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Abstract

We consider a multiclass queueing network, whose underlying stochastic process
is a countable, continuous time Markov chain. Stability of the network is understood
as ergodicity of this Markov chain. The message class determines a message route
through the network and the mean message service time in each node on its route.
Each node may have its own queueing discipline within a wide class, including
FCFS, LCFS, Priority and Processor Sharing.

We will show that the sequence of scaled (in space and time) underlying stochas-
tic processes converges to a 
uid process with sample paths de�ned as �xed points
of a special operator. This convergence together with continuity and similarity
properties of the family of sample paths of the 
uid process allows us to prove the
following result.

If each sample path of the 
uid process with non-zero initial state is such that
the \amount of 
uid" in the network falls below its initial value at least once, then
the network is stable.

Key words and phrases: Multiclass queueing network, stability, 
uid limit.
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1. Introduction.

We consider an open queueing network with several customer classes. The
class of a customer determines his route through the network and his service time
in each node on the route. Each node of the network is a single-server system with
its own queueing iscipline. By stability of a multiclass queueing network we will
mean ergodicity of the underlying stochastic process.

It has been shown recently that the condition that the load �j of each network
node j is less than 1

�j < 1 (1.1)

is not suÆcient for network stability. Examples of unstable deterministic networks
were found by Kumar and Seidman [9], and Lu and Kumar [10]. A similar example
of an unstable stochastic network was found by Rybko and Stolyar [14]. Bramson
[1,2] and Seidman [15] derived examples of unstable stochastic networks with FCFS
queueing disciplines in the nodes. The instability problem has also been addressed
in Whitt [17].

The following approach has been proposed in [14]. A suÆcient ergodicity con-
dition for continuous time countable Markov chains is derived. Similar and more
general ergodicity criteria for discrete time Markov chains were obtained by Maly-
shev and Menshikov [11]. This condition allows us to reduce the stability problem
for the original stochastic network to checking property (1.6) (see below) for the
deterministic (
uid) process, obtained from the original stochastic process by space
and time scaling.

Not quite formally yet, let q(t) denote the non-negative vector specifying the
number of customers of each type in each node of the network at time t. Let jjq(t)jj
denote the sum of the components of the vector q(t).

Consider the sequence of scaled processes

qn(t) �
1

n
q(nt); n = 1; 2; : : : (1.2)

qn(0)! q(0); jjq(0)jj = 1; (1.3)

where q(0) is a �xed vector. It has been shown in [14] that if the underlying
stochastic process describing the network behaviour is a continuous time countable
Markov chain, then the following condition is suÆcient for network stability.

There exists a constant T > 0, such that for any sequence of scaled processes
qn(t); n!1, satisfying conditions (1.2) and (1.3),

Ejjqn(t)jj ! 0; 8t � T: (1.4)

The suÆcient condition (1.4) establishes a close connection between network
stability and properties of the corresponding 
uid process. Indeed, it is well known
that a linear space-time scaling, i.e. 1

nq(nt)-type scaling, \usually" leads to a de-
terministic (
uid) process in the limit. In other words, it is natural to expect that
in some sense the convergence

qn(t)! q(t) (1.5)

takes place, where q(t) is some 
uid process. This leads to the following property
of the 
uid process, which corresponds to property (1.4) of the sequence of scaled
processes.

There exists constant T > 0 such that for any 
uid processes q(t) with jjq(0)jj =
1

jjq(t)jj = 0; 8t � T: (1.6)
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The paper [14] formally de�nes the 
uid process for networks with FCFS and
priority disciplines in the nodes. Property (1.6) is proven for a two node network
with FCFS queueing discipline in each node. Subsequently using properties of the

uid process q(t), condition (1.4) and therefore stability of the network are veri�ed.

Remark 1.1 For many networks it is easy to see that for some constant c < 0

d

dt
jjq(t)jj < c < 0; (1.7)

if jjq(t)jj > 0. This obviously implies property (1.6). The two node FCFS network
considered in [14], is an example of a network not satisfying condition (1.7) but
nevertheless satisfying condition (1.6).

In this paper we consider multiclass networks, whose underlying stochastic
process is a countable continuous time Markov chain. The queueing disciplines in
the nodes may belong to a wide class including in particular FCFS, LCFS, Priority
and Processor sharing. For any set of queueing disciplines in the nodes we will give
a formal constructive de�nition of the family of sample paths of the corresponding

uid process. A general similarity property of the family of 
uid process sample
paths easily follows from this de�nition. Using this similarity property, it is shown
in Theorem 6.1 that condition 1.6) is equivalent to the following relaxed condition.

For any 
uid process q(t) with jjq(0)jj = 1,

inf
t�0

jjq(t)jj < 1: (1.8)

We will then show in Theorem 7.1 that the convergence (1.5) to a 
uid process
indeed takes place. This proves (Theorem 7.2) that property (1.6) (or equivalently
property (1.8)) is suÆcient for network stability. (Convergence of the type (1.5) for
a multiclass queueing network was probably �rst derived by Chen and Mandelbaum
[3]. See also [4].)

This paper contains the results presented in the talk [16]. Theorem 7.1 here is
a little bit stronger: convergence is proved on the in�nite time interval. The talk
[16] was accepted for presentation, when Dai submitted paper [5] for publication. In
his excellent work, the suÆciency of the stability condition (1.4) is generalised for
multiclass queueing networks with arbitrary distributions of interarrival and service
times, and \non-preemptive-within-each-customer-type" queueing disciplines in the
nodes. Stability in [5] is understood as positive Harris recurrence of the underlying
Markov process. The convergence (1.5) and therefore the suÆciency of condition
(1.6) for network stability are also proven. Our convergence result Theorem 7.1 is
less general in terms of the distributions of the interarrival and service times, but
is somewhat more general with respect to the queueing disciplines allowed in the
network nodes.

Remark 1.2 It is not hard to see that our de�nition of the family of 
uid
process sample paths and its properties (including Theorem 6.1) can be easily ex-
tended to the framework of [5]. Also, all results can be extended to cover a more
general customer routing rule considered in [5].

We do not attempt to present a complete review of recent work on the stability
of multiclass networks. Very good reviews can be found in [6], and a more recent
one in [18].

The goal of our paper is
1) to prove that condition (1.6) is suÆcient for network stability in a general

framework with respect to queueing disciplines and
2) to relax condition (1.6) to the form (1.8), which makes it natural to expect that

(1.6) is also necessary (or at least \almost" necessary) for network stability.
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The rest of this paper is as follows. In section 2 we describe the network under
consideration. In section 3 we introduce the notational conventions that are used
throughout the paper. In section 4 the underlying stochastic process and the corre-
sponding family of scaled processes are de�ned. In section 5 we formally de�ne the
family of sample paths of a 
uid process. Section 6 discusses a similarity property
of this family of 
uid processes. This property allows us to prove the equivalence
of conditions (1.6) and (1.8) in Theorem 6.1. In section 7 we prove convergence
to a 
uid process (Theorem 7.1), which implies suÆciency of condition (1.6), and
consequently of the equivalent condition (1.8), for network stability (Theorem 7.2).

2. Model Description.

We consider a queueing network consisting of J nodes. The set of nodes we will
also denote by J = f1; 2; : : : ; Jg. There are I di�erent customer classes. The set
of customer classes will be denoted by I = f1; 2; : : : ; Ig. Throughout the paper we
assume that the arrival stream of class i 2 I customers to the network is a Poisson
process with intensity �i, although this condition can be relaxed (see Remark 2.1
below). Each class i customer has his own route through the network,

|̂(i; 1); : : : ; |̂(i; k); : : : ; |̂(i;K(i));

where K(i) is the length of the class i customer route and |̂(i; k) 2 J is the node
in which a class i customer will be served in the k-th stage of his route. After
completing service in the last stage of his route, a customer leaves the network. A
class i customer in k-th stage of his route will be called a type (i; k) customer, or
just an (i; k)-customer.

Service times for all customers of all types are independent. The service time
for type (i; k)-customers is exponential with mean vik > 0. (This condition can be
relaxed as well, see Remark 2.1 below.)

Each network node is a single-server queue with its own queueing discipline.
The queueing discipline in each node is work-conserving, and satis�es the following
condition.

(QD1). The service rate assigned to each customer that is present in the node at
time t, may depend only on the number of customers of the di�erent types in the
node and the time order in which they arrived at the node. (The sum of the service
rates is 1 if the node is non-empty and 0 otherwise.)

We will denote by

G = f(i; k) j k = 1; 2; : : : ;K(i); i 2 Ig

the set of all customer types, and by

Gj = f(i; k) 2 G j |̂(i; k) = jg

the set of customer types that visit node j 2 J .
We will assume that the load of each network node is less than 1, i.e.

�j �
X

(i;k)2Gj

�ivik < 1; 8j 2 J: (2.1)

It is clear that the underlying stochastic process describing the behaviour of
the network is a continuous time countable Markov chain. We will say that the
network is stable if the underlying Markov chain is ergodic.
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Remark 2.1 All results of the paper hold as well if each customer class i 2 I
has a more general interarrival time distribution. It is suÆcient that it is a phase
type distribution (i.e. has a rational Laplace transform) and all residual times are
uniformly bounded by a distribution with �nite mean. We can also allow such
distributions for the service times, if the queueing disciplines in the nodes satisfy
condition (QD2) below in addition to condition (QD1).

(QD2) Non-preemptiveness within each customer type. Once serving an
(i; k)-customer has been started, no other (i; k)-customer can be served before the
service of the customer in service has been completed. In other words, service of
any customer can not be preempted by another customer of the same type.

In the nodes with queueing disciplines not satisfying condition (QD2) (exam-
ples of such disciplines are preemptive-resume LCFS and Processor Sharing), it is
essential that the the service time is exponentially distributed.

3. Notational Conventions.

Throughout the paper we will use the following notational conventions. The
set of real numbers is denoted by R. The norm of a function h = h(�) with the
domain of de�nition � = f�g is de�ned by

jjhjj = sup
�2�

jh(�)j:

For a �nite set of functions, the norm jj � jj means the sum of the norms of the
components.

If it is not stated otherwise, convergence of functions (or sets of functions)
h ! h� (or limh = h�) means point-wise convergence everywhere in their domain
of de�nition.

The scaling operator. The scaling operator ��; � > 0, maps a function
h = h(�) with domain of de�nition � = f�g to the function

(��h)(�) =
1

�
h(��)

with domain of de�nition

��� = f
1

�
� j � 2 �g:

(The case of a vector argument � is clearly included.)
For any set of functions H = fh
 = h
(�); 
 2 �g, in particular vector func-

tions,
��H = f��h
 ; 
 2 �g:

Two functions (or sets of functions) h� and h are called similar if h� = ��h for
some � > 0.

The truncation operator. The truncation operator �T ; T 2 R, maps
a function h = h(�) with domain of de�nition � = f�g to the same function
(�Th)(�) = h(�) with the truncated domain of de�nition

�T� = �
\
f� � Tg:

In the case of a vector argument � this truncation is applied to the domain of
de�nition of each component function.

The set of functions H = fh
 ; 
 2 �g is mapped to the set of functions

�TH = f�Th
 j 
 2 �g:

4. The Underlying Stochastic Process. Family of Scaled Processes.
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Consider the process

q(t) = fqik(t); (i; k) 2 Gg; t � 0;

where qik(t) is the number of (i; k)-customers in node j = |̂(i; k) at time t. Except
for some special cases, q(t) is not a Markov process.

Consider the sequence of scaled processes

qn(t) =
1

n
q(nt); t � 0; n = 1; 2; : : :

or, using the de�nition of the scaling operator,

qn = �nq:

The following result has been proven in [14].

Lemma 4.1. Suppose there exists a constant T > 0 such that

lim
n!1

Ejjqn(T )jj = 0 (4.1)

for an arbitrary sequence of scaled processes qn(t); jjqn(0)jj = 1; n = 1; 2; : : :.
Then the queueing network under consideration is stable. The sequence jjqn(T )jj is
uniformly integrable, and therefore condition (4.1) is equivalent to convergence in
probability:

jjqn(T )jj ! 0: (4.2)

Following [14], we will consider the process describing the network behaviour
in more detail.

Let fik(t); t � 0, be the total number of (i; k)-customers that arrived at node
j = |̂(i; k) at or before time t, including the customers present in the node at initial
time 0. In order to describe the initial tate of the network properly, we will extend
the functions fik(t) to the domain t < 0. If n = jjq(0)jj is the initial number of
customers in the network, we will assume that these customers subsequently arrived
at the negative time instants

�1 < tn < tn�1 < : : : < t1 < 0:

The order of arrival of customers of di�erent types corresponds to the order in which
they are present in the queues at initial time 0. Now each function fik(t) is well
de�ned for all t 2 R. Note that for some �xed T0 < 0,

fik(t) = 0; 8t � T0:

Let wik(t); t 2 R, denote the sum of service times of all (i; k)-customers that arrived
at node j = |̂(i; k) before or at time t.

Let f̂ik(t1; t2); t1; t2 2 R, denote the number of those (i; k)-customers that
arrived at node j = |̂(i; k) before or at time t1 and departed before or at time t2.

Obvious properties of the functions f̂ik(t1; t2) are

f̂ik(t1; t2) = f̂ik(t2; t2); t1 � t2 (4.3)

f̂ik(t1; t2) = 0; t2 � 0: (4.4)

Let ŵik(t1; t2); t1; t2 2 R, denote the total time till time t2 spent at node j = |̂(i; k)
on serving the (i; k)-customers that arrived before or at time t1. The functions
ŵik(t1; t2) satisfy properties analogous to (4.3) and (4.4). Finally, let uik(y); y � 0,
be the sum of the service times of the �rst [y] (i; k)-customers that arrived at node
j = |̂(i; k). Here [y] denotes the integer part of y.
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The underlying stochastic process then is

s = (f; f̂ ; w; ŵ; u);

where
f = ffik(t); t 2 R; (i; k) 2 Gg

and all other components are de�ned similarly. We will also use the notation f =
ffj ; j 2 Jg, fj = ffik; (i; k) 2 Gjg, and so on; and we write x = (f; f̂).

The sample paths of the process s, which we also will denote by s, belong to
the space

S = F � F̂ �W � Ŵ � U;

where
F = �j2JFj ; Fj = �(i;k)2Gj

Fik

Fik = ffik(t); t 2 Rg

F̂ = �j2J F̂j ; F̂j = �(i;k)2Gj
F̂ik

F̂ik = ff̂ik(t1; t2); t1; t2 2 Rg

U = �j2JUj ; Uj = �(i;k)2Gj
Uik

Uik = fuik(t); t � 0g:

The spaces W and Ŵ are de�ned analogously to the spaces F and F̂ respec-
tively.

Each component space Fik consists of functions such that for some T0 < 0

fik(t) = 0; t � T0;

and fik(t); t 2 [T0;1), is an element of the Skorohod space D[T0;1).
The component spaces Wik and Uik are de�ned similarly to Fik .

Each space F̂ik consists of the functions f̂ik(t1; t2) that satisfy the following
conditions for some T0 < 0.
1) f̂ik(t1; t2) = 0 if t1 � T0 or t2 � T0.

2) For any �xed t2 � T0, the function f̂ik(t1; t2); t1 � T0, belongs to the Skorohod
space D[T0;1).

3) The function ((f̂ik(t1; t2); t1 � T0); t2 � T0) as a function of t2 is an element of
the D[T0;1)-valued D[T0;1) Skorohod space. Each component space Ŵik is
de�ned similarly to F̂ik . The space X is de�ned as a product of F and F̂ only,
X = F � F̂ ; its elements will be denoted by x = (f; f̂).

The sample paths of the process s satisfy the following additional conditions.
a) The number of events (customer arrivals and departures) that occur on any

�nite time interval is �nite. Clearly, the sample paths satisfy this condition
with probability 1, but we can assume that the condition is true for all sample
paths.

b) For each j 2 J

(wj ; f̂j ; ŵj) = Bj(fj ; uj); (4.5)

where Bj is a deterministic operator, speci�ed by the queueing discipline in
node j.

c) For each i 2 I and k = 2; 3; : : : ;K(i),

fik(t) = fik(0) + f̂i;k�1(t; t); t � 0: (4.6)
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For any constant c > 0 we de�ne a corresponding scaled process

sc = (fc; f̂c; wc; ŵc; uc) � �cs:

Note that s1 � s.

Obviously, the scaled process qc = �cq is a projection of the process sc. In
the sequel, we will use the superscript c in our notation for the scaled processes sc,
including the original process s1, and for projections of the process sc.

The sample paths of any process sc, c > 0, also belong to the space S; their
properties are induced by the properties of the sample paths of the process s, and
in particular they satisfy conditions (4.5) and (4.6):

(wc
j ; f̂

c
j ; ŵ

c
j) = Bj(f

c
j ; u

c
j); j 2 J; (4.7)

where by de�nition

Bj(f
c
j ; u

c
j) � �cBj(fj ; uj)

and

fcik(t) = fcik(0) + f̂ci;k�1(t; t); t � 0; i 2 I; k = 2; 3; : : : ;K(i): (4.8)

Let Sc � S; c > 0, be the set of all possible sample paths of the process sc.
Similarly, for example, F c � F , F c

j � Fj and F c
ik � Fik are the sets of possible

sample paths of fc, fcj and fcik respectively.

The set of functions

fc;(0) � �0f
c = ffcik(t); t � 0g

will be called the initial state of the process sc.

Let

L �
X
I

�i +
X
G

v�1ik :

Informally, L is an upper bound for the mean intensity at which events (customer
arrivals and departures from any node) can occur in the network.

Consider the set of non-negative, non-decreasing, continuous functions

f (0) = ffik(t); t � 0g (4.9)

satisfying the Lipschitz condition with constant L as well as the condition

fik(aT0) = 0; 8(i; k) 2 G; (4.10)

with

jjf (0)jj = a � 0 (4.11)

and T0 � �L�1 < 0.

The following Lemma is a corollary of Lemma 4.1.
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Lemma 4.2. Suppose there exists a constant T > 0 such that for any constant
a > 0, any set of functions f (0) speci�ed above by (4.9)-(4.11) and any sequence of
scaled processes

sc; c = cn !1; n!1;

with
fc;(0) ! f (0);

such that the following condition holds

Ejjqc(aT )jj ! 0:

(In this case it is equivalent to convergence of jjqc(aT )jj to 0 in probability). Then
the stochastic network under consideration is stable.

Proof: Consider a sequence of scaled processes sn; n!1, with jjqn(0)jj = 1. We
assign arrival times to the customers present in the system at time 0 in the following
way. If n is the number of customers at time 0 in the original (non-scaled) process,
then we assume that their arrival times were

nT0; (n� 1)T0; : : : ; T0:

The sequence sn has a subsequence sl; l!1; flg � fng satisfying the conditions
of the Lemma with a = 1. Application of Lemma 4.1 completes the proof.

It is well known, that the sequence of scaled processes described in Lemma 4.2
\should" generally speaking converge to a deterministic (
uid) process. But in the
case of multiclass queueing networks we cannot expect that the limiting process will
always be \truly deterministic", i.e. concentrated on a unique sample path, see for
example the network with priority queueing discipline described in [14]. In Theorem
7.1 we will show that the sequence of scaled processes sc; c!1, converges weakly
to a (
uid) process with sample paths de�ned as �xed points of a special operator
A. Informally speaking, this operator A is obtained by the limiting transition in
equations (4.7) and (4.8), as c!1.

The following simple Lemma explains the de�nition of the operator A and the

uid process sample paths given in the next section. It is also an important part of
the proof of the convergence result.

Lemma 4.3 (Asymptotic Lipschitz properties). The sequence of scaled pro-
cesses sc; c!1, de�ned in Lemma 4.2 satis�es the following conditions.

For any (i; k) 2 G; t; t1 < t2, and any � > 0

lim
c!1

Pffcik(t2)� fcik(t1) � L(t2 � t1) + �g = 1 (4.12)

lim
c!1

Pfjvikf
c
ik(t)� wc

ik(t)j � �g = 1 (4.13)

lim
c!1

Pff̂cik(t2; t2)� f̂cik(t1; t1) � L(t2 � t1) + �g = 1 (4.14)

lim
c!1

Pfjvikf̂
c
ik(t1; t2)� ŵc

ik(t1; t2)j � �g = 1: (4.15)

In addition, for any i 2 I , any t � 0 and any � > 0

lim
c!1

Pfjfci1(t)� fci1(0)� �itj � �g = 1: (4.16)
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The proof of this Lemma follows directly from the law of large numbers. Note
that conditions (4.12), (4.13), and (4.16) hold for arbitrary service and interarrival
time distributions such that all residual time distributions are bounded by a distri-
bution with �nite mean value. Conditions (4.14) and (4.15) hold under these more
general assumptions, if the queueing disciplines in the corresponding nodes |̂(i; k)
satisfy condition (QD2) (see section 2). Only if the queueing disciplines in some
nodes do not satisfy condition (QD2), the exponential distribution of the service
times in those nodes is essential.

5. Sample paths of a 
uid process.

For each (i; k) 2 G denote by Fik;(L) � Fik the subset of Fik consisting of the
functions fik(t) satisfying the condition that fik(t) is non-negative, non-decreasing,
and Lipschitz continuous with constant L. Furthermore, for each (i; k) 2 G denote

by F̂ik;(L) � F̂ik the subset of F̂ik consisting of the functions f̂ik(t1; t2) satisfying
the following conditions:
1) f̂ik(t1; t2) is a non-negative function, which is non-decreasing, continuous and

Lipschitz with constant L with respect to each argument;
2) f̂ik(t; t) as a function of t is Lipschitz with constant L;

3) f̂ik(0; 0) = 0;

4) f̂ik(t1; t2) = f̂ik(t2; t2) if t1 � t2.

The subsets Wik;(L) � Wik and Ŵik;(L) � Ŵik are de�ned similarly to Fik;(L)
and F̂ik;(L) respectively except for the Lipschitz constant, which should be chosen
equal to vikL instead of L.

Finally, for each (i; k) 2 G the subset Uik;(L) � Uik by de�nition contains
exactly one function

�uik(y) = viky; y � 0:

We will also use the notation

Fj;(L) = �Gj
Fik;(L); j 2 J

F(L) = �JFj;(L)

and so on. De�ne the subsets

S(L) = F(L) �W(L) � F̂(L) � Ŵ(L) � U(L) � S

and
X(L) = F(L) � F̂(L) � X:

De�ne the operator Aj mapping elements of Fj;(L) into subsets f F̂j;(L) in the

following way. Fix an element (sample path) fj 2 Fj;(L). Then f̂j 2 F̂j;(L) is an
element of Aj(fj) if and only if there exists a sequence c = cn !1 and sequences
(of sample paths)

fcj 2 F
c
j ; ucj 2 U

c
j ; c!1;

satisfying the conditions
fcj ! fj (5.1)

ucj ! �uj � �Gj
�uik; (5.2)

such that
f̂cj ! f̂j (5.3)
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ŵc
j ! fvikf̂ik; (i; k) 2 Gjg; (5.4)

where
(wc

j ; f̂
c
j ; ŵ

c
j) = Bj(f

c
j ; u

c
j); j 2 J: (5.5)

Bj(�) is a deterministic operator (see (4.7)) and convergence is understood as con-
vergence everywhere. In this case convergence everywhere is equivalent to uniform
convergence on compact sets, because all functions are monotonic and the limiting
functions are continuous.

Remark 5.1 A wide class of queueing disciplines (including FCFS, Priority
disciplines, Head-of-the-Line Processor Sharing) has the following property.

(QD3) Uniqueness property. For any fj 2 Fj;(L) there is a unique f̂j = Aj(fj)
such that convergences (5.3) and (5.4) take place for any sequences fcj and ucj ,
c!1, satisfying (5.1) and (5.2).

Remark 5.2 The de�nition of the operator Aj implies its explicit expression in
many cases, when the queueing discipline in node j satis�es the uniqueness condition
(QD3). (For example, explicit expressions for the operator Aj for the FCFS and
Priority disciplines were considered and used in [14].) In other cases, it still allows
us to get properties of the elements of the set Aj(fj).

Lemma 5.1 (Continuity). The operator Aj is continuous in the following sense.
If

gl ! g; ĝl ! ĝ; l = 1; 2; : : : ;

where g; gl 2 Fj;(L); ĝl 2 Aj(gl), then

ĝ 2 Aj(g):

The operator A mapping elements of X(L) into subsets of X(L) is de�ned as

follows. Fix an element (sample path) x = (f; f̂) 2 X(L). Then x� = (f�; f̂�) 2
A(x) if and only if it satis�es the following conditions:

f̂�j 2 Aj(fj); 8j 2 J

f�ik(t) =

�
fik(0) + �it; t � 0 if k = 1

fik(0) + f̂�i;k�1(t; t); t � 0 if k > 1.

Note that the operator A does not change the initial state f (0) = �0f = �0f
�.

The continuity of the operators Aj obtained in Lemma 5.1 implies continuity
of the operator A.

Lemma 5.2 (Continuity). The operator A is continuous in the following sense.
If

xl ! x; yl ! y; l = 1; 2; : : : ;

where x; y; xl 2 X(L), yl 2 Axl � X(L), then

y 2 Ax:

Let �X � X(L), be the set of �xed points of the operator A, i.e.

�X = fx 2 X(L) j x 2 Axg:

Each element x of the set �X will be called a sample path of the 
uid process or just
a 
uid sample path. Denote by

�X(f (0)) = fx 2 �X j �0f = f (0)g

the set of 
uid sample paths with �xed initial state f (0).

11



Remark 5.3 It should be noted that even if the queueing discipline in each
node j satis�es the uniqueness property (QD3) (i.e. each operator Aj is not mul-
tivalued), uniqueness of a 
uid sample path is not guaranteed for all initial states.
Thus, the dynamics of a 
uid system is quite complicated even in the case of \well-
behaved" queueing disciplines in nodes and a relatively simple (\output-input"
type) interaction between the nodes. For a treatment of the network dynamics
in the case of a more general interaction between the nodes see [12].

The q-projection of a 
uid sample path x,

q(t) = fqik(t) � fik(t)� f̂ik(t; t); (i; k) 2 Gg

describes the \amount of 
uid" of each type in all network nodes at any time t � 0.
Therefore, the norm jjq(t)jj can be interpreted as the total amount of 
uid in the
network at time t.

The continuity of the operator A (Lemma 5.2) and the fact that �X � X(L)

imply the following properties of the family of 
uid sample paths.

Lemma 5.3.
1) The set �X is a closed set in X(L).

2) For any �xed initial state f (0) the set �X(f (0)) is compact in X(L).
3) For any constant a > 0, the set

fx 2 �X j jjf (0)jj = a; fik(aT0) = 0; (i; k) 2 Gg

is compact in X(L).

6. Similarity.

Similarity is an inherent property of the family of 
uid sample paths. It is
implied by the de�nition of a 
uid sample path as the limit of a sequence of sample
paths of scaled processes.

Lemma 6.1 (Similarity). The family �X of the 
uid sample paths is invariant
with respect to the scaling operator ��. Namely, if x 2 �X then

��x 2 �X; 8� > 0: (6.1)

In particular, for any initial state f (0)

�X(��f
(0)) = �� �X(f (0)) 8� > 0:

Proof: For any j 2 J , any fj 2 Fj;(L), and any � > 0,

Aj(��fj) = ��Aj(fj): (6.2)

Indeed, if conditions (5.1)-(5.5) from the de�nition of the operator Aj hold, then

��f
c
j ! ��fj

��u
c
j ! ���uj � �uj

��f̂
c
j ! ��f̂j

��ŵ
c
j ! fvik��f̂ik; (i; k) 2 Gjg

(��w
c
j ; ��f̂

c
j ; ��ŵ

c
j ) = Bj(��f

c
j ; ��u

c
j):

But ��f
c
j 2 F

�c
j ; ��f̂

c
j 2 F̂

�c
j ; etc. This proves equation (6.2).

Equation (6.2) implies that for any x 2 �X , and any � > 0,

A(��x) = ��Ax:

This proves the Lemma.
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Obviously, a 
uid sample path x contains information on the contents of the
queues in all network nodes at any time t. We need to de�ne the state of a 
uid
sample path at time t as a construction describing the contents of the queues at
time t only, and so it will not carry extra information on the past and future of
the system. This will enable us to use both the similarity and the \memoryless"
properties (see Lemma 6.2) of 
uid sample paths. The state �(t) de�ned below is
such a construction. It still carries more information than just the content of the
queues, but it does have the properties we need.

Consider the following projection � of 
uid sample paths x 2 �X. The sample
path

� = (�(t); t � 0);

which we will also call a 
uid sample path, is de�ned as follows

�(t) = f�
(t)
ik ; (i; k) 2 Gg;

where
�
(t)
ik = f�

(t)
ik (�) � fik(t+ �)� f̂ik(t+ �; t); � � 0g:

We will call the construction �(t) the state of (a deterministic process) � at time t.
Obviously,

�(0) � f (0);

jj�(t)jj � jjq(t)jj �
X
G

qik(t); t � 0:

Denote by
�� = f� = �(x) j x 2 �Xg

the set of all possible 
uid sample paths � and by ��(�(0)) the subset of all � with
�xed initial state �(0).

Similarity and continuity properties of the family of 
uid sample paths x imply
the corresponding properties of its �-projections:
1) for any �(0),

��(���
(0)) = �� ��(�

(0)); 8� > 0;

2) for any constant a > 0, the set

fx 2 �� j jj�(0)jj = a; �ik(aT0) = 0; (i; k) 2 Gg

is compact.

The following \memoryless" property along with similarity plays a central role
in the proof of the main result of this section, Theorem 6.1.

Lemma 6.2. Let � = (�(t); t � 0) 2 ��. Then for any t� � 0,

' = ('(t) � �(t
�+t); t � 0) 2 ��(�(t

�)):

Proof: Similarly to the proof of Lemma 6.1, it is easy to verify that the sequences
of the sample paths of the scaled processes de�ning the 
uid sample path �, can be
used to construct the sequences de�ning the 
uid sample path '. We omit details.

Remark 6.1 If the queueing disciplines in all nodes satisfy the Uniqueness
property (QD3) (see section 5), then the following stronger version of Lemma 6.2
is valid.

For any � 2 �� and any t� � 0, the element

' = f�(t); 0 � t � t�; '
(t�t�)
1 ; t � t�g 2 ��

if and only if

'1 = ('
(t)
1 ; t � 0) 2 ��(�(t

�)):

13



We further need some simple technical observations for proving Theorem 6.1.
We will say that two states of a 
uid sample path,  1 and  2,

 m = f( m)ik(�); � � 0; (i; k) 2 Gg; m = 1; 2

are equivalent, and we denote this by  1 �=  2, if they are equal up to a time �
change; more precisely, if there exists a non-decreasing function � = �(�); � � 0,

�(�1) = �1; �(0) = 0;

such that
( 1)ik(�) = ( 2)ik(�(�)); � � 0; 8(i; k) 2 G:

We will call two 
uid sample paths �1; �2 2 �� equivalent, if �
(t)
1
�= �

(t)
2 ;8t � 0.

Lemma 6.3. The initial state �(0) of any 
uid sample path � is equivalent to some
initial state f (0) satisfying conditions (4.10) and (4.11).

Lemma 6.4. If �
(0)
1

�= �
(0)
2 , then the sets ��(�

(0)
1 ) and ��(�

(0)
2 ) coincide up to equiv-

alence of their elements, i.e. �1 2 ��(�
(0)
1 ) if and only if there exists �2 2 ��(�

(0)
2 )

such that �1 �= �2.

Theorem 6.1. The following two properties (FL1) and (FL2) of the family �� of

uid sample paths are equivalent.

(FL1) There exists a constant T > 0 such that for any 
uid sample path � 2 ��,
with jj�(0)jj > 0, the following conditions are satis�ed:

t� = minft > 0 j jj�(t)jj = 0g � jj�(0)jjT

and
jj�(t)jj = 0; 8t � t�:

(FL2) For any � 2 ��, with jj�(0)jj = 1,

inf
t�0

jj�(t)jj < jj�(0)jj = 1;

or, in other words, there is no � 2 �� such that jj�(t)jj � jj�(0)jj;8t � 0.

Proof of Theorem 6.1: Only the implication (FL2)) (FL1) needs to be proven.
Due to the similarity property, it is suÆcient to prove (FL1) for the case that
jj�(0)jj = 1; throughout the proof we will always assume that this holds. The proof
consists of the following sequence of statements (FL3) - (FL7).

(FL3). There exists a constant 0 � r < 1 such that for any � 2 �� with jj�(0)jj = 1,

inf
t�0

jj�(t)jj < r:

Suppose (FL3) is not true. Then there exist sequences rn " 1, and �n 2
��; jj�

(0)
n jj = 1, n = 1; 2; : : :, such that

(�n)ik(T0) = 0; 8(i; k) 2 G;

inf
t�0

jj�(t)n jj � rn:

Therefore, there exists a subsequence �l; l !1; flg � fng, such that

�l ! � 2 ��; jj�(0)jj = 1

and
inf
t�0

jj�(t)jj = 1:

This contradicts (FL2), thus proving property (FL3).
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(FL4). For any � 2 �� with jj�(0)jj = 1,

inf
t�0

jj�(t)jj = 0:

By virtue of (FL3) we have for arbitrary � that

t1 = minft > 0 j jj�(t)jj = rg <1; (6.3)

where r < 1 is the constant from the statement of (FL3). But �(t1) is similar to the
initial state �1=r�

(t1) with norm 1. Therefore, the similarity property implies that
for any m = 1; 2; : : :,

tm = minft > 0 j jj�(t)jj = rmg <1:

Property (FL4) has been proven.

(FL5). Let 0 < r < 1 be �xed. Then there exists a constant T1 <1 such that

sup
jj�(0)jj=1

minft > 0 j jj�(t)jj = rg � T1:

If (FL5) would not hold, then similarly to the proof of (FL3) we would obtain
� with jj�(0)jj = 1, such that

inf
t�0

jj�(t)jj � r:

This contradicts (FL4) and so property (FL5) is proved.

(FL6). The following property holds:

sup
jj�(0)jj=1

minft > 0 j jj�(t)jj = 0g <1:

Let r be the constant introduced in the statement of (FL5). Consider any � with
jj�(0)jj = 1 and the sequence t1 < t2 < : : : < tm < : : : de�ned by (6.3). Property
(FL5) and the similarity property imply that tm � tm�1 � T1r

m�1. Therefore,

lim
m!1

tm = t� � T � T1=(1� r):

Continuity of the norm jj�(t)jj as a function of t � 0, implies jj�(t�)jj = 0. This
proves property (FL6).

(FL7). If jj�(t�)jj = 0, then jj�(t)jj = 0; 8t � t�.

The set ft � t� j jj�
(t)jj > 0g is open. So, there exists an interval [t1; t2]

such that jj�(t1)jj = 0 and jj�(t)jj > 0; t1 < t < t2. For any � with 0 < � <
supt1�t�t2 jj�

(t)jj let t� = minft � t1 j jj�(t)jj = �g. Property (FL6) and similarity
imply that

�t� = minft � t� j jj�
(t)jj = 0g � t� + �T:

If � # 0, then t� # t1 and �t� # t1. This contradicts the choice of the interval [t1; t2].
This completes the proof of property (FL7) and consequently of Theorem 6.1.

7. Convergence to a Fluid Process. SuÆcient stability condition.
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Consider the sequence of scaled processes

sc; c!1 (7.1)

introduced in Lemma 4.2. So we have

fc;(0) ! f (0)

with f (0) satisfying conditions (4.9)-(4.11). Condition (4.10) allows us to assume
that the space S is restricted to the functions with time arguments t; t1; t2 2
[aT0;1]. Therefore, on each component space Fik; F̂ik ;Wik ; Ŵik; Uik, (i; k) 2 G,
we will consider the Skorohod topology and the Borel �-algebra induced by this
topology.

The �-algebra B(S) on S is de�ned as the direct product of the �-algebras on
the component spaces.

Theorem 7.1. Consider the sequence of scaled processes de�ned by (7.1). Let the
measure Qc on (S;B(S)) be the distribution of sc. Then
1) the sequence of measures Qc; c!1 is relatively compact;
2) any limiting point (in the sense of weak convergence) Q of the sequence Qc is

such that
Q(fx 2 �X(f (0))g) = 1: (7.2)

Proof:
1) Consider the sequence of projections of measures Qc on a component space,

say Fik . The asymptotic Lipschitz properties from Lemma 4.3 imply density
of the sequence of projections of the measures Qc on the component space
(cf. Theorem 3.7.2 in [8]). This in turn implies density and therefore relative
compactness of the sequence of measures Qc on the entire space S.

2) Let Q be a limiting point (in the sense of weak convergence) of the sequence of
measures Qc; c ! 1. To simplify notation we will assume that the sequence
Qc itself converges to Q.
Let

S1 � S(L)
\
fwik = vikfik; (i; k) 2 Gg

\

fŵik = vikf̂ik; (i; k) 2 Gg
\

ffi1(t)� fi1(0) = �it; t � 0]; i 2 Ig
\
f�0f = f (0)g:

Asymptotic Lipschitz conditions (Lemma 4.3) imply that

Q(S1) = 1:

To verify this, we can construct a countable set of events, each of which has Q-
measure 0, such that their union contains any element of the set S nS1. To do this,
we use the following argument based on the standard properties of convergence of
probability measures in a Skorohod space. Consider, for example, the component
space F̂ik. ay, There exist sets C1 and C2 that are countably dense in [T0;1), such
that for any (t1; t2) 2 C1 � C2 the projection mapping

s 7! f̂ik(t1; t2)

is continuous with Q-probability 1. Therefore, the distribution of any �nite dimen-
sional projection ff̂cik(t1; t2); (t1; t2) 2 Cg (C is a �nite subset of C1�C2) converges
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weakly to the distribution induced by the limiting measure Q. We omit further
details.

For any c,
Qc([Sc]) = 1;

where Sc is the set of all possible sample paths of the process sc, and [�] denotes
the closure of a set.

Then
Q([S2]) = 1;

where S2 �
S
c S

c.
Therefore, Q(S1

T
[S2]) = 1. The set S1

T
[S2] consists of the elements of S1

that are limiting points of the set S2. By virtue of the de�nition of the operator A,
we get

Q(fx 2 �X(f (0))g) = 1: (7.3)

This completes the proof.

Theorem 7.2. Property (FL2) of the family of 
uid sample paths with a =
jjf (0)jj = 1, is suÆcient for stability of the class of stochastic networks described in
section 2.

(FL2) For any 
uid sample path x 2 �X and any initial state f (0) with jjf (0)jj =
1,

inf
t�0

jjq(t)jj < 1:

Proof: Theorem 6.1 implies that property (FL2) is equivalent to (FL1). Therefore,
there exists T > 0 such that for any 
uid sample path x 2 �X with any initial state
f (0); jjf (0)jj = 1,

jjq(t)jj = 0; 8t � T: (7.4)

Consider the sequence of processes sc introduced in Theorem 7.1 and the sequence
Qc of their distributions on S. Then Theorem 7.1 and (7.4) imply that

jjqc(T )jj ! 0

in probability. Hence, the conditions of Lemma 4.2 with a = 1 (and therefore any
a > 0 due to similarity) are satis�ed. This completes the proof.

8. Conclusions.

The necessity of condition (1.6) for stability of stochastic networks is an im-
portant open problem. The relaxed form (1.8) of condition (1.6) makes it very
plausible that some form of necessity indeed holds. Some results in this direction
were recently obtained in [7] and [13].
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