(t)) > �A(q(t)), by (63), the RHS of the above display is bounded above by ��1, which
proves (72).

Lemma 8 Consider a �xed FSP z. Suppose u(t1) 6= 0 for some t1 � 0. Then, u(t) has all
strictly positive components (i.e., u(t) 2 RJ

++) for all t > t1. Moreover, in [t1;1), �A(q(t))
is non-decreasing, and both �A(q(t)) and �x(t) are non-increasing.
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Proof. Indeed, we can always �nd a regular point � > t1 arbitrarily close to t1 so that
u(�) 6= 0. By Lemma 6, u(�) 2 RJ

++. Then, using Lemma 7, it follows that �A(u(t)) is non-
decreasing (and �A(u(t)) and �x(t) are non-increasing) starting from time �, and therefore
u(t) 2 RJ

++ for all t � �. Since � can be chosen arbitrarily close to t1, the proof is complete.

Lemma 9 Consider a �xed FSP z. If u(0) = 0 then u(t) = 0 for all t � 0.

Proof. Suppose not. By continuity of �x(�), for an arbitrarily � > 0, there exists time t1 > 0
at which �x(t) reaches level � for the �rst time. Of course, u(t1) 6= 0. By Lemma 8, �x(t)
can not increase starting at time t1, and therefore �x(t) � � for all t � 0. Since � > 0 can be
chosen arbitrarily small, �x(t) = 0, and therefore u(t) = 0 for all t � 0.

The following theorem easily follows from the lemmas presented above in this subsection.

Theorem 5 For any 
uid sample path, �(u(t)) is a non-increasing function, and the server
workload ux(t) is a non-decreasing function. Moreover, there exist �xed constants T1 > 0
and K � 1 such that, for any FSP, u(t) reaches a �xed point Æu within �nite time ux(0)T1
and then stays there, and �� � Æu � ux(0)K.

Proof. The fact that x(t) is non-decreasing has already been established earlier.

Suppose u(0) 6= 0. By Lemma 8, �A(u(t)) is non-decreasing and �A(u(t)) is non-increasing
in [0;1), and therefore �(u(t)) is non-increasing. Further, by Lemma 8, u(t) 2 RJ

++ for all
t > 0. Then, by Lemma 7, for almost all t > 0, �x(t) > ux(t) implies

�x0(t) � ��1 :
Since �x(0) � ux(0)[

P
j �

�
j ]=[minj �

�
j ],

ux(t) � �x(t), and ux(t) is non-decreasing, we imme-
diately see that u(t) must reach a �xed point within a time proportional to ux(0).

Therefore, the statement of the theorem, with some �xed T1 > 0 and K � 1, holds for the
FSPs with u(0) 6= 0. By Lemma 9, it trivially holds for u(0) = 0 as well.

For future reference, we record the following property of prelimit paths.

Lemma 10 There exists a constant �2 > 0, such that the following holds. For any prelimit
(scaled) path ur = (ur(t); t � 0), and 0 � tr1 < tr2 <1, the property

ur(t) 6= 0 and �(ur(t)) � �2; 8t 2 [tr1; t
r
2] ;

implies that yr(tr2) � yr(tr1) = 0 or, equivalently, that in the (scaled) interval (tr1; t
r
2] all new

arriving customers are routed to their corresponding basic servers and none of the servers
idles.

33



Proof. First, since ur(t) 6= 0 in [tr1; t
r
2], none of the servers idles in this time interval. Second,

small value of �(ur(t)) for implies that the vector (C 01(u
r
1(t)); : : : ; C

0
J(u

r
J(t))) is \almost pro-

portional" to vector ��. Thus, if �(ur(t)) is small, it follows from the form of MinDrift(U)
rule and Lemma 3(ii)(c) that in [tr1; t

r
2] a new arrival of any type i 2 I can only be routed to

a server j 2 Ji. We omit the �- Æ formalities.

10 Proof of Theorem 1

For each r 2 R consider the following process, obtained by di�usion scaling:

~�r(U r; uXr; F r; �V
r
; sN r; N r; Gr; Hr; Y r; Y r

idle; Y
r
route)

:
=

(~ur; u~xr; ~f r; �~v
r
; s~nr; ~nr; ~gr; ~hr; ~yr; ~yridle; ~y

r
route) ;

where the di�usion scaling operator ~�r is de�ned in (36).

To prove properties stated in Theorem 1, it will suÆce to show that for any subsequence
R1 � R there exists another subsequence R2 � R1 such that these properties hold when
r ! 1 along R2. As in [14], to do this, we will choose subsequence R2 and construct all
processes (for all r 2 R2) on the same probability space in a way such that the desired
properties hold with probability 1 (or are implied by a certain probability 1 properties).

Let us �x an arbitrary subsequence R1 � R of indices frg. According to Skorohod's rep-
resentation theorem (see, for example, [7]), for each i, the sequences (on r) of the processes
fF r

i g and f�V r

ijg, j 2 J , can be constructed on a probability space such that the convergence
in (31) holds u.o.c. with probability 1 (w.p.1):

fr�1(Ar
i (r

2t)� �ri

P
j �ij�

�
j

�i
r2t); t � 0g u:o:c:! fu�iBi(t); t � 0g ; (73)

where Bi is a standard Brownian motion.

We can and do assume that our underlying probability space 
 = f!g is a direct product of
the above I probability spaces. (Without loss of generality we assume that this probability
space is complete.) On this probability space the convergence (33) holds u.o.c. w.p.1 as
well:

fr�1(
X
i

Ar
i (r

2t)� [
X
j

��j ]r
2t); t � 0g u:o:c:! fat+ �B(t); t � 0g ; (74)

where B is a standard Brownian motion.

Now, from condition (25) and Bramson's weak law estimates ([4], Proposition 4.3), we know
that for any T3 > 0, any � > 0 and any i, for all large r, we have (see the proof of property
(5.19) in Proposition 5.1 of [4]):

Pf max
0�l�T3r

sup
0���1

jf ri (l + �)� f ri (l)� �i�j � �g < � : (75)
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(The max in (75) and (76), as well as below in (76), (77) and (78), is over integers l 2 [0; T3r].)
Also, using Proposition 4.2 of [4], it is easy to show (similarly to the derivation of property
(71) in [14]), that for any T3 > 0, any � > 0 and any pair of (i; j), for all large r, we have

Pf max
0�l�T3r

sup
0���1

j�vrij(l + �)� �v
r

ij(l)� ��1ij �j � �g < � : (76)

Estimates (75) and (76) enable us to choose a subsequence R2 � R1, such that, as r !1
along R2, with probability 1, for any T3 > 0 we have

max
0�l�T3r

sup
0���1

jf ri (l + �)� f ri (l)� �i�j ! 0 ; i 2 I ; (77)

and

max
0�l�T3r

sup
0���1

j�vrij(l + �)� �v
r

ij(l)� ��1ij �j ! 0 ; i 2 I; j 2 J : (78)

Properties (77) and (78) in turn imply the following property.
With probability 1, for any �xed T4 > 0 and d > 0, for any (i; j), we have:
uniformly on any sequence of pairs (tr1; t

r
2); r 2 R2, such that 0 � tr1 < tr2 � r2T4, t

r
2�tr1 � rd,

lim
r!1; r2R2

�V
r

ij(
sN r

ij(F
r
i (r

2t2)))� �V
r

ij(
sN r

ij(F
r
i (r

2t1)))

�ij(tr2 � tr1)
= 1 ; (79)

uniformly on any sequence of pairs (lr1; l
r
2); r 2 R2, such that 0 � lr1 < lr2 � r2T4, l

r
2� lr1 � rd,

lim
r!1; r2R2

�V
r

ij(l
r
2)� �V

r

ij(l
r
1)

��1ij (l
r
2 � lr1)

= 1 : (80)

For each j 2 J we have

U r
j (r

2t) = U r
j (0) +

X
i

�V
r

ij(N
r
ij(F

r
i (r

2t)))�
X
i

Gr
ij(r

2t) ;

and therefore the expression for the scaled server workload can be written as follows:

u~xr(t) = (81)

u~xr(0) + r�1

"X
j

��j
X
i

�V
r

ij(
sN r

ij(F
r
i (r

2t)))�
X
j

��jr
2t

#
+ (82)

r�1
X
j

��j(r
2t�

X
i

Gr
ij(r

2t)) + (83)

35



r�1
X
j

X
i

��j
�
�V

r

ij(N
r
ij(F

r
i (r

2t)))� �V
r

ij(
sN r

ij(F
r
i (r

2t)))
�

(84)

= ~wr(t) + ~yridle(t) + �yrroute(t) = ~wr(t) + �yr(t) ; (85)

where ~wr(t) is the term (82), ~yridle(t) denotes the term (83), �yrroute(t) denotes the term (84),
and �yr(t)

:
= ~yridle(t) + �yrroute(t). We know from (74) that

( ~wr(t); t � 0)
u:o:c:! ( ~w(t); t � 0) ;

where
~w(t)

:
= ~w(0) + at + �B(t) ;

B(�) is the realization of a standard Brownian motion, and the parameters a and � are those
de�ned in (34). (The realization ~w(�) is of course continuous.) As seen from (85), the key
step in proving Theorem 1, will be the proof of the following convergence:

(�yr(t); t � 0)
u:o:c:! (~y(t); t � 0) : (86)

In the rest of this section, we restrict ourselves to a (measurable, probability 1) subset 
2 � 

of elementary outcomes !, such that all the speci�ed above probability 1 properties hold,
when r !1 along R2.

Lemma 11 Consider a �xed ! 2 
2. As r ! 1 along R2, the functions �yrroute and ~yrroute,
and then �yr and ~yr, are \asymptotically close" in the following sense. For any �xed T4 > 0,
and any �xed Æ1 > 0 and Æ2 > 0, for all suÆciently large r, uniformly on t 2 [0; T4],

(1� Æ1)~y
r
route(t)� Æ2 � �yrroute(t) � (1 + Æ1)~y

r
route(t) + Æ2 ; (87)

and then

(1� Æ1)~y
r(t)� Æ2 � �yr(t) � (1 + Æ1)~y

r(t) + Æ2 : (88)

The proof of Lemma 11 is analogous to the proof of Lemma 9 in [12]. The key observation
here (which follows from (79) and (80)) is that, for �xed T4 > 0 and (arbitrarily small) d > 0,
if t 2 [0; T4] and jHr

ij(F
r
i (r

2t))j � rd, then, for all suÆciently large r, the ratio

�V
r

ij(N
r
ij(F

r
i (r

2t)))� �V
r

ij(
sN r

ij(F
r
i (r

2t)))

��1ij H
r
ij(F

r
i (r

2t))

is close to 1. We do not present the details. We note that (analogously the the situation
with Lemma 9 in [12]) Lemma 11 applies to any service discipline satisfying condition (d0),
and the uniqueness of � (in the CRP condition) is used in the proof of Lemma 11 in essential
way.
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It follows from Lemma 11 that to prove (86), it suÆces to prove

(~yr(t); t � 0)
u:o:c:! (~y(t); t � 0) ; (89)

because ~y(�) is bounded on �nite intervals.

Since regulation ~yr is a non-decreasing function (for any r), for any �xed ! 2 
2, from any
subsequence R3(!) � R2 (which may depend on !!) it is always possible to �nd a further
subsequence R4(!) � R3(!) such that

~yr ) ~y ; (90)

where ~y is some non-decreasing RCLL function. (We will prove that this limit ~y is indeed
the regulation of the one-dimensional Brownian motion de�ned earlier.) In principle, ~y may
take the values +1. (In other words, ~y 2 D([0;1); �R). Recall that notation \)" stands
for convergence at every point of continuity of the limit function except maybe the point 0.)
We note that (90) implies that

u~xr ) ~x
:
= ~w + ~y ; (91)

and therefore ~x(t) <1 if and only if ~y(t) <1.

The following lemma (and its proof) is analogous to Lemma 7 in [14] and Lemma 10 in [12];
it contains key observations which are used in the proof of Theorem 1. The key construction
of the proof, which involves \slowing down" the di�usion scaled process to consider a family
of processes on the \
uid" time scale, and then expoiting the uniform attraction property
of 
uid sample paths, is essentially same as that in Section 5 of [4]. This construction is
central for establishing SSC in the heavy traÆc asymptotic regime for multiclass queueing
networks (see [4, 19]).

Lemma 12 Suppose that the service discipline is such that the routing rule is MinDrift(U)
and scheduling rules at the servers are work-conserving. Suppose, ! 2 
2 and a subsequence
R4(!) � R2 are �xed such that, along this subsequence, (90) holds. Suppose, a sequence
f~tr; r 2 R4(!)g is �xed such that

~tr ! t0 � 0 ;

and
u~xr(~tr)! C > 0 :

Let Æ > 0 be �xed, and

�
:
= sup

�1;�22[t0�3Æ;t0+3Æ]\R+

j ~w(�1)� ~w(�2)j < C :

Then,
(a) ~y (and ~x) is �nite in [0; t0 + Æ];
(b) ~y does not increase in (t0; t0 + Æ], i.e., ~y(t0 + Æ)� ~y(t0) = 0;
(c) the following bound holds

C � � � ~x(t) � CK + � ; 8t 2 [t0; t0 + Æ] ;
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with K de�ned in Theorem 5;
(d) for any Æ0 > 0,

(~ur(t); t 2 [t0 + Æ0; t0 + Æ])
u:o:c:! (~u(t); t 2 [t0 + Æ0; t0 + Æ]) ;

where ~u(t) is the (unique) �xed point such that �� � ~u(t) = ~x(t).

If, in addition, ~tr = t0 for all r, and ~ur(t0)! Æ~u, where Æ~u is a �xed point (necessarily, with
�� � Æ~u = C), then
(c') ~x(t0) = C and, consequently, ~u(t0) = Æ~u;
(d') the following holds:

(~ur(t); t 2 [t0; t0 + Æ])
u:o:c:! (~u(t); t 2 [t0; t0 + Æ]) :

Proof essentially repeats that of Lemma 10 in [12]. For completeness, and since some
adjustments are required, we present it here.

Let us consider the functions of interest on the 
uid time scale. Namely, consider earlier
de�ned functions uxr(t) � u~xr(t=r); yr(t) � ~yr(t=r); t � 0, and similarly de�ned function
wr and other related ones.
Let us choose a �xed T > 0 as follows. Let us �x �3 2 (0; C � �), denote

C3 = (C + �3)K + � + �3 ;

and �x arbitrary
T � C3T1 ;

where K and T1 are the constants de�ned in Theorem 5. As seen below in the proof, C3 will
be the upper bound of u~xr(�) in the interval [~tr; ~tr + Æ] or, equivalently, the upper bound of
uxr(�) in the interval [r~tr; r~tr + rÆ]. Thus, the choice of the constant T is such that an FSP
with initial server workload not exceeding C3 will converge to a �xed point within time T .

For each integer l 2 [0; 2Ær=T ], consider

u�xr;l(�)
:
= uxr(r~tr + T l + �); � � 0 ;

and similarly de�ned �wr;l, �yr;l, and other related functions.

Let us �x arbitrary �4 2 (0; �2=2), where �2 is de�ned in Lemma 10. Then the following
property holds.

Property 1. For all suÆciently large r, the relation (92) below holds for all integer l 2
[0; 2Ær=T ], and the relations (93)-(95) hold for all integer l 2 [1; 2Ær=T ]:

C � �� �3 � u�xr;l(�) � C3 8� 2 [0; T ]; (92)

�(�ur;l(�)) � �4 for � = 0 and � = T; (93)
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�(�ur;l(�)) � 2�4 8� 2 [0; T ]; (94)

�yr;l(T )� �yr;l(0) = 0: (95)

To prove Property 1, we �rst observe that (92) must hold for l = 0 for all large r, because
otherwise we would be able to choose a subsequence of indices r along which the sequence
of paths �zr;0 converges to an FSP z with u�x(0) = C and either u�x(�) > CK or u�x(�) < C
for some � 2 [0; T ], which contradicts Theorem 5. Moreover, this observation shows that in
fact for all large r,

C � �3=2 � u�xr;1(0) � (C + �3=2)K; (96)

and, given our choice of the constant T ,

�(�ur;1(0)) � �4: (97)

Next, suppose Property 1 does not hold. Then, we can choose an (in�nite) subsequence of
r such that (along this subsequence) l0 = l0(r) is well de�ned as the smallest l � 1 such that
one of the conditions (92)-(95) does not hold. (Note that, by this construction and (97),
property (93) always holds for l = l0 and � = 0.) We will show that this construction leads
to a contradiction.

Indeed, for all large r, both (92) and (93) hold for l = l0 and � = 0. This follows from the
combination of the following facts:
property (96);
j ~w(�1)� ~w(�2)j � � as long as �1; �2 2 [t0 � 3Æ; t0 + 3Æ] \ R+;
~wr ! ~w uniformly in [t0 � 3Æ; t0 + 3Æ] \ R+;
property (95) for each 1 � l � l0 � 1;
the functions ~yr and �yr are asymptotically close (in the sense of Lemma 11).

Since (92) and (93), with l = l0 and � = 0, hold for large r, we see that (93) and (94) hold for
l = l0 and all large r. (Otherwise, we would be able to choose a subsequence of r along which
�zr;l

0

converges to an FSP z violating Theorem 5.) Similarly, the lower bound in (92) must
hold (for large r) for l = l0 and � 2 [0; T ]. This, in conjunction with (94) and Lemma 10,
means that (95) holds for l = l0 (for large r). Finally, this and the argument we already used
above to prove bound (92) for l = l0, � = 0, shows that in fact (92) holds for l = l0 and all
� 2 [0; T ] (for large r). We have proved that (92)-(95) hold for l = l0(r) for all large r. This
is a contradiction with the construction of the function l0 = l0(r) which proves Property 1.

Property 1 (namely (92)) implies that, for all large r,

C � �� �3 � u�xr;l(�) � C3; � 2 [0; T ]; 0 � l � 2Ær=T :

Statements (a)-(c) of the Lemma follow from this estimate.
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To prove (d), we �rst notice that (a), (b) and Lemma 11 imply the following uniform con-
vergence for the workload process:

(u~xr(t); t 2 [t0 + Æ0; t0 + Æ])
u:o:c:! (~x(t); t 2 [t0 + Æ0; t0 + Æ]) : (98)

Statement (d) then follows from Property 1, the fact that �4 can be chosen arbitrarily small,
and convergence (98).

To prove properties (c') and (d'), we use the same exact construction. It is easy to see that,
under the additional assumptions, all conditions (92)-(95) in Property 1 hold for all integer
l 2 [0; 2Ær=T ] (including 0). Given this, properties (c') and (d') are proved analogously to
properties (c) and (d). We omit details.

The rest of the proof of Theorem 1 repeats that of Theorem 1 in [14], and that of Theorem
1 in [12], virtually verbatim. We reproduce it here, with the necessary minor adjustments,
for completeness.

10.1 Proof of Theorem 1(i).

To prove this part it suÆces to prove the following

Property 2. As r ! 1 (along R2), for any ! 2 
2 (i.e. with probability 1), we have the
following convergence

(~yr(t); t � 0)
u:o:c:! (~y(t); t � 0) ; (99)

where ~y is de�ned by (39), and

(~ur(t); t � 0)
u:o:c:! (~u(t); t � 0) ; (100)

where for each t, ~u(t) is the �xed point such that �� � ~u(t) = ~x(t).

Proof of Property 2. Let us �x ! 2 
2. As explained earlier, for an arbitrary subsequence
R3(!) � R2 there exists another subsequence R4(!) � R3(!) such that the convergence
(90) holds along this subsequence. Then, the proof of Property 2 will be complete if we can
prove the following statements (for the chosen !, with r !1 along R4(!)). We recall that,
at this point, the function ~y is just some limit function - the fact that it is equal to the
function de�ned by (39) is what needs to be proved in order to establish (100).

Step 1. The limit function ~y is �nite everywhere in [0;1).

Step 2. The function ~y is continuous, and ~y(0) = 0.

Step 3. If ~x(t) > 0, then t is not a point of increase of ~y.

Step 4. The function ~y, de�ned above as a limit, satis�es equation (39).
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Step 5. Convergence (100) holds.

In this proof, we will use the convention that ~y(0�) = 0, ~w(0�) = ~x(0�) = ~w(0). So, the
case ~y(0) > 0 will be viewed as a discontinuity of ~y (and ~x) at 0.

Also, we will use the notation

�(Æ; t)
:
= sup

�1;�22[t�Æ;t+Æ]\R+

j ~w(�1)� ~w(�2)j :

Proof of Step 1. Suppose the statement does not hold. Denote t� = infft � 0 j ~y(t) =1g.
The inf is attained because ~y is RCLL.

We choose a small Æ such that Æ 2 (0; t�) if t� > 0, and arbitrary Æ > 0 if t� = 0. Let us �x
� = �(4Æ; t�). Then we choose a small �t 2 (0; Æ) and a large C such that C > ~x(t���t)+ �
if t� > 0, and C > ~x(0�) + � if t� = 0. We de�ne

~tr = minft � (t� ��t) _ 0 j u~xr(t) � Cg ;
and choose a further subsequence of frg such that

~tr ! t0 2 [t� ��t; t�] :

(We must have t0 � t�, because the limit function ~y(t), and therefore ~x(t), is in�nite for all
t � t�.) It is also easy to see (from (77)) that

u~xr(t)! C :

The conditions of Lemma 12 are satis�ed, and so ~y is bounded in [t0; t0+ Æ] - a contradiction,
since t0 + Æ > t�. Step 1 has been proved.

Proof of Step 2. Suppose the statement does not hold. The contradiction is obtained
very similarly to the way it is done in the proof of Step 1. Let t� be a discontinuity point
(the case t� = 0 is included), i.e. ~y(t��) < ~y(t�). Since ~x = ~w + ~y and ~w is continuous,
~x(t�)� ~x(t��) = ~y(t�)� ~y(t��). There are two possible cases:
(a) ~x(t��) > 0 ;
(b) ~x(t��) = 0 .

Case (a). In this case we must have t� > 0. (Indeed, by the de�nition of ~w and our
conventions, ~x(0�) = ~w(0) = limr

u~xr(0). If ~w(0) > 0, then, by Lemma 12(c'), ~x(0) =
limr

u~xr(0), which means that ~x, and therefore ~y, has no jump at 0. If ~w(0) = 0 then
~x(0�) = 0.) We can always �x a small Æ > 0, small �t 2 (0; Æ), such that t0 = t� � �t
is a point of continuity of ~y (and ~x) and � = �(4Æ; t�) < ~x(t0) = C. We have convergence
u~xr(t0)! C (since ~x is continuous at t0), and by Lemma 12, ~y can not increase in the interval
(t0; t0 + Æ] which contains t�. So, ~x can not have a jump at t�.

Case (b). In this case, let us �x a small C > 0 and then a suÆciently small Æ > 0 so that

C1 = KC + � < ~x(t�) ;
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where � = �(4Æ; t�) and K � 1 is de�ned in Theorem 5 (and used in Lemma 12). Then, if
t� > 0 we �x a small �t such that

lim sup
r!1

sup
[t���t;t�]

u~xr(�) < C :

If t� = 0, we �x an arbitrary �t > 0.

We de�ne
~tr = minft � (t� ��t) _ 0 j u~xr(t) � Cg ;

and choose a further subsequence of frg such that

~tr ! t0 2 [(t� ��t) _ 0; t�] :

The conditions of Lemma 12 are satis�ed, and so ~x(t) < C1 for all t 2 [t0; t0 + Æ], which
contradicts the assumption of case (b), since t� belongs to the latter interval. Step 2 has
been proved.

Proof of Step 3. Let t� � 0 be such that ~x(t�) > 0. If t� = 0, then the fact that ~y does
not increase in a small interval [0; Æ] follows from Lemma 12(b'). If t� > 0, then precisely
the same construction as in the proof of Step 2(a) shows that ~y does not increase in a small
interval [t0; t0 + Æ] containing t� in its interior. Step 3 has been proved.

Proof of Step 4 follows from the statements of Steps 2 and 3, and Proposition 1 (in the
Appendix).

Proof of Step 5. It suÆces to show that
For any t� � 0 and any � > 0, there exists Æ > 0 such that

lim sup
r!1

sup
�2[t��Æ;t�+Æ]\R+

k~ur(�)� ~u(�)k < � : (101)

(The u.o.c. convergence will then follow from the Heine-Borel lemma.)

If ~x(t�) = 0, then (101) must hold because both functions ~u and ~ur (for large r) are bounded
by an arbitrarily small constant in a suÆciently small neighborhood of t�. If ~x(t�) > 0 and
t� = 0, then (101) follows from Lemma 12(d'). If ~x(t�) > 0 and t� > 0, then to obtain (101)
we can repeat the construction of the proof of Step 2(a) and then apply Lemma 12(d). Step
5 has been proved.

Thus, the proof of Property 2, and with it the proof of statement (i) of the theorem, is
complete.

10.2 Proof of Theorem 1(ii).

We use the same construction of the probability space 
, the subsequence R2, and the
probability 1 subset 
2, as speci�ed above. Consider an arbitrary discipline G. Sample

42



paths for both the Gc� and G disciplines are constructed on this common probability space.
For ! 2 
2, consider paths of

u~xrG, ~y
r
G, and ~wr

G, corresponding to the discipline G. Since ~wr
G

is invariant with respect to the discipline, ~wr
G = ~wr, and therefore ~wr

G ! ~wG = ~w u.o.c.

We claim that, along the subsequence R2, for any t � 0,

lim inf
r!1

inf
�2[0;t]

[u~xrG(�)� ~x(�)] � 0; (102)

and therefore (40) holds. To prove this we �rst recall that Lemma 11 holds for any discipline
G satisfying condition (d0).
For any subsequence R3(!) � R2(!), we can choose a further subsequence R4(!) � R3(!)
such that ~yrG ) ~yG, where ~yG is some non-decreasing non-negative RCLL function. (The
case that ~yG(t) takes value +1 starting from some �nite time t� is possible.) Therefore, for
any t � 0 where ~yG(�) is continuous, as r !1 along R4(!),

lim u~xrG(t) = ~w(t) + ~yG(t) :

Since u~xrG(t) is non-negative, we see that ~w + ~yG is non-negative at every point of conti-
nuity of ~yG, and therefore it is non-negative for all t � 0 (by right-continuity). Then, by
Proposition 1(ii) (in the Appendix), ~yG(t) � ~y(t) for all t � 0. Since ~y is continuous and
non-decreasing, and ~yG and all ~yrG are non-decreasing, for any t � 0 we obtain the uniform
bound

lim inf
r!1

inf
�2[0;t]

[~yrG(�)� ~y(�)] � 0:

By Lemma 11, we have analogous bound for �yrG as well:

lim inf
r!1

inf
�2[0;t]

[�yrG(�)� ~y(�)] � 0;

which proves (102), with r ! 1 along subsequence R4(!), and therefore along R2 as well
(since the subsequence R3(!) can be arbitrary). The proof of (102) (and therefore (40)) is
complete.

Since the function
P

j Cj(uj) is continuous in the vector u, and the �xed point ~u(t) in (41)
minimizes the value of

P
j Cj(uj) over vectors u with server workload u~x(t), property (41)

also holds. Finally, the equality in (42) follows from the fact that ~ur ! ~u u.o.c., and the
inequality follows from (41) and Fatou's lemma.

The proof of Theorem 1 is now complete.

11 Proof of Theorem 2

The proof of Theorem 2 is a relatively straightforfard extension of that of Theorem 1. The
extension is based on the fact that, given the assumptions of Theorem 2(ii), the processes q~ur

43



and ~ur are in fact \asymptotically close" (see (103) below). As a result, the behavior of the
system (in the di�usion limit) under MinDrift(Q) is the \same" as that under MinDrift(U).
In this section we provide a detailed sketch of such a proof extension. We believe the details
can be easily �lled in by a reader.

Construction of the probability space and subsequences R1 and R2. For the proof
of Theorem 2 we assume that, for each r, the service times of the \initial customers" of
type i at server j, whose service has not yet started at initial time 0, are given by an i.i.d.
sequence �vrij(n); n = 1; 2; : : : ;. Thus, the sequence f�vrij(n)g is separate from the sequence
fvrij(n)g, de�ning service times of customers arriving after time 0, but of course �vrij(1) has
the same distribution as vrij(1). We denote by

� �V
r

ij(n)
:
=

nX
m=1

�vrij(m); n = 0; 1; 2; : : : ;

the total amount of un�nished work \contained" in the the �rst n (in the order of them
being taken for dervice) initial type i customers at the server j. As with other functions,
we extend the domain of � �V

r

ij(�) to all real non-negative t � 0, and denote its 
uid-scaled

version by ��v
r

ij = �r � �V
r

ij.

The underlying probability space is the same as in the proof of Theorem 1, except it is
augmented by taking a direct product with the space on which the sequences (on r) of the
processes f�V r

ijg are de�ned. The subsequence R1 is de�ned exactly same way. The property

analogous to (78) holds for the processes ��v
r

ij, as well as
�v

r

ij. Then, the subsequence R2

can be chosen in a way such that, additionally, the properties analogous to (78) and (80)
hold for the processes ��v

r

ij and
� �V

r

ij, respectively.

\Asymptotic closeness" of q~ur and ~ur. Using (78) and (80), and their analogs for
��v

r

ij and
� �V

r

ij, it is easy to demonstrate the following property, which holds for any service
discipline within the class speci�ed in Theorem 2(ii):
As r !1 along R2, with probability 1, for any T3 > 0 and any � > 0, we have

sup
0�t�T3

kq~ur(t)� ~ur(t)k
max(~ur(t); �)

! 0 : (103)

This property is the key in showing that, in the heavy traÆc limit, MinDrift(Q) induces the
same system behavior as the MinDrift(U).

De�nition and properties of the FSPs under MinDrift(Q). The process Zr is aug-
mented by the following components:

Qr = (Qr
ij(t); t � 0; i 2 I; j 2 J);

� �V
r
= (� �V

r

ij(l); l � 0; i 2 I; j 2 J);

qU r = (qU r
j(t); t � 0; j 2 J);

qXr = (qXr(t); t � 0):
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The 
uid-scaled process zr and an FSP z are augmented by the corresponding components
qr; ��v

r
; qur; qxr, and q; ��v; qu; qx, respectively. The de�nition of the FSP is same, except it

includes the additional conditions:
qu(0) = u(0)

and an analog of (57) for �v
r

ij. This augmented de�nition of an FSP, easily yields the
following additional FSP property (which can be added into Lemma 5):

qu(t) = u(t) 8t � 0; (104)

which of course also implies qx(t) = ux(t); t � 0. Using (104), it can be easily shown that
all the FSP properties established for MinDrift(U), hold for MinDrift(Q) as well.

Proof of Theorem 2. Given property (103), and the fact that FSPs under MinDrift(Q)
satisfy all the properties of FSPs under MinDrift(U) (plus (104)), the rest of the proof is the
same as that of Theorem 1.

12 Proof of Theorem 4

Before proceeding with the proof, note that, in addition to (51), we have another pathwise
relation (see (21) and (22)):

q~xr(t) � C0~x
r(t); t � 0: (105)

Proof. The argument leading to Theorem 3 shows that, given the conditions of Theorem 4,
either of the convergences (53) or (54) implies (52). So, it will suÆce to prove that (52)
implies (55).

Assume (52). Suppose, for some t1 � 0 property (55), with t = t1, does not hold. This
implies that, in addition to the pathwise inequality ~xr(t1) � q~xr(t1) (see (51)), we have, for
some �xed constant c > 0,

lim inf
r!1

Pfq~xr(t1)� ~xr(t1) > cg > c: (106)

Consider a subsequence of indices r along which the distributions of both ~xr(t1) and
q~xr(t1)

(weakly) converge to some distributions, which we denote � and q�, respectively. Distribution
� is necessarily equal to the distribution of ~x(t1), and

q� (stochastically) dominates �, and
is not equal to �, which follows from (106).

Consider the processes ~xr and q~xr restarted at time t1. Let us �x arbitrary t2, t1 < t2 <1.
Then, we have

lim inf
r

Pf inf
[t1;t2]

~xr(t) < �g � p1 8� > 0; (107)
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where
p1 = Pf~x(t) hits 0 within [t1; t2]g:

Since pathwise inequality (105) holds, we see that (107) holds for the process q~xr as well:

lim inf
r

Pf inf
[t1;t2]

q~xr(t) < �g � p1 8� > 0: (108)

Consider now an RBM q~x with the drift a and di�usion coeÆcient � (same as for the RBM
~x), de�ned within interval [t1; t2], with the initial distribution q� at time t1. Since

q� strictly
dominates �,

Pfq~x(t) hits 0 within [t1; t2]g = p2 < p1: (109)

Using Theorem 2(ii), it is easy to see that the RBM q~x is an asymptotic (stochastic) lower
bound of the sequence of processes q~xr (in the sense speci�ed in Theorem 2(ii)). From this
fact we see that for any Æ > 0 we can choose a suÆciently small � > 0, so that

lim inf
r

Pf inf
[t1;t2]

q~xr(t) > �g � (1� p2)� Æ: (110)

If we �x Æ 2 (0; p1 � p2) and a corresponding � > 0 as above, we obtain from the estimates
(110) and (108):

lim inf
r

�
Pf inf

[t1;t2]

q~xr(t) > �g+ Pf inf
[t1;t2]

q~xr(t) < �g
�
� p1 + (1� p2)� Æ > 1;

a contradiction which completes the proof.

13 Stability Vs. Heavy TraÆc Workload Minimization

Consider a special case of the MinDrift routing rule, with cost functions Cj(�) = (1=2)�2.
(See Section 4.4.) The corresponding MinDrift(Q) rule is: route an arriving type i customer
to a server j such that

j 2 argmin
j2J

qU j(t)=�ij: (111)

Our heavy traÆc results apply to this rule. (The form of the rule does not change with r,
as explained in Section 8).

Using the approach of [15, 6, 2, 1, 14], it is not hard to show that, under this routing
rule (plus arbitrary scheduling rules satisfying (d1)-(d2)), both the queue length process
((Qij(t); i 2 I; j 2 J); t � 0) and the un�nished work process ((Uj(t); j 2 J); t � 0)
are stable, as long as the vector of mean rates � is within the system stability region M0,
de�ned in Section 5. In fact, as explained in [14], the analysis of the FSPs (Section 9 in
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this paper), required to establish the heavy traÆc results, is essentially a \superset" of the
analysis needed to prove stability. (We do not provide details of the stability proof, as it is
not the focus of this paper.)

Thus, the above rule is able to both keep queues stable (as long as � 2 M0) and minimize
system workload in the heavy traÆc limit. The Gc� scheduling rule for the IQ-system pos-
sesses the same property (see [12]) and so does the MaxWeight scheduling rule for a di�erent,
but closely related, \generalized switch" model (see [14]). All these results may suggest the
intuition that a dynamic service discipline which keeps queues stable (as long as � 2 M0),
\typically," will also minimize system workload in heavy traÆc. Such a \conjecture" cannot
be formally correct, because it is not hard to devise some contrived disciplines, for which it
does not hold. We note, however, that this conjecture does not hold even for very natural
service disciplines, as the following example demonstrates.

Consider a service discipline for our OQ-system, which strives to minimize the drift of the
cost (Lyapunov) function X

ij

1

2
Q2

ij(t):

Then, the discipline has the following form. (It is close to the class of network scheduling
disciplines introduced in [15].)
Routing rule (\Join the shortest queue of your type"): route an arriving type i customer to
a server j such that

j 2 arg min
j2J:�ij>0

Qij(t): (112)

Scheduling rule (\Gc� within each server"): server j picks a customer of type i such that

i 2 argmax
i2I

Qij(t)�ij: (113)

This discipline ensures stability of the queues, when � 2 M0. (Again, the approach and
techniques of [15, 6, 2, 1, 14] can be applied.)

However, it is not hard to see that, under this discipline and under the conditions of The-
orem 4, condition (55) cannot possibly hold, as long as �ij > 0 for at least one non-basic
activity (ij). We do not provide a formal proof here. The key part of a proof is showing the
following very intuitive fact, which is implied by the nature of the routing rule: FSPs under
this discipline are such that, if the initial workload is non-zero, then after some �nite time
all non-basic queue lengths are bounded away from 0. We also exploit the fact that, since
the limiting workload process is lower bounded by an RBM, at any time t > 0, the limiting
workload is non-zero with non-zero probability. Thus, by Theorem 4, none of the workload
minimization properties (52), (53), (54), can hold.
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14 Appendix: The One-Dimensional Skorohod Prob-

lem

The following proposition describes standard properties of solutions to the one-dimensional
Skorohod problem. (See for example [5] for the proof. The proof is also contained in the
proof of Theorem 5.1 of [18]).

Proposition 1 Let w = (w(t); t � 0) be a continuous function in D([0;1); R) such that
w(0) � 0. Then the following holds.
(i) There exists a unique pair (x; y) of functions in D([0;1); �R), such that
(a) x(t) = w(t) + y(t) � 0; t � 0,
(b) y is non-decreasing and non-negative,
(c) y(0) = 0,
(d) for any t � 0, if x(t) > 0 then t is not a point of increase of y, i.e., there exists Æ > 0
such that y(�) is constant in [t� Æ; t + Æ] \R+.
This unique pair is (xÆ; yÆ), where

yÆ(t)
:
= �[0 ^ inf

0�u�t
w(u)]; xÆ(t) = w(t) + yÆ(t); t � 0 :

(ii) For any pair (x; y) of functions in D([0;1); �R) satisfying (a) and (b), we have

y(t) � yÆ(t); x(t) � xÆ(t); t � 0 :
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