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Abstract—We consider a model of wireless network with typically need to be centralized. Random access (“Slotted-
random (slotted-Aloha-type) access and with multi-hop flow Aloha-type”) algorithms typically provide smaller thrdug
routes. The goal is to devise distributed strategies for optimal put regions, but are simpler and more amenable to distdbute

utility-based end-to-end throughput allocation and queueing . I tati In thi id del of
stability. We consider a class ofqueue back-pressure random- Impiementatons. In this paper we consicer a model o

access algorithms (QBRA), where actual queue lengths of the random access with multi-hop transmissions.

flows (in each node’s close neighborhood) are used to determine  Random access models have been widely adopted in con-

nodes’ channel access probabilities. This is in contrast to temporary works [1], [2], [4], [5], [7], [9]. Informally, wean

previously proposed algorithms, which are purely optimization- classify them into two categories: “pure optimization-&is

based and oblivious of actual queues. QBRA is also substantially . .

different from much studied “MaxWeight” type scheduling algorithms (99- [4], [5], [9]) and dyrllamlc, queue-length

algorithms, also using back-pressure. based strategies (eg. [2], [7]). Algorithms of the former
For the model with infinite backlog at each flow source, type (eg. [4], [5], [9]) solve an optimization problem that

we show that QBRA, combined with simple congestion control allocates network resources (e.g. effective link througsp

local to each source, leads to optimal end-to-end throughput 4 satisfy and/or optimize traffic demands of different flows

allocation, within the network saturation throughput region . Lo - g
achievable by a random access. (No end-to-end message passin hey require optimization parameters to be a priori spetifie

is required.) This scheme generalizes for the case of additional, 2nd are typically oblivious of the dynamics of actual queues
minimum flow rate constraints. For the model with stochastic in the network. The latter type algorithms ( [2], [7]), even
exogenous arrivals, we show that QBRA ensures stability of in cases when they have same optimization objective as
the queues as long as nominal loads of the nodes are within {ha former algorithms, do the optimization by adaptively

the saturation throughput region. Simulation comparison of . . .
QBRA and (queue oblivious) optimization-based random access responding to actual queueing dynamics; for example, they

algorithms, shows that QBRA performs better in terms of end- d0 not need a priori knowledge of traffic flow input rates to
to-end delays. achieve queueing stability (if such is feasible).

In this paper we propose and study a clasguéue back-
I. INTRODUCTION pressure random acced®BRA) algorithms for a multi-

In wireless ad hoc networks, contention resolution anfOP network. The algorithms use flow queue differentials
interference avoidance among links are among the mo2f the links to determine link access probabilities. (The
important issues, which motivates the extensive study ofax\Weight algorithms use queue differentials as well, but
wireless medium access control (MAC) protocols. The stadl @ completely different way.) Our main contributions are
dard MAC protocol currently used in IEEE 802.11 [3] is@S follows. -
the Distributed Coordination Function (DCF) with Binary (1) For the problem of utility-based end-to-end throughput
Exponential Backoff (BEB) mechanism. However, it hag:\llocatmn (in Section V), when traffic sources have infinite
been concluded by many researchers that DCF and BEECKIOg of data to send, we prove that QBRA combined with
mechanism for contention control can be inefficient (eg). [6] extremely simple conges'tlon controller. at each flow source,
Thus, there are significant challenges in designing MAC pro:0lVes the problem ofveighted proportional fair(sum-log
tocols that are both efficient (in terms of throughput, lagen Utility) end-to-end throughput allocation among the flows.

energy consumption, etc.) and allow distributed implemenVé 8IS0 prove an extension of this result for the case of
tation minimizing signalling (message passing) overhead. additional minimum flow-rate constraints. (This genersdiz

It has been shown that the maximum throughput ree_md much strengthens the corresponding result of [2], which

gion can be achieved by much studied “MaxWeight"-typ@pp"es to _s@ngle-ho_p flows_.Afurtherggnerali;at_ion - toreno
scheduling algorithms (originally proposed in [8]). Howey general utility functions - is also possible; this is subjet

in the context of wireless networks, MaxWeight algorithmdUture work.) _ .
(i) For the problem of queueing stability in a system

This research was in part supported by the DARPA CBMANETgooj With stochastic exogenous arrivals (in Section VI), we prov



that QBRA “automatically” (without knowing input rates) has data to send. ) In summary, a transmission attempt on
ensures stability, as long as nominal link loads are withilink [ € £ is successful if and only if no node in the set
the networksaturation throughput regian(This generalizes {n: n # t;,7, € N},} transmits.
some of the stability results of [7], which apply to singleph For eachn let us defineS, = {l € £ : r, € N,}.
flows.) (This set includes links originating at and links interfered

(i) Finally, we present simulation results (in Sectionl)/I by transmissions fromn.) We consider thdink dependence
showing good performance of QBRA in terms of end-to-engraph as defined in [2], i.e. the directed graph with vertices
delays. being linksi € £, and the edge froni to another vertex
I' € L exists if and only ifl’ € S;,. Throughout the paper we
assume thstrong connectivityf the link dependence graph,

Typically, we use bold letters, y, ... to denote vectors, which assumes that there exists a directed path between any
as opposed to scalarsy. We use the notation®,R; and two vertices.

R, for the set of real, real non-negative and real posi- . ) i )
tive numbers, respectively. Correspondinglyimes product B- Saturation Throughput Region and its Properties
spaces are denoted R¢, R‘i and R?H, We write z - y to Suppose the network employs a slotted-Aloha-type ran-
denote scalar product, aret|| = /z - = for the Euclidean dom access. Recall that each node keeps separate queues for
norm, inducing standard metric. Cardinality (i.e. the nemb the packets of different flows. In each time stotnoden
of elements) of a finite setl is denoted by.A|. We denote attempts a transmission with probabilify,, and chooses to
[2]T = max{z,0}. transmit data from queuéQ(T) on link ! with conditional

We use=, <, >, = for componentwise vector inequalities, probability p\"”’ / P, wherepf” > 0 is defined for each pair
e.g.x - y meansz; > y;, Vi. For any scalar functiofi’ : (. 1) such that = t, andl € £,.. Thus,p" is the resulting

II. BASIC NOTATION AND DEFINITIONS

R — R, T(z) = (T'(21), - ,T(zq)) and for any subset propability of transmission of class packets on link, and
CeRY, T(C) = {T(v): v € C). o
Po=> > p” <1, VneN. (1)
I1l. SYSTEM MODEL [
A. Wireless Network Model We defineP as the set of all feasible vectors of liskccess

We consider a wireless multi-hop network described as probabilitiesp = {pl(r), leL,, re R} Obviously,
directed graplG = (W, L), where\ is the set of nodes and _ dq.
L is the set of the( Iogic):al (directed) communication links P={pel0.1]%: P <1, VneN} 2)
between pairs of nodes; and r; are the transmitter and whered = > _. |£.|. Given p € P, the transmission
receiver nodes of link, respectively. There is a finite numberattempts by all nodes are independent, and then the rasultin
of traffic flows, indexed by € R; each flow has fixed source average successful transmission rate (or, average thpatigh
and destination nodes, and a fixed route. (We will use terallocated to flowr on the linkl € £, is
flow and route interchangeably, and use indesither one. r r
Let £, C L denote the géet mylinks on route and inde>2 ”l( )(p) :pl( ) H (1= Pn). ©)
links [ € L, from source to destination in an ascending order n#t N
asl(r,j), j =1,2,3,---. We also assume each node keepgVe will use notation(p) = {uf) (p), L€ L, T €R}.
separate queues of data packets of different rows.Q.l(é)t Definition 1: We define the systersaturation throughput
denote the queue length of flow packets located in the region M as the set of all possiblg(p), along with the
transmitter n(ogjletl of link l(§ L,. To simplify notation, we vectors dominated by them, namely,
ﬁ;t\(/avnTV\;rtltg_%n tg rT)ee_le(m), i.e. for the queue length of M={ve[0,1?:3peP, st v=pup) 4)

J ode in 1ts route. ) We also define log-throughput regideg M as

The system operates in discrete (or, slotted) time-
0,1,2,.... In any time slot, each node may attempt to logM={u=logv:ve M,ve Ri’H}
transmit one pacl_<et_ on (at most) one gf it; outgoing Iinks?nd its Pareto (“north-east”) boundary as
A packet transmission attempt on a link is successful, |
it is not “interfered by” another simultaneous (same slotflog M]* ={u € logM: if u < u’ € log M, thenu = u'}
transmission; otherwise the transmission fails. The fater
ence model is same as in [2], [7] (and is somewhat mor,
general than in [9]). First, any transmission attempt to
node will fail if this node is transmitting. Second, if there
are two or more simultaneous transmissions to the sa
node, they all fail. Third, for each node there is the set
of nodesV,, C N it interferes with, namely, a transmission
to any node inV,, will fail if node n transmits. (Note that
according to our interference model,c N,, andD,, C N,
whereD,, C M\n is the set of nodes: such that node: max w-u S.t.u € log M,

Proposition 1 ( [2]): Log-throughput regionlog M is
rictly convex and the boundafiog M]* is a smooth(d —
?)-dimensional surface iR?, which can be parameterized by
the vectors of positivéink weightsw = {wl(r), lel,, re

€ R?_, as follows. Vectoru € [log M]* if and only if
there exists unique (up to scaling by a positive constank) li
weights’ vectorw € R? . such thatu is the unigue solution
of the problem



or an equivalent problemmax w - logv st. v € M. As usual, we identifyAng’") and AQZ(QJ.), and denote by
Moreover, the unique set of access probabiliesuch that AQ the vector of aIIAQ(,T) in the network
; .

u = log p(p) is given by Obviously, under QBRA a transmission of a flovpacket
) wl(r) at timet on link I(r, j) will not be attempted unles@y)(t)—
n = ok ®) Q) (#) > 0. This easily implies that if inequalit
Ziesn Zk:ieﬁk wz( ) QJ-H( ) y imp g y
wheren = t, is the transmitter node of link Q) > Q\) (1) -1, )

We will denote byp(w) the function given by (5), and 45 for flowr on link I(r, j) at time¢ = 0, it then holds

fo(rrguture refe_rence adopt the convention that = 0 when for all . In all cases considered throughout this paper, (7)
w,” = 0. (This makesp(w) well defined for allw € R,  in fact holds for all flows and links at timé and then for
and not justw € R%_, becausew!” > 0 guarantees that all .
the denominator in (5) is positive as well.) The important
feature of expression (5) is that the denominator is esalbnti
the sum of the weights of all links the transmitting node
n interferes with (plus the link originating at itself), In this section we study the scenario where the sources
and so nodes can compute their access probabilities veny all data flows are “saturated”, i.e. have infinite amount
efficiently, using limited information exchange within the of data to send. Informally, the problem is to allocate
local neighborhood. (See [2], [7] for more details.) throughputsz(”) to flows r along their respective routes in

_ i the network (by setting access probabilities of all nodes) i
C. Queueing Dynamics way that maximizesveighted proportional fairnessbjective

The generic queuing dynamics in the random access 6()logz("), whered™) > 0 are fixed weights.

network described above is as follows. (We do not discuss This problem was considered in [9], where two distributed
here how new packets arrive in the networks and how acceissrative algorithms for setting access probabilities aver
probabilities are set. This will be specified later.) LEt)(t)  proposed and proved optimal; these approaches and results
denote the number of (exogenous) data packet arrivals at tvere generalized in [4]. However, the solution approaches
source nodd(r,1) of flow r in time slot¢, and ng")(t), in [4], [9], based on the the dual and the primal algorithms

V. UTILITY BASED END-TO-END THROUGHPUT
ALLOCATION

j=1,...,|L.|, is the queue length of typepackets at the in convex optimization, both need end-to-end feedback in-
(transmitter node of) link(r, j) at timet. (Recall convention formation to update variables maintained by the nodes. This
Qy) - Ql((i)-j)') Then, may induce increased delays due to the end-to-end signaling
’ along the route, especially in large-scale networks. Maggo
- QE.T) (t) + AT (t) — hy) ), j=1 the optimization-based algorithms of [4], [9] are oblivioof
CEH) =9 oy ) o : h ! ing dynamics in th k, which al
Q1) + 1V (1) — K@), 1< < |L,] the actual queueing dynamics in the network, which also may

degrade performance metrics, including delays.
Wherehy) = 1if there is a successful transmission of a flow The purpose of this section is to prove that the above
r packet on linki(r, j) in slot ¢, and hgr) — 0 otherwise. probl_em can be s_olved by QBRA algorithm as We_II. The
solution is very simple. Each flow source maintains a
IV. DYNAMIC QUEUE-BACKPRESSURERANDOM ACCESS constant queue Ieng‘i@gr), proportional tod("), at the flow
In this section we introduce a dynamic distributed algosource node. Then, as we show, the dynamics of the network

rithm, calledQueue-Backpressure Random Accg@BRA), dueues under QBRA is such that the queue length “converge”
which is the main subject of this work. The algorithmt0 the values that induce access probabilities resulting in
generalizes Queue Length Based Random Access (QRIg optimal end-to-end throughput allocation. Since QBRA
scheme, introduced in [2], [7] for the special case of oupnly uses local message passing between “neighboring”
model, where all routes have length one. Under QRA, nodé®des, one can say that QBRA provides a “more distributed”
choose their access probabilitipsdynamically, according Solution to the problem, than those in [9]. _

to formula (5), with link WeightSwl(’") at time ¢ being a The solution provided by QBRA iasymptotically optimal

fixed function of the its current queue Iengﬂj’”)(t). Inthe M Fhe_followmg sense. Queues at t_he source nod_es are
(r) maintained equal t6(") /n, wheren > 0 is a (small) scaling

S'”?p'eSt form,wl - l( )(t)' (See [2], [7] for more general parameter. This means that, roughly speaking, parameter
weight functions.) p ” ;
scales up” all queues in the network by large factg.

The optimality is achieved whem becomes infinitely small.
Consequently, our results conceitnid limits of the queue
length process, which are (roughly) the limits of the praces
undernQ(t/n) space and time scaling, &s| 0.

(r) (r) + . Finally, in this section we show that QBRA also solves a
@) - Qﬂ’“(t)} g <, (6) more general problem, with additional, minimum end-to-end
sz),,_\(t% Ji=I1L throughput requirements;(™) > \(").

access probabilitiep according to (5), with the weighbj(.r)
of flow r on link I(r, j) at time ¢ being set to the current
queue differentialdefined as follows:

AQ (1) =



A. Problem Formulation gueue after each successful transmission from it. Otherwis

The problem is to operate our random access network i€ QBRA in the network works exactly as defined earlier.
a way such that the averagmd-to-endflow throughputs Without loss of generality, we can assume that at time
2(") maximize "6 log 2("), where ") > 0 are fixed t = 0, the relations (7) hold (for example, all queues on
parameters, while keeping all the queues in the netwof@@ch route are, except the first queue), and so (7) holds for
stable. This in particular means that we warit) to be allt . o . .
those given (ag(") = U( )) by a solution of the following We consider thefluid limit asymptotic regime. Namely,

optimization problem for the average link-flow throughputdVe 100k at a sequence of system, with paramgter. For
each system we consider the space-time rescaled queueing

v process)Q(t/n) in continuous time > 0, and then consider
gé%{ Z e logv@, the process-level limit of those, ag | 0. The following
rER fact, proved essentially same way as the analogous result
subject to v](-i)l Svj(-r) in [7], roughly speaking says that any limiting process
J= L], T ER, (8) is concentrated on the family of (continuous) trajectories

q(t), t > 0, called fluid sample pathsand describes
their basic properties. (We omit the proof here - it follows
essentially same argument as that used for analogous result

(Here we use notational conventmjf) = vl(r)j) and we use
similar ones later in the paper.) Since any optimal solution
(8) must be such that > 0, problem (8) can be equivalently .

in [7].)
written in terms of log-throughputa = log v: Proposition 2 (Fluid Limit): The sequence of rescaled
max Z 9(’”>u§”)7 processegQ(t/n), t > 0, can be constructed on a common
u€logM T2 probability space in a way such that, with probabilitythe
subject to u§’”_>1 < u§T)7 sequence of realizations has a subsequence converging (uni
J=2,...,|L], reR. (9) formly on compact sets) to a Lipschitz continuous trajector

q(t), t > 0, calledfluid sample path(FSP). The family
of FSPs satisfies, in particular, the following propertieést
eachr,

Since regionlog M is strictly convex by Proposition 1, the
optimal solutionu* to (9) is unique. (And them* such that
= logv* is the unique solution of (8). Moreover, again
usmg Proposition 1 and considering the Lagrangian for the 6 (t) = (")( t) > (")( t)>.. fz)‘(t) >0. (13)
problem (9) (given in (15) below), it is easy to establish th
following facts. The optimal link throughputs allocated to
each flow along its route are all equal: d (T)( - {v( 7) (1) — v](.T)(t) ) S 0,

(6 o) 7 =0,
L], 7 eR wherew(t) is such that

For eachr and1 <j<|L,

* )% -4
ugr) =...= u‘(ﬂ) pTE R; (10) dt™

the optimal dual variablequ Li=2,...,
corresponding to the inequality constraints in (9), arejuei v(t) € argmax, . ,Aq(t) - log 2, (14)
and are such that: . _ _ .
") ()= (r)s with the vector of queue differentialdg(¢) = 0 being
07 >aq " >...>qp >0, rER. (11)  defined analogously to (12).
i (% () Note that ordering property (13) is the limit version of
We V_V' put by c?rlventmnql = 0, and use vector (7), and that the key property (14) follows from the fact that
notation g* = {g;"", I € Lr, r € R}. We also denote pRra uses queue differentials as link weights to set access
by Ag* >0 the vector with components probabilities via (5).
o g - q(r)l, 1<j<|Lh We denote byD the set of all possible FSP statg§l),
Ag"" = { Ty 0% e - (12) i.e. those satisfying inequalities (13), and &% the subset
A, =1L of thoseq € D with at least one zero componem;l(r) =0.
Again considering the Lagrangian for problem (9), it is eas
to see that* = arg maxqciog m Ag™ -, Which means that
Ag is nothing else but the (unique) vector of weights, which Given the properties of optimal primal and dual solutions
results in the optimal rates*, i.e. v* = u(p(Aq)). to problem (9),u* andq*, respectively, it follows immedi-
o ) o ately that the stationary trajectonyt) = ¢* satisfies all the
B. Application of QBRA algorithm. Fluid Limit FSP properties described in Proposition 2. Moreover, it is
The application of QBRA to solve problem (8) is aseasy to see (analogously to the way it is done in [2] for a
follows. A (small) parameter, > 0 is fixed. Each flowr  simpler model) that any stationary trajectayyt) = g¢** ¢
source maintains a constant queue Ier@flﬁ) = 16" /n|, 0D, satisfying FSP properties in Proposition 2, must be such
at the flow source node. (Hete| is the integer part of of a thatg** = g*, because theg** satisfies KKT conditions for
number.) It can always do that, because the source hasénfingiroblem (9). This to some degree motivates the following
amount of data, and it can simply add a new packet in thmain result of this section.

%. Asymptotic Optimality



Theorem 1:Every FSP is such that(t) — q* ast — oo q(t) = g*, because otherwise a stationary trajectory “sitting”
and, consequently(t) — v*. The convergence is uniform at a point different fromg* would exist. ]
on all FSP. In addition to the key Lemma 1, we need some auxiliary
Theorem 1 basically says that, when parameter 0 results to prove Theorem 1.
is small, then regardless of the initial state of the queues, Lemma 2:For any FSP and any time> 0, there exists
the queues “converge to” and stay close to the values whiem arbitrarily close ta time s > ¢, such thatAq(s) > 0,
result (via QBRA rule for access probability assignment) in.e. g(s) € D\ 9D.
the optimal end-to-end throughput allocation. The key idea  Proof: Let us call a link-route paifl, ) such thalt e R
of the proof of Theorem 1 is contained in the followinga virtual link. For a given FSP, let us call,r) a “zero”
Lemma 1, which states that essentially (up to some technic@ksp. “non-zero”) virtual link at time if Ag™ = 0 (resp.
work we will do below) the Lagrangian of the convex> 0). Suppose there are some zero virtual links at timgf

optimization problem (9), not, the lemma statement is trivial.) Since trajectg(y) is
) continuous, to prove statement of the lemma it will suffice to
(), () (r) ( n _ (‘T)) show that there exists time> ¢, arbitrarily close tat, such
L(gq,u) Z 07w qu v v ’ that at least one virtual link which was zero abecomes

(15) non-zero ats. Consider two cases.
Case (a): Suppose on one of the routethere is a non-zero
=Aq-u, (16)  virtual link followed by a zero one, that kqu(T)l( ) > 0and

Aq(”( t) = 0. (This is the situation where a transmission on

(where, by conventiong is such thatg{” = (") for all r)
er -th link “kills” a simultaneous transmission on the-1-

can serve as a Lyapunov function to prove the convergen
Lemma 1:For any FSP at any time such thatq(t) ”: ')'nk) Then, it is easily seen from (14) thaf” (1) = 0,

D\ 9D, the following holds. The value of(t), and then vjfl( ) > 0, and both these functions are continuous in time
u(t) = log v(t), is defined by (14) uniquely, and moreover at¢. Then, by (14)4\" has positive, bounded away frobn
derivative in the interval(t,t + €), with smalle > 0. In the
u(t) = arg max, cjo, pmAQ(1) - same time interval, also by (14), the derivative q@ﬁl is
and u(t) € [logM]*. Consequently,(q(t),u(t)) is a UPPer bounded by an arbitrarily small> 0, if we choose
smooth function of time in a neighborhood of by (16) small enoughe > 0. (If j = |£,|, then 4521( ) =0 by
L(q(t), u(t)) is the value of the convex problem dual to (9)convent|on) These facts mean thﬁt] )(s) > 0 for all

at pointq(t), and € (t,t +¢). We are done with case (a)
(r). ()= Case (b) = [NOT Case (a)]: At timg along each route,
Z 07up < L(g(t),u(t)) < 0; (A7) there is a (possibly empty) sequence of zero virtual links
reR at the beginning, followed by the (definitely non-empty)

function L(q, u) is smooth in a neighborhood 6f(t), u(t)), sequence of non-zero virtual links until the end of the route
and has zero partial gradient on primal variablesat In this case, there is at least one zero virtual link, let it be
(g(t),u(t)): the j-th link on router, such that it either shares a link with
a non-zero virtual link, or it interferes with transmisssoon
VuL(q(t), u(t)) = 0. (18)  a non-zero virtual link. (The latter observation uses sjron
connectivity of the link dependence graph.) Either way,

Finally, vjm(t) = 0 and it is continuous at time. For the first
d [+ - non-zero virtual link on this route, say.-th with m > j,
EL(Q(f)a u(t)) = — Z Z (Uj—l(t) »")(¢) > 0 and is continuous at Then, using (14) we easily

re€R j=2 see that, in a small intervdt, ¢ + ¢),
(r) (r) (r)
) (520 —w) a9 L6+ 4 6] < —C,
<0, (20) ds
for someC > 0 independent ot; and in the same interval
and the inequality in (20) is strict unleggt) = q*. 44\ (s) > —4, whered > 0 can be made arbitrarily small

Proof: If g(t) € D\ 0D, then, by Proposition 1, in py choosing smal& We conclude that for any € (¢, +¢),
the neighborhood of this point the dependencevf) on e must haveﬁ (s) > q(r)( ) for at least ongj’, j +1 <
q(t) is given by the (explicit) smooth functiom(p(q)).  ;/ < 1, and th]erefore one of the virtual links fropath to

Obviously, the dependence = logv is smooth as well. |, — _th must be non-zero at time -
Then, all the properties described in the lemma easily¥ollo | amyma 3:For any FSPAg(t) = 0 for all ¢ > 0.

using in particular the smoothness of the bounc[hrg/\/t] Proof: In view of Lemma 2, it suffices to show that
Inequality (20) holds because each dlfferenéé) if Ag(t) = 0 for t = s > 0, then this holds for alf > s
J(T)( ) obviously has same sign aé ( ); all  as well. Suppose not, and s < 7 < oo, is the first time

such differences cannot be simultaneously equ@l tmless after s wheng(¢) hits setdD. This means that there exists



a subset of virtual links which simultaneously become zernode). As opposed to the previous situation, source node use
at time 7. However, considering the values ofr) (t) for  not the constant valug") /5| as the queue Iengt@ﬁ”, but
t close tor, and essentially repeating the argument in theather the variable)gr) (t) = [0 /n| + Y")(t). Otherwise,
proof of Lemma 2, we can show that for at least one ofhe QBRA in the network works exactly same way as before.

those Iinks,qu(.T)(t) must in fact be increasing for such An FSP now contains additional componeyit)(¢) for

a contradiction. B eachr, which is a limit ofnY (¢/n), and it satisfies condition
Proof of Theorem 1According to Lemma 2, for any FSP ) " )

at any timet > 0, we are in the conditions of Lemma 1. In a ")) = AT = (t), g5 >0,

particular, this means that the uniform bound (17) hold.sThu dt A — UY) )", qj(.r) =0,

to prove the uniform convergenegt) — q* it remains to . s
show that the negative derivativé L(g(t), u(t)), given by in addition to (14). If we denote, by conventiog, *(t) =
(19), is bounded away from zero as longgs) is outside of ¢ + 4" (t), then the key condition (14) determining()
ane-neighborhood ofy*. This is obvious if values of(t) are  Still holds.
confined to a compact set, not intersecting wifh. To show  The generalization of Theorem 1 is the following.
that it is still the case within the entire sBt\ dD, it remains ~ Theorem 2:Assume the feasibility condition. Then, uni-
to observe the following. If poing approaches an arbitrary formly on all FSP with initial stateg(0) within arbitrary
point a € D, the derivative 2L at q approaches-oo, fixed compact sefg(t) — ¢* ast — oo and, consequently,
because for at least one virtual link, the corresponclejjﬁl o(t) — v _

S () . Theorem 2 both generalizes and much strengthens a result
(seg (29)) approathSNhlle v; ’ is not, or vice versa. (Here, of [2], which applies to QBRA in a system with one-hop
again, we essentially repeat the argument of Lemmda2.) routes and states only thiitconvergenceg () — ¢** holds
D. Generalization: Systems with Minimum Flow Rate Retheng™ = g*.
quirements Proof of Theorem 2 is carried out analogously to that of

. - : Theorem 1. We do not provide details here, just the following
In practical systems, a minimum rate lower bound is ofteE
[

required on the end-to-end throughput to guarantee Qual gy pomts% Thg Lagra;:gmn mf t.h'_s case, which serves as a
of Service of the data transfers. Accordingly, Theorem apunov function in the proof, is:
can be generalized to include such additional constraints. |£r]
More precisely, suppose that, additionally, the end-td-en  L(q,u) = Z o) — qug") (u§’_’1 - u;”)
j=2

throughput allocated to each flow needs to be at least rerR
A" > 0. Formally, the more general optimization problem r) ) o)
(which we will write directly in terms of log-throughputs - Z Yy (log)‘ ! )
u = logwv, as in (9)) is r€R
Jhax ) 0", —Aq-u— Yy log A, (23)
s

67_2 X reR
subject o u{”, <wl”, _ _
jJ: 9 7 L], reR where, by convention, for those flowswith A(") = 0, we

_ - ) = (r) (r —
log A(™) < U(l ) reR. 1) have y") = 0 andy_ log A 0. For each FSP, the
bounds (17) generalize as
We will assume that problem (21) is feasible, and moreover ()
all inequality constraints can be satisfied as strict indgua Y _ 0" ui”" < L(q(t), u(t))

ities. (This will be referred to as thé&asibility condition) reER
Then, there exists a unique optimal solutiafi such that < L(q(0),u(0)) < — Z y) (0) log A1) (24)
(10) holds, and the optimal dual solutigi”™*, q§’”)*, j = R
2., |L ] T EeR, wherey(")* are the duals corresponding As in the proof of Theorem 1, an important intermediate
to the minimum throughput constraints. The generahzegtep is showing thaf\g(¢) = 0 for all ¢ > 0 - this is done
version of (11) is: analogously to the arguments in Lemmas 2 and 3.
)k __ n(r )% )% )%
f1§ =60 y* > q§ s qui\ >0, reR, VI. STOCHASTIC STABILITY OF A NETWORK WITH
(22) EXOGENOUSARRIVALS
Ag* > 0 is defined as in (12), and, againy* = We now turn to a version of our model, where flow sources
arg MaXyclog M AQ* - U. do not have an infinite supply of data to send, but rather

Application of QBRA in this case uses a virtual queughere is a random process of exogenous arrivals to a the first
Y ("), maintained by each flow source node. “Tokens” are queueQ(l") at the flow source node. For simplicity let us
added tay (") at the average rat&”) (tokens/slot); one token assume that each such arrival proces® (¢), t = 1,2,...
is removed from it (if there is any) in every slot when ais i.i.d. with the average rate(" = E[AM)(t)] > 0,
packet of flowr is successfully transmitted (from sourceand all arrival processes are independent. (The i.i.d. and
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independence assumptions can be greatly relaxed. Also, it
is not an accident that here we use the same symolfor
the input rate as we use used for the minimum rate bound
in Section V-D; the reason will become clear shortly.)
Consider such a network under QBRA random access
scheme. The question is under which conditions the queueing
procesQ(t),t =0,1,2,..., in the network is stable. If we
assume (for further simplicity) thab{A")(t) = 0} > 0
for eachr, then it is clear thatQ(¢) is a countable state
space, irreducible, aperiodic Markov chain. By stabilitg w
understand its ergodicity. Fig. 1. A 6-node ad-hoc network
Note that, without loss of generality we can assume that
the “queueing order” relations (7) hold along each route at
all times. =Agq-u—Y ¢ log\". (25)
The main result of this section is the following rER
Theorem 3:Suppose input rates(™ > 0, r € R, satisfy  This Lagrangian is used as Lyapunov function, and for each
the feasibility condition, as given in Section V-D. Then theeSp we have the bounds
network queueing process is stable. ) -
This theorem generalizes to the multi-hop setting one of 0 < L(g(t), u(t)) < - Z g1 (0)log ™. (26)
the stability results in [7], which apply to the single-hop reRr
system. (It should be noted that our proof, outlined belown particular, if |g(0)| = 1, L(q(t),u(t)) < — 3, log A",
is substantially different from that in [7], even though bot  Using arguments analogous to those in Lemmas 2 and 3,
use fluid limits.) we can show that for alt > 0 a subset of components of
We will use thefluid limit techniqueto establish Theo- Agq(t) cannot hit0, unless all components hit simultane-
rem 3. (See [7] for an application of the technique to ®usly; this implies thatAg(¢) > 0 for all 0 < ¢ < ¢/, where
random-access system, and references therein to a genetas the first, possibly finite time whefg(¢) = 0, and then
theory.) With this technique, we look at the fluid limit, g(¢) = 0. For all0 < t < ¢/, we have, analogously to (19),
defined analogously to the way described in Section V-B.
(It is important to emphasize that the QBRA algorithm in EL(Q(t),U(t))

the network doesiot use parameten in any way. This is ; () ; )

true for the use of QBRA in Section V as well, but there = — Z </\( )~ (t)> <log A — g (t)>

traffic sources use parameterto decide when to send new reR )

packets. In this section, parametgiis only used to define ~ (o) ) r) )

the fluid limit asymptotic regime.) -2 (”jq(t) — Y, (U) (Ujfl(t) — Uy (t))(27)

In our case, the FSPs turn out to satisfy the same properties "7 7=2

as those for the FSPs in Section V-D, but specialized to tHgnally, we observe that the RHS of (27) not only is non-
casef(™) = 0 for all r. (This is not an accident - it is easy positive, but in fact bounded away from by a negative
to observe that if in Section V-D we were to assume that aflonstant—e, uniformly on all possibleu € [log M]*. Thus,
9(") = 0, then the behavior of each virtual queki¢”) there L(q(t),u(t)), and theng(t), must hit0 within a uniformly
would be analogous to the behavior of actual qué\je in  bounded time. The fact that(t) cannot leave) after first
this section setting.) hitting it easily follows.

Ther], acc.ording to fluid limit technique, to prove Theo- VIl. NUMERICAL EXAMPLE
rem 3 it suffices to prove the following

Theorem 4:There existsI” > 0 such that, uniformly on
all FSPs with||q(0)|| = 1, we haveq(t) =0 for all t > T.

Proof of Theorem 4 is, again, analogous to the proof
the convergence results in Theorems 1 and 2. We omit fi
details, but the key points are as follows. Sinced&ll = 0,
and consequently™ (¢) = ¢\")(¢), the Lagrangian in (23)
specializes to

In this section we investigate performance of QBRA via

a numerical example. We consider a simple 6-node, 3-route
o?d hoc network as shown in Figure 1, which has the same
urllletwork topology as the second e>_<amp|e in [9]. The nodes
are labelled froml to 6, and the links are labelled from

1 to 9 and the route-link pair as in the formét, j), i.e.
5(3,3) denotes the link5 in £ which is the3rd link of
route 3. The interference model is that each node interferes

[y with the reception at its 1-hop neighbors; for example,=
Ligu) =-Y 4" (ugf_)l _ u§>> {1,2,3}, N3 = {2,3,4,5,6}. _
j=2 The behavior of QBRA for the optimal end-to-end flow
throughput allocation, with and without minimum throughpu
_ Z qgr) (log A u@) constraints is as predicted by Theorems 1 and 2 in Section V.
R We do not present those simulations to save space. Instead
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optimization problem to calculate link access probaleiti
resulting in sufficient link throughputs along each route;
QBRA need not know or estimate input rates and ensures
stability “automatically” (when feasible).

We simulate a system with exogenous (i.i.d. Poisson)
arrivals with equal rates for all flows,() = \(?) = A(®) and
scale them up to observe the changes of the queue lengths.
The QBRA works exactly as specified in Section VI. An
OPT algorithm that we simulate works as follows: we a
priori “pre-calculate” link access probabilities so thaet
resulting end-to-end rates(”) provided to the flows are
maximal, subject tar() = z? = £ (In other words,
we pretend that an optimization based algorithm is run a
priori to calculate appropriate access probabilities.)TOf
oblivious of the queue lengths, except if there is no packets
at a link, the link doesot attempt transmission. We study
the total average queue length of each flowfwhich by
Little law is proportional to the end-to-end queueing dElay
Q" =3,Q". Figure 2 compare®™®, Q®, Q® under
the QBRA and OPT. It shows that the average queues under
QBRA are significantly lower than the optimization-based
algorithm. An intuitive explanation of this is that QBRA
“better adapts” to the current queue length in the network.
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