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Abstract— We consider a model of wireless network with
random (slotted-Aloha-type) access and with multi-hop flow
routes. The goal is to devise distributed strategies for optimal
utility-based end-to-end throughput allocation and queueing
stability. We consider a class ofqueue back-pressure random-
access algorithms (QBRA), where actual queue lengths of the
flows (in each node’s close neighborhood) are used to determine
nodes’ channel access probabilities. This is in contrast to
previously proposed algorithms, which are purely optimization-
based and oblivious of actual queues. QBRA is also substantially
different from much studied “MaxWeight” type scheduling
algorithms, also using back-pressure.

For the model with infinite backlog at each flow source,
we show that QBRA, combined with simple congestion control
local to each source, leads to optimal end-to-end throughput
allocation, within the network saturation throughput region
achievable by a random access. (No end-to-end message passing
is required.) This scheme generalizes for the case of additional,
minimum flow rate constraints. For the model with stochastic
exogenous arrivals, we show that QBRA ensures stability of
the queues as long as nominal loads of the nodes are within
the saturation throughput region. Simulation comparison of
QBRA and (queue oblivious) optimization-based random access
algorithms, shows that QBRA performs better in terms of end-
to-end delays.

I. I NTRODUCTION

In wireless ad hoc networks, contention resolution and
interference avoidance among links are among the most
important issues, which motivates the extensive study of
wireless medium access control (MAC) protocols. The stan-
dard MAC protocol currently used in IEEE 802.11 [3] is
the Distributed Coordination Function (DCF) with Binary
Exponential Backoff (BEB) mechanism. However, it has
been concluded by many researchers that DCF and BEB
mechanism for contention control can be inefficient (eg. [6]).
Thus, there are significant challenges in designing MAC pro-
tocols that are both efficient (in terms of throughput, latency,
energy consumption, etc.) and allow distributed implemen-
tation minimizing signalling (message passing) overhead.

It has been shown that the maximum throughput re-
gion can be achieved by much studied “MaxWeight”-type
scheduling algorithms (originally proposed in [8]). However,
in the context of wireless networks, MaxWeight algorithms
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typically need to be centralized. Random access (“Slotted-
Aloha-type”) algorithms typically provide smaller through-
put regions, but are simpler and more amenable to distributed
implementations. In this paper we consider a model of
random access with multi-hop transmissions.

Random access models have been widely adopted in con-
temporary works [1], [2], [4], [5], [7], [9]. Informally, wecan
classify them into two categories: “pure optimization-based”
algorithms (eg. [4], [5], [9]) and dynamic, queue-length
based strategies (eg. [2], [7]). Algorithms of the former
type (eg. [4], [5], [9]) solve an optimization problem that
allocates network resources (e.g. effective link throughputs)
to satisfy and/or optimize traffic demands of different flows;
they require optimization parameters to be a priori specified
and are typically oblivious of the dynamics of actual queues
in the network. The latter type algorithms ( [2], [7]), even
in cases when they have same optimization objective as
the former algorithms, do the optimization by adaptively
responding to actual queueing dynamics; for example, they
do not need a priori knowledge of traffic flow input rates to
achieve queueing stability (if such is feasible).

In this paper we propose and study a class ofqueue back-
pressure random access(QBRA) algorithms for a multi-
hop network. The algorithms use flow queue differentials
on the links to determine link access probabilities. (The
MaxWeight algorithms use queue differentials as well, but
in a completely different way.) Our main contributions are
as follows.

(i) For the problem of utility-based end-to-end throughput
allocation (in Section V), when traffic sources have infinite
backlog of data to send, we prove that QBRA combined with
extremely simple congestion controller at each flow source,
solves the problem ofweighted proportional fair(sum-log
utility) end-to-end throughput allocation among the flows.
We also prove an extension of this result for the case of
additional minimum flow-rate constraints. (This generalizes
and much strengthens the corresponding result of [2], which
applies to single-hop flows. A further generalization - to more
general utility functions - is also possible; this is subject of
future work.)

(ii) For the problem of queueing stability in a system
with stochastic exogenous arrivals (in Section VI), we prove



that QBRA “automatically” (without knowing input rates)
ensures stability, as long as nominal link loads are within
the networksaturation throughput region. (This generalizes
some of the stability results of [7], which apply to single-hop
flows.)

(iii) Finally, we present simulation results (in Section VII)
showing good performance of QBRA in terms of end-to-end
delays.

II. BASIC NOTATION AND DEFINITIONS

Typically, we use bold lettersx,y, . . . to denote vectors,
as opposed to scalarsx, y. We use the notationsR,R+ and
R++ for the set of real, real non-negative and real posi-
tive numbers, respectively. Correspondingly,d-times product
spaces are denoted asR

d, R
d
+ and R

d
++. We write x · y to

denote scalar product, and‖x‖ =
√

x · x for the Euclidean
norm, inducing standard metric. Cardinality (i.e. the number
of elements) of a finite setA is denoted by|A|. We denote
[z]+ = max{z, 0}.

We use≺,�,≻,� for componentwise vector inequalities,
e.g. x ≻ y meansxi > yi,∀i. For any scalar functionT :
R → R, T (x) = (T (x1), · · · , T (xd)) and for any subset
C ∈ R

d, T (C) = {T (v) : v ∈ C}.

III. SYSTEM MODEL

A. Wireless Network Model

We consider a wireless multi-hop network described as a
directed graphG = (N ,L), whereN is the set of nodes and
L is the set of the logical (directed) communication links
between pairs of nodes;tl and rl are the transmitter and
receiver nodes of linkl, respectively. There is a finite number
of traffic flows, indexed byr ∈ R; each flow has fixed source
and destination nodes, and a fixed route. (We will use term
flow and route interchangeably, and use indexr either one.)
Let Lr ⊆ L denote the set of links on router, and index
links l ∈ Lr from source to destination in an ascending order
as l(r, j), j = 1, 2, 3, · · · . We also assume each node keeps
separate queues of data packets of different flows. LetQ

(r)
l

denote the queue length of flowr packets located in the
transmitter nodetl of link l ∈ Lr. To simplify notation, we
often writeQ

(r)
j to meanQ(r)

l(r,j), i.e. for the queue length of
flow r at j-th node in its route.

The system operates in discrete (or, slotted) timet =
0, 1, 2, . . . . In any time slot, each node may attempt to
transmit one packet on (at most) one of its outgoing links.
A packet transmission attempt on a link is successful, if
it is not “interfered by” another simultaneous (same slot)
transmission; otherwise the transmission fails. The interfer-
ence model is same as in [2], [7] (and is somewhat more
general than in [9]). First, any transmission attempt to a
node will fail if this node is transmitting. Second, if there
are two or more simultaneous transmissions to the same
node, they all fail. Third, for each noden there is the set
of nodesNn ⊆ N it interferes with, namely, a transmission
to any node inNn will fail if node n transmits. (Note that
according to our interference model,n ∈ Nn andDn ⊆ Nn,
whereDn ⊆ N\n is the set of nodesm such that noden

has data to send. ) In summary, a transmission attempt on
link l ∈ L is successful if and only if no node in the set
{n : n 6= tl, rl ∈ Nn} transmits.

For eachn let us defineSn = {l ∈ L : rl ∈ Nn}.
(This set includes links originating atn and links interfered
by transmissions fromn.) We consider thelink dependence
graph as defined in [2], i.e. the directed graph with vertices
being links l ∈ L, and the edge froml to another vertex
l′ ∈ L exists if and only ifl′ ∈ Stl

. Throughout the paper we
assume thestrong connectivityof the link dependence graph,
which assumes that there exists a directed path between any
two vertices.

B. Saturation Throughput Region and its Properties

Suppose the network employs a slotted-Aloha-type ran-
dom access. Recall that each node keeps separate queues for
the packets of different flows. In each time slott, noden
attempts a transmission with probabilityPn, and chooses to
transmit data from queueQ(r)

l on link l with conditional
probability p

(r)
l /Pn, wherep

(r)
l ≥ 0 is defined for each pair

(r, l) such thatn = tl andl ∈ Lr. Thus,p(r)
l is the resulting

probability of transmission of classr packets on linkl, and

Pn =
∑

l:n=tl

∑

r:l∈Lr

p
(r)
l ≤ 1, ∀ n ∈ N . (1)

We defineP as the set of all feasible vectors of linkaccess
probabilitiesp = {p(r)

l , l ∈ Lr, r ∈ R}. Obviously,

P = {p ∈ [0, 1]d : Pn ≤ 1, ∀ n ∈ N}, (2)

where d =
∑

r∈R |Lr|. Given p ∈ P, the transmission
attempts by all nodes are independent, and then the resulting
average successful transmission rate (or, average throughput)
allocated to flowr on the link l ∈ Lr is

µ
(r)
l (p) = p

(r)
l

∏

n6=tl,rl∈Nn

(1 − Pn). (3)

We will use notationµ(p) = {µ(r)
l (p), l ∈ Lr, r ∈ R}.

Definition 1: We define the systemsaturation throughput
region M as the set of all possibleµ(p), along with the
vectors dominated by them, namely,

M = {v ∈ [0, 1]d : ∃p ∈ P, s.t. v � µ(p)}. (4)
We also define log-throughput regionlogM as

logM = {u = log v : v ∈ M,v ∈ R
d
++}

and its Pareto (“north-east”) boundary as

[logM]∗ ={u ∈ logM : if u � u′ ∈ logM, thenu = u′}
Proposition 1 ( [2]): Log-throughput region logM is

strictly convex and the boundary[logM]∗ is a smooth(d−
1)-dimensional surface inRd, which can be parameterized by
the vectors of positivelink weightsw = {w(r)

l , l ∈ Lr, r ∈
R} ∈ R

d
++, as follows. Vectoru ∈ [logM]∗ if and only if

there exists unique (up to scaling by a positive constant) link
weights’ vectorw ∈ R

d
++ such thatu is the unique solution

of the problem

max w · u s.t. u ∈ logM,



or an equivalent problemmax w · log v s.t. v ∈ M.
Moreover, the unique set of access probabilitiesp such that
u = log µ(p) is given by

p
(r)
l =

w
(r)
l

∑

i∈Sn

∑

k:i∈Lk
w

(k)
i

, (5)

wheren = tl is the transmitter node of linkl.
We will denote byp(w) the function given by (5), and

for future reference adopt the convention thatp
(r)
l = 0 when

w
(r)
l = 0. (This makesp(w) well defined for allw ∈ R

d
+,

and not justw ∈ R
d
++, becausew(r)

l > 0 guarantees that
the denominator in (5) is positive as well.) The important
feature of expression (5) is that the denominator is essentially
the sum of the weights of all links the transmitting node
n interferes with (plus the link originating atn itself),
and so nodes can compute their access probabilities very
efficiently, using limited information exchange within their
local neighborhood. (See [2], [7] for more details.)

C. Queueing Dynamics

The generic queuing dynamics in the random access
network described above is as follows. (We do not discuss
here how new packets arrive in the networks and how access
probabilities are set. This will be specified later.) LetA(r)(t)
denote the number of (exogenous) data packet arrivals at the
source nodel(r, 1) of flow r in time slot t, and Q

(r)
j (t),

j = 1, . . . , |Lr|, is the queue length of typer packets at the
(transmitter node of) linkl(r, j) at timet. (Recall convention
Q

(r)
j = Q

(r)
l(r,j).) Then,

Q
(r)
l (t + 1) =

{

Q
(r)
j (t) + A(r)(t) − h

(r)
j (t), j = 1

Q
(r)
j (t) + h

(r)
j−1(t) − h

(r)
j (t), 1 < j < |Lr|

whereh
(r)
j = 1 if there is a successful transmission of a flow

r packet on linkl(r, j) in slot t, andh
(r)
j = 0 otherwise.

IV. DYNAMIC QUEUE-BACKPRESSURERANDOM ACCESS

In this section we introduce a dynamic distributed algo-
rithm, calledQueue-Backpressure Random Access(QBRA),
which is the main subject of this work. The algorithm
generalizes Queue Length Based Random Access (QRA)
scheme, introduced in [2], [7] for the special case of our
model, where all routes have length one. Under QRA, nodes
choose their access probabilitiesp dynamically, according
to formula (5), with link weightsw(r)

l at time t being a
fixed function of the its current queue lengthQ

(r)
l (t). In the

simplest form,w(r)
l = Q

(r)
l (t). (See [2], [7] for more general

weight functions.)
Under QBRA algorithm, nodes also dynamically choose

access probabilitiesp according to (5), with the weightw(r)
j

of flow r on link l(r, j) at time t being set to the current
queue differential, defined as follows:

∆Q
(r)
j (t) =







[

Q
(r)
j (t) − Q

(r)
j+1(t)

]+

, 1 ≤ j < |Lr|,
Q

(r)
|Lr|

(t), j = |Lr|.
(6)

As usual, we identify∆Q
(r)
j and ∆Q

(r)
l(r,j), and denote by

∆Q the vector of all∆Q
(r)
j in the network.

Obviously, under QBRA a transmission of a flowr packet
at timet on link l(r, j) will not be attempted unlessQ(r)

j (t)−
Q

(r)
j+1(t) > 0. This easily implies that if inequality

Q
(r)
j (t) ≥ Q

(r)
j+1(t) − 1, (7)

holds for flow r on link l(r, j) at time t = 0, it then holds
for all t. In all cases considered throughout this paper, (7)
in fact holds for all flows and links at time0 and then for
all t.

V. UTILITY BASED END-TO-END THROUGHPUT

ALLOCATION

In this section we study the scenario where the sources
of all data flows are “saturated”, i.e. have infinite amount
of data to send. Informally, the problem is to allocate
throughputsx(r) to flows r along their respective routes in
the network (by setting access probabilities of all nodes) in a
way that maximizesweighted proportional fairnessobjective
∑

r θ(r) log x(r), whereθ(r) > 0 are fixed weights.
This problem was considered in [9], where two distributed

iterative algorithms for setting access probabilities were
proposed and proved optimal; these approaches and results
were generalized in [4]. However, the solution approaches
in [4], [9], based on the the dual and the primal algorithms
in convex optimization, both need end-to-end feedback in-
formation to update variables maintained by the nodes. This
may induce increased delays due to the end-to-end signaling
along the route, especially in large-scale networks. Moreover,
the optimization-based algorithms of [4], [9] are oblivious of
the actual queueing dynamics in the network, which also may
degrade performance metrics, including delays.

The purpose of this section is to prove that the above
problem can be solved by QBRA algorithm as well. The
solution is very simple. Each flowr source maintains a
constant queue lengthQ(r)

1 , proportional toθ(r), at the flow
source node. Then, as we show, the dynamics of the network
queues under QBRA is such that the queue length “converge”
to the values that induce access probabilities resulting in
the optimal end-to-end throughput allocation. Since QBRA
only uses local message passing between “neighboring”
nodes, one can say that QBRA provides a “more distributed”
solution to the problem, than those in [9].

The solution provided by QBRA isasymptotically optimal
in the following sense. Queues at the source nodes are
maintained equal toθ(r)/η, whereη > 0 is a (small) scaling
parameter. This means that, roughly speaking, parameterη
“scales up” all queues in the network by large factor1/η.
The optimality is achieved whenη becomes infinitely small.
Consequently, our results concernfluid limits of the queue
length process, which are (roughly) the limits of the process
underηQ(t/η) space and time scaling, asη ↓ 0.

Finally, in this section we show that QBRA also solves a
more general problem, with additional, minimum end-to-end
throughput requirements,x(r) ≥ λ(r).



A. Problem Formulation

The problem is to operate our random access network in
a way such that the averageend-to-endflow throughputs
x(r) maximize

∑

r θ(r) log x(r), where θ(r) > 0 are fixed
parameters, while keeping all the queues in the network
stable. This in particular means that we wantx(r) to be
those given (asx(r) = v

(r)
1 ) by a solution of the following

optimization problem for the average link-flow throughputs
v:

max
v∈M

∑

r∈R

θ(r) log v
(r)
1 ,

subject to v
(r)
j−1 ≤ v

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R, (8)

(Here we use notational conventionv
(r)
j = v

(r)
l(r,j), and we use

similar ones later in the paper.) Since any optimal solutionto
(8) must be such thatv ≻ 0, problem (8) can be equivalently
written in terms of log-throughputsu = log v:

max
u∈logM

∑

r∈R

θ(r)u
(r)
1 ,

subject to u
(r)
j−1 ≤ u

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R. (9)

Since regionlogM is strictly convex by Proposition 1, the
optimal solutionu∗ to (9) is unique. (And thenv∗ such that
u∗ = log v∗ is the unique solution of (8). Moreover, again
using Proposition 1 and considering the Lagrangian for the
problem (9) (given in (15) below), it is easy to establish the
following facts. The optimal link throughputs allocated to
each flow along its route are all equal:

u
(r)∗
1 = . . . = u

(r)∗
|Lr|

, r ∈ R; (10)

the optimal dual variablesq(r)∗
j , j = 2, . . . , |Lr|, r ∈ R,

corresponding to the inequality constraints in (9), are unique
and are such that:

θ(r) > q
(r)∗
2 > . . . > q

(r)∗
|Lr|

> 0, r ∈ R. (11)

We will put by conventionq
(r)∗
1 = θ(r), and use vector

notation q∗ = {q(r)∗
l , l ∈ Lr, r ∈ R}. We also denote

by ∆q∗ ≻ 0 the vector with components

∆q
(r)∗
j =

{

q
(r)∗
j − q

(r)∗
j+1 , 1 ≤ j < |Lr|,

q
(r)∗
|Lr|

, j = |Lr|.
(12)

Again considering the Lagrangian for problem (9), it is easy
to see thatu∗ = arg maxu∈logM ∆q∗ ·u, which means that
∆q is nothing else but the (unique) vector of weights, which
results in the optimal ratesv∗, i.e. v∗ = µ(p(∆q)).

B. Application of QBRA algorithm. Fluid Limit

The application of QBRA to solve problem (8) is as
follows. A (small) parameterη > 0 is fixed. Each flowr

source maintains a constant queue lengthQ
(r)
1 = ⌊θ(r)/η⌋,

at the flow source node. (Here⌊·⌋ is the integer part of of a
number.) It can always do that, because the source has infinite
amount of data, and it can simply add a new packet in the

queue after each successful transmission from it. Otherwise,
the QBRA in the network works exactly as defined earlier.

Without loss of generality, we can assume that at time
t = 0, the relations (7) hold (for example, all queues on
each route are0, except the first queue), and so (7) holds for
all t.

We consider thefluid limit asymptotic regime. Namely,
we look at a sequence of system, with parameterη ↓ 0. For
each system we consider the space-time rescaled queueing
processηQ(t/η) in continuous timet ≥ 0, and then consider
the process-level limit of those, asη ↓ 0. The following
fact, proved essentially same way as the analogous result
in [7], roughly speaking says that any limiting process
is concentrated on the family of (continuous) trajectories
q(t), t ≥ 0, called fluid sample paths, and describes
their basic properties. (We omit the proof here - it follows
essentially same argument as that used for analogous result
in [7].)

Proposition 2 (Fluid Limit): The sequence of rescaled
processesηQ(t/η), t ≥ 0, can be constructed on a common
probability space in a way such that, with probability1, the
sequence of realizations has a subsequence converging (uni-
formly on compact sets) to a Lipschitz continuous trajectory
q(t), t ≥ 0, called fluid sample path(FSP). The family
of FSPs satisfies, in particular, the following properties.For
eachr,

θ(r)(t) ≡ q
(r)
1 (t) ≥ q

(r)
2 (t) ≥ . . . ≥ q

(r)
|Lr|

(t) ≥ 0. (13)

For eachr and1 < j ≤ |Lr|,

d

dt
q
(r)
j (t) =

{

v
(r)
j−1(t) − v

(r)
j (t), q

(r)
j > 0,

[v
(r)
j−1(t) − v

(r)
j (t)]+, q

(r)
j = 0,

wherev(t) is such that

v(t) ∈ arg max
z∈M∆q(t) · log z, (14)

with the vector of queue differentials∆q(t) � 0 being
defined analogously to (12).

Note that ordering property (13) is the limit version of
(7), and that the key property (14) follows from the fact that
QBRA uses queue differentials as link weights to set access
probabilities via (5).

We denote byD the set of all possible FSP statesq(t),
i.e. those satisfying inequalities (13), and by∂D the subset
of thoseq ∈ D with at least one zero component∆q

(r)
l = 0.

C. Asymptotic Optimality

Given the properties of optimal primal and dual solutions
to problem (9),u∗ andq∗, respectively, it follows immedi-
ately that the stationary trajectoryq(t) ≡ q∗ satisfies all the
FSP properties described in Proposition 2. Moreover, it is
easy to see (analogously to the way it is done in [2] for a
simpler model) that any stationary trajectoryq(t) ≡ q∗∗ 6∈
∂D, satisfying FSP properties in Proposition 2, must be such
thatq∗∗ = q∗, because thenq∗∗ satisfies KKT conditions for
problem (9). This to some degree motivates the following
main result of this section.



Theorem 1:Every FSP is such thatq(t) → q∗ ast → ∞
and, consequently,v(t) → v∗. The convergence is uniform
on all FSP.

Theorem 1 basically says that, when parameterη > 0
is small, then regardless of the initial state of the queues,
the queues “converge to” and stay close to the values which
result (via QBRA rule for access probability assignment) in
the optimal end-to-end throughput allocation. The key idea
of the proof of Theorem 1 is contained in the following
Lemma 1, which states that essentially (up to some technical
work we will do below) the Lagrangian of the convex
optimization problem (9),

L(q,u) =
∑

r∈R



θ(r)u
(r)
1 −

|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)



 ,

(15)

= ∆q · u, (16)

(where, by convention,q is such thatq(r)
1 = θ(r) for all r)

can serve as a Lyapunov function to prove the convergence.
Lemma 1:For any FSP at any timet such thatq(t) ∈

D \ ∂D, the following holds. The value ofv(t), and then
u(t) = log v(t), is defined by (14) uniquely, and moreover

u(t) = arg max
u∈logM∆q(t) · u

and u(t) ∈ [logM]∗. Consequently,(q(t),u(t)) is a
smooth function of time in a neighborhood oft; by (16)
L(q(t),u(t)) is the value of the convex problem dual to (9)
at pointq(t), and

∑

r∈R

θ(r)u
(r)∗
1 ≤ L(q(t),u(t)) ≤ 0; (17)

functionL(q,u) is smooth in a neighborhood of(q(t),u(t)),
and has zero partial gradient on primal variablesu at
(q(t),u(t)):

∇uL(q(t),u(t)) = 0. (18)

Finally,

d

dt
L(q(t),u(t)) = −

∑

r∈R

|Lr|
∑

j=2

(

v
(r)
j−1(t)

−v
(r)
j (t)

) (

u
(r)
j−1(t) − u

(r)
j (t)

)

(19)

≤0, (20)

and the inequality in (20) is strict unlessq(t) = q∗.
Proof: If q(t) ∈ D \ ∂D, then, by Proposition 1, in

the neighborhood of this point the dependence ofv(t) on
q(t) is given by the (explicit) smooth functionv(p(q)).
Obviously, the dependenceu = log v is smooth as well.
Then, all the properties described in the lemma easily follow,
using in particular the smoothness of the boundary[logM]∗.
Inequality (20) holds because each differencev

(r)
j−1(t) −

v
(r)
j (t) obviously has same sign asu(r)

j−1(t) − u
(r)
j (t); all

such differences cannot be simultaneously equal to0 unless

q(t) = q∗, because otherwise a stationary trajectory “sitting”
at a point different fromq∗ would exist.

In addition to the key Lemma 1, we need some auxiliary
results to prove Theorem 1.

Lemma 2:For any FSP and any timet ≥ 0, there exists
an arbitrarily close tot time s > t, such that∆q(s) ≻ 0,
i.e. q(s) ∈ D \ ∂D.

Proof: Let us call a link-route pair(l, r) such thatl ∈ R
a virtual link. For a given FSP, let us call(l, r) a “zero”
(resp. “non-zero”) virtual link at timet if ∆q

(r)
l = 0 (resp.

> 0). Suppose there are some zero virtual links at timet. (If
not, the lemma statement is trivial.) Since trajectoryq(·) is
continuous, to prove statement of the lemma it will suffice to
show that there exists times > t, arbitrarily close tot, such
that at least one virtual link which was zero att becomes
non-zero ats. Consider two cases.
Case (a): Suppose on one of the routesr, there is a non-zero
virtual link followed by a zero one, that is∆q

(r)
j−1(t) > 0 and

∆q
(r)
j (t) = 0. (This is the situation where a transmission on

thej-th link “kills” a simultaneous transmission on thej−1-
th link.) Then, it is easily seen from (14) thatv

(r)
j (t) = 0,

v
(r)
j−1(t) > 0, and both these functions are continuous in time

at t. Then, by (14),q(r)
j has positive, bounded away from0,

derivative in the interval(t, t + ǫ), with small ǫ > 0. In the
same time interval, also by (14), the derivative ofq

(r)
j+1 is

upper bounded by an arbitrarily smallδ > 0, if we choose
small enoughǫ > 0. (If j = |Lr|, then q

(r)
j+1(t) ≡ 0 by

convention.) These facts mean that∆q
(r)
j (s) > 0 for all

s ∈ (t, t + ǫ). We are done with case (a).
Case (b) = [NOT Case (a)]: At timet, along each router,
there is a (possibly empty) sequence of zero virtual links
at the beginning, followed by the (definitely non-empty)
sequence of non-zero virtual links until the end of the route.
In this case, there is at least one zero virtual link, let it be
the j-th link on router, such that it either shares a link with
a non-zero virtual link, or it interferes with transmissions on
a non-zero virtual link. (The latter observation uses strong
connectivity of the link dependence graph.) Either way,
v
(r)
j (t) = 0 and it is continuous at timet. For the first

non-zero virtual link on this route, saym-th with m > j,
v
(r)
m (t) > 0 and is continuous att. Then, using (14) we easily

see that, in a small interval(t, t + ǫ),

d

ds
[q

(r)
j+1(s) + . . . + q(r)

m (s)] < −C,

for someC > 0 independent ofǫ; and in the same interval
d
ds

q
(r)
j (s) > −δ, whereδ > 0 can be made arbitrarily small

by choosing smallǫ. We conclude that for anys ∈ (t, t+ ǫ),
we must haveq(r)

j (s) > q
(r)
j′ (s) for at least onej′, j + 1 ≤

j′ ≤ m, and therefore one of the virtual links fromj-th to
m − 1-th must be non-zero at times.

Lemma 3:For any FSP,∆q(t) ≻ 0 for all t > 0.
Proof: In view of Lemma 2, it suffices to show that

if ∆q(t) ≻ 0 for t = s > 0, then this holds for allt ≥ s
as well. Suppose not, andτ , s < τ < ∞, is the first time
after s whenq(t) hits set∂D. This means that there exists



a subset of virtual links which simultaneously become zero
at time τ . However, considering the values ofv

(r)
j (t) for

t close toτ , and essentially repeating the argument in the
proof of Lemma 2, we can show that for at least one of
those links,∆q

(r)
j (t) must in fact be increasing for sucht -

a contradiction.
Proof of Theorem 1. According to Lemma 2, for any FSP

at any timet > 0, we are in the conditions of Lemma 1. In
particular, this means that the uniform bound (17) hold. Thus,
to prove the uniform convergenceq(t) → q∗ it remains to
show that the negative derivatived

dt
L(q(t),u(t)), given by

(19), is bounded away from zero as long asq(t) is outside of
anǫ-neighborhood ofq∗. This is obvious if values ofq(t) are
confined to a compact set, not intersecting with∂D. To show
that it is still the case within the entire setD\∂D, it remains
to observe the following. If pointq approaches an arbitrary
point a ∈ ∂D, the derivative d

dt
L at q approaches−∞,

because for at least one virtual link, the correspondingv
(r)
j−1

(see (19)) approaches0 while v
(r)
j is not, or vice versa. (Here,

again, we essentially repeat the argument of Lemma 2.)�

D. Generalization: Systems with Minimum Flow Rate Re-
quirements

In practical systems, a minimum rate lower bound is often
required on the end-to-end throughput to guarantee Quality
of Service of the data transfers. Accordingly, Theorem 1
can be generalized to include such additional constraints.
More precisely, suppose that, additionally, the end-to-end
throughput allocated to each flowr needs to be at least
λ(r) ≥ 0. Formally, the more general optimization problem
(which we will write directly in terms of log-throughputs
u = log v, as in (9)) is

max
u∈logM

∑

r∈R

θ(r)u
(r)
1 ,

subject to u
(r)
j−1 ≤ u

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R,

log λ(r) ≤ u
(r)
1 , r ∈ R. (21)

We will assume that problem (21) is feasible, and moreover
all inequality constraints can be satisfied as strict inequal-
ities. (This will be referred to as thefeasibility condition.)
Then, there exists a unique optimal solutionu∗ such that
(10) holds, and the optimal dual solutiony(r)∗, q

(r)∗
j , j =

2, . . . , |Lr|, r ∈ R, wherey(r)∗ are the duals corresponding
to the minimum throughput constraints. The generalized
version of (11) is:

q
(r)∗
1 ≡ θ(r) + y(r)∗ > q

(r)∗
2 > . . . > q

(r)∗
|Lr|

> 0, r ∈ R,

(22)

∆q∗ ≻ 0 is defined as in (12), and, again,u∗ =
arg maxu∈logM ∆q∗ · u.

Application of QBRA in this case uses a virtual queue
Y (r), maintained by each flowr source node. “Tokens” are
added toY (r) at the average rateλ(r) (tokens/slot); one token
is removed from it (if there is any) in every slot when a
packet of flow r is successfully transmitted (from source

node). As opposed to the previous situation, source node uses
not the constant value⌊θ(r)/η⌋ as the queue lengthQ(r)

1 , but
rather the variableQ(r)

1 (t) = ⌊θ(r)/η⌋+Y (r)(t). Otherwise,
the QBRA in the network works exactly same way as before.

An FSP now contains additional componenty(r)(t) for
eachr, which is a limit ofηY (t/η), and it satisfies condition

d

dt
y(r)(t) =

{

λ(r) − v
(r)
1 (t), q

(r)
j > 0,

[λ(r) − v
(r)
1 (t)]+, q

(r)
j = 0,

in addition to (14). If we denote, by convention,q
(r)
1 (t) ≡

θ(r) + y(r)(t), then the key condition (14) determiningv(t)
still holds.

The generalization of Theorem 1 is the following.
Theorem 2:Assume the feasibility condition. Then, uni-

formly on all FSP with initial statesq(0) within arbitrary
fixed compact set,q(t) → q∗ as t → ∞ and, consequently,
v(t) → v∗.

Theorem 2 both generalizes and much strengthens a result
of [2], which applies to QBRA in a system with one-hop
routes and states only thatif convergenceq(t) → q∗∗ holds
thenq∗∗ = q∗.

Proof of Theorem 2 is carried out analogously to that of
Theorem 1. We do not provide details here, just the following
key points. The Lagrangian in this case, which serves as a
Lyapunov function in the proof, is:

L(q,u) =
∑

r∈R

θ(r)u
(r)
1 −

|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)

−
∑

r∈R

y(r)
(

log λ(r) − u
(r)
1

)

= ∆q · u −
∑

r∈R

y(r) log λ(r), (23)

where, by convention, for those flowsr with λ(r) = 0, we
have y(r) ≡ 0 and y(r) log λ(r) = 0. For each FSP, the
bounds (17) generalize as

∑

r∈R

θ(r)u
(r)∗
1 ≤ L(q(t),u(t))

≤ L(q(0),u(0)) ≤ −
∑

r∈R

y(r)(0) log λ(r). (24)

As in the proof of Theorem 1, an important intermediate
step is showing that∆q(t) ≻ 0 for all t > 0 - this is done
analogously to the arguments in Lemmas 2 and 3.

VI. STOCHASTIC STABILITY OF A NETWORK WITH

EXOGENOUSARRIVALS

We now turn to a version of our model, where flow sources
do not have an infinite supply of data to send, but rather
there is a random process of exogenous arrivals to a the first
queueQ

(r)
1 at the flow source node. For simplicity let us

assume that each such arrival processA(r)(t), t = 1, 2, . . .
is i.i.d. with the average rateλ(r) = E[A(r)(t)] > 0,
and all arrival processes are independent. (The i.i.d. and



independence assumptions can be greatly relaxed. Also, it
is not an accident that here we use the same symbolλ(r) for
the input rate as we use used for the minimum rate bound
in Section V-D; the reason will become clear shortly.)

Consider such a network under QBRA random access
scheme. The question is under which conditions the queueing
processQ(t), t = 0, 1, 2, . . . , in the network is stable. If we
assume (for further simplicity) thatP{A(r)(t) = 0} > 0
for eachr, then it is clear thatQ(t) is a countable state
space, irreducible, aperiodic Markov chain. By stability we
understand its ergodicity.

Note that, without loss of generality we can assume that
the “queueing order” relations (7) hold along each route at
all times.

The main result of this section is the following
Theorem 3:Suppose input ratesλ(r) > 0, r ∈ R, satisfy

the feasibility condition, as given in Section V-D. Then the
network queueing process is stable.

This theorem generalizes to the multi-hop setting one of
the stability results in [7], which apply to the single-hop
system. (It should be noted that our proof, outlined below,
is substantially different from that in [7], even though both
use fluid limits.)

We will use thefluid limit techniqueto establish Theo-
rem 3. (See [7] for an application of the technique to a
random-access system, and references therein to a general
theory.) With this technique, we look at the fluid limit,
defined analogously to the way described in Section V-B.
(It is important to emphasize that the QBRA algorithm in
the network doesnot use parameterη in any way. This is
true for the use of QBRA in Section V as well, but there
traffic sources use parameterη to decide when to send new
packets. In this section, parameterη is only used to define
the fluid limit asymptotic regime.)

In our case, the FSPs turn out to satisfy the same properties
as those for the FSPs in Section V-D, but specialized to the
caseθ(r) = 0 for all r. (This is not an accident - it is easy
to observe that if in Section V-D we were to assume that all
θ(r) = 0, then the behavior of each virtual queueY (r) there
would be analogous to the behavior of actual queueQ

(r)
1 in

this section setting.)
Then, according to fluid limit technique, to prove Theo-

rem 3 it suffices to prove the following
Theorem 4:There existsT > 0 such that, uniformly on

all FSPs with‖q(0)‖ = 1, we haveq(t) = 0 for all t ≥ T .
Proof of Theorem 4 is, again, analogous to the proof of

the convergence results in Theorems 1 and 2. We omit full
details, but the key points are as follows. Since allθ(r) = 0,
and consequentlyy(r)(t) ≡ q

(r)
1 (t), the Lagrangian in (23)

specializes to

L(q,u) = −
|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)

−
∑

r∈R

q
(r)
1

(

log λ(r) − u
(r)
1

)
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Fig. 1. A 6-node ad-hoc network

= ∆q · u −
∑

r∈R

q
(r)
1 log λ(r). (25)

This Lagrangian is used as Lyapunov function, and for each
FSP we have the bounds

0 ≤ L(q(t),u(t)) ≤ −
∑

r∈R

q
(r)
1 (0) log λ(r). (26)

In particular, if ‖q(0)‖ = 1, L(q(t),u(t)) ≤ −∑

r log λ(r).
Using arguments analogous to those in Lemmas 2 and 3,

we can show that for allt > 0 a subset of components of
∆q(t) cannot hit0, unless all components hit0 simultane-
ously; this implies that∆q(t) ≻ 0 for all 0 < t < t′, where
t′ is the first, possibly finite time when∆q(t) = 0, and then
q(t) = 0. For all 0 < t < t′, we have, analogously to (19),

d

dt
L(q(t),u(t))

= −
∑

r∈R

(

λ(r) − v
(r)
1 (t)

) (

log λ(r) − u
(r)
1 (t)

)

−
∑

r∈R

|Lr|
∑

j=2

(

v
(r)
j−1(t) − v

(r)
j (t)

) (

u
(r)
j−1(t) − u

(r)
j (t)

)

.(27)

Finally, we observe that the RHS of (27) not only is non-
positive, but in fact bounded away from0 by a negative
constant−ǫ, uniformly on all possibleu ∈ [logM]∗. Thus,
L(q(t),u(t)), and thenq(t), must hit0 within a uniformly
bounded time. The fact thatq(t) cannot leave0 after first
hitting it easily follows.

VII. N UMERICAL EXAMPLE

In this section we investigate performance of QBRA via
a numerical example. We consider a simple 6-node, 3-route
ad hoc network as shown in Figure 1, which has the same
network topology as the second example in [9]. The nodes
are labelled from1 to 6, and the links are labelled from
1 to 9 and the route-link pair as in the formatl(r, j), i.e.
5(3, 3) denotes the link5 in L which is the 3rd link of
route3. The interference model is that each node interferes
with the reception at its 1-hop neighbors; for example,N2 =
{1, 2, 3}, N3 = {2, 3, 4, 5, 6}.

The behavior of QBRA for the optimal end-to-end flow
throughput allocation, with and without minimum throughput
constraints is as predicted by Theorems 1 and 2 in Section V.
We do not present those simulations to save space. Instead
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Fig. 2. Comparison of the QBRA scheme and the optimization-based
scheme on queueing performance:λ(1)

= λ(2)
= λ(3).

we show simulation results for the system with exogenous
arrivals, comparing queueing performance of QBRA with
performance of optimization based algorithms (let’s referto
them as OPT), such as that in [9].

First, we want to emphasize that, even when QBRA
and OPT are applied to solve the same problem, such as
(9), there are significant differences between them: QBRA
updates network variables based on queue-lengths, while
OPT are oblivious of the real queues; QBRA can be imple-
mented by nodes exchanging queueing information within
local neighborhoods, while OPT require end-to-end message
passing along each flow route. When we talk about providing
queueing stability in a system with exogenous arrivals, the
difference is even more pronounced: OPT would require
estimation of the flow input rates to be used in the appropriate

optimization problem to calculate link access probabilities
resulting in sufficient link throughputs along each route;
QBRA need not know or estimate input rates and ensures
stability “automatically” (when feasible).

We simulate a system with exogenous (i.i.d. Poisson)
arrivals with equal rates for all flows,λ(1) = λ(2) = λ(3) and
scale them up to observe the changes of the queue lengths.
The QBRA works exactly as specified in Section VI. An
OPT algorithm that we simulate works as follows: we a
priori “pre-calculate” link access probabilities so that the
resulting end-to-end ratesx(r) provided to the flows are
maximal, subject tox(1) = x(2) = x(3). (In other words,
we pretend that an optimization based algorithm is run a
priori to calculate appropriate access probabilities.) OPT is
oblivious of the queue lengths, except if there is no packets
at a link, the link doesnot attempt transmission. We study
the total average queue length of each flowr (which by
Little law is proportional to the end-to-end queueing delay):
Q(r) =

∑

l Q
(r)
l . Figure 2 comparesQ(1), Q(2), Q(3) under

the QBRA and OPT. It shows that the average queues under
QBRA are significantly lower than the optimization-based
algorithm. An intuitive explanation of this is that QBRA
“better adapts” to the current queue length in the network.
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