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Abstract

We consider a multiclass queueing network, whose underlying stochastic process
is a countable, continuous time Markov chain. Stability of the network is understood
as ergodicity of this Markov chain. The message class determines a message route
through the network and the mean message service time in each node on its route.
Each node may have its own queueing discipline within a wide class, including
FCFS, LCFS, Priority and Processor Sharing.

We will show that the sequence of scaled (in space and time) underlying stochas-
tic processes converges to a fluid process with sample paths defined as fixed points
of a special operator. This convergence together with continuity and similarity
properties of the family of sample paths of the fluid process allows us to prove the
following result.

If each sample path of the fluid process with non-zero initial state is such that
the “amount of fluid” in the network falls below its initial value at least once, then
the network s stable.
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1. Introduction.

We consider an open queueing network with several customer classes. The
class of a customer determines his route through the network and his service time
in each node on the route. Each node of the network is a single-server system with
its own queueing iscipline. By stability of a multiclass queueing network we will
mean ergodicity of the underlying stochastic process.

It has been shown recently that the condition that the load p; of each network
node j is less than 1

pj <1 (1.1)

is not sufficient for network stability. Examples of unstable deterministic networks

were found by Kumar and Seidman [9], and Lu and Kumar [10]. A similar example
of an unstable stochastic network was found by Rybko and Stolyar [14]. Bramson
[1,2] and Seidman [15] derived examples of unstable stochastic networks with FCFS
queueing disciplines in the nodes. The instability problem has also been addressed
in Whitt [17].

The following approach has been proposed in [14]. A sufficient ergodicity con-
dition for continuous time countable Markov chains is derived. Similar and more
general ergodicity criteria for discrete time Markov chains were obtained by Maly-
shev and Menshikov [11]. This condition allows us to reduce the stability problem
for the original stochastic network to checking property (1.6) (see below) for the
deterministic (fluid) process, obtained from the original stochastic process by space
and time scaling.

Not quite formally yet, let ¢(t) denote the non-negative vector specifying the
number of customers of each type in each node of the network at time t. Let ||q(t)]]
denote the sum of the components of the vector ¢(t).

Consider the sequence of scaled processes

q"(t) = %q(nt), n=12,... (1.2)

q"(0) = ¢(0), [l¢(0)]| =1, (1.3)

where ¢(0) is a fixed vector. It has been shown in [14] that if the underlying
stochastic process describing the network behaviour is a continuous time countable
Markov chain, then the following condition is sufficient for network stability.

There exists a constant T > 0, such that for any sequence of scaled processes
q"(t), n — oo, satisfying conditions (1.2) and (1.3),

Ellg" ()] = 0, V¢ > T. (14)

The sufficient condition (1.4) establishes a close connection between network
stability and properties of the corresponding fluid process. Indeed, it is well known
that a linear space-time scaling, i.e. %q(nt)—type scaling, “usually” leads to a de-
terministic (fluid) process in the limit. In other words, it is natural to expect that
in some sense the convergence

7" (t) = q() (L5)

takes place, where ¢(t) is some fluid process. This leads to the following property
of the fluid process, which corresponds to property (1.4) of the sequence of scaled
processes.
There exists constant T > 0 such that for any fluid processes q(t) with ||g(0)|| =
1
la()l| =0, vt > T. (1.6)
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The paper [14] formally defines the fluid process for networks with FCFS and
priority disciplines in the nodes. Property (1.6) is proven for a two node network
with FCFS queueing discipline in each node. Subsequently using properties of the
fluid process ¢(t), condition (1.4) and therefore stability of the network are verified.

Remark 1.1 For many networks it is easy to see that for some constant ¢ < 0

d
Zlla@Il <e <0, (1.7)

if ||g(¢)]| > 0. This obviously implies property (1.6). The two node FCFS network
considered in [14], is an example of a network not satisfying condition (1.7) but
nevertheless satisfying condition (1.6).

In this paper we consider multiclass networks, whose underlying stochastic
process is a countable continuous time Markov chain. The queueing disciplines in
the nodes may belong to a wide class including in particular FCFS, LCFS, Priority
and Processor sharing. For any set of queueing disciplines in the nodes we will give
a formal constructive definition of the family of sample paths of the corresponding
fluid process. A general similarity property of the family of fluid process sample
paths easily follows from this definition. Using this similarity property, it is shown
in Theorem 6.1 that condition 1.6) is equivalent to the following relaxed condition.

For any fluid process q(t) with ||q(0)|| =1,

inf lla(0)]] < 1. (1.8)

We will then show in Theorem 7.1 that the convergence (1.5) to a fluid process
indeed takes place. This proves (Theorem 7.2) that property (1.6) (or equivalently
property (1.8)) is sufficient for network stability. (Convergence of the type (1.5) for
a multiclass queueing network was probably first derived by Chen and Mandelbaum
[3]. See also [4].)

This paper contains the results presented in the talk [16]. Theorem 7.1 here is
a little bit stronger: convergence is proved on the infinite time interval. The talk
[16] was accepted for presentation, when Dai submitted paper [5] for publication. In
his excellent work, the sufficiency of the stability condition (1.4) is generalised for
multiclass queueing networks with arbitrary distributions of interarrival and service
times, and “non-preemptive-within-each-customer-type” queueing disciplines in the
nodes. Stability in [5] is understood as positive Harris recurrence of the underlying
Markov process. The convergence (1.5) and therefore the sufficiency of condition
(1.6) for network stability are also proven. Our convergence result Theorem 7.1 is
less general in terms of the distributions of the interarrival and service times, but
is somewhat more general with respect to the queueing disciplines allowed in the
network nodes.

Remark 1.2 It is not hard to see that our definition of the family of fluid
process sample paths and its properties (including Theorem 6.1) can be easily ex-
tended to the framework of [5]. Also, all results can be extended to cover a more
general customer routing rule considered in [5].

We do not attempt to present a complete review of recent work on the stability
of multiclass networks. Very good reviews can be found in [6], and a more recent
one in [18].

The goal of our paper is

1) to prove that condition (1.6) is sufficient for network stability in a general
framework with respect to queueing disciplines and

2) to relax condition (1.6) to the form (1.8), which makes it natural to expect that
(1.6) is also necessary (or at least “almost” necessary) for network stability.
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The rest of this paper is as follows. In section 2 we describe the network under
consideration. In section 3 we introduce the notational conventions that are used
throughout the paper. In section 4 the underlying stochastic process and the corre-
sponding family of scaled processes are defined. In section 5 we formally define the
family of sample paths of a fluid process. Section 6 discusses a similarity property
of this family of fluid processes. This property allows us to prove the equivalence
of conditions (1.6) and (1.8) in Theorem 6.1. In section 7 we prove convergence
to a fluid process (Theorem 7.1), which implies sufficiency of condition (1.6), and
consequently of the equivalent condition (1.8), for network stability (Theorem 7.2).

2. Model Description.

We consider a queueing network consisting of J nodes. The set of nodes we will
also denote by J = {1,2,...,J}. There are I different customer classes. The set
of customer classes will be denoted by I = {1,2,...,I}. Throughout the paper we
assume that the arrival stream of class ¢ € I customers to the network is a Poisson
process with intensity A;, although this condition can be relaxed (see Remark 2.1
below). Each class ¢ customer has his own route through the network,

3G, 1), 30 k), - 50 K (0)),

where K (i) is the length of the class i customer route and j(i, k) € J is the node
in which a class ¢ customer will be served in the k-th stage of his route. After
completing service in the last stage of his route, a customer leaves the network. A
class i customer in k-th stage of his route will be called a type (i, k) customer, or
just an (i, k)-customer.

Service times for all customers of all types are independent. The service time
for type (i, k)-customers is exponential with mean v;; > 0. (This condition can be
relaxed as well, see Remark 2.1 below.)

Each network node is a single-server queue with its own queueing discipline.
The queueing discipline in each node is work-conserving, and satisfies the following
condition.

(QD1). The service rate assigned to each customer that is present in the node at
time t, may depend only on the number of customers of the different types in the
node and the time order in which they arrived at the node. (The sum of the service
rates is 1 if the node is non-empty and 0 otherwise.)

We will denote by
G={@,k)|k=12,...,K(i); iel}
the set of all customer types, and by
G; ={(i,k) e G|, k) = j}

the set of customer types that visit node j € J.
We will assume that the load of each network node is less than 1, i.e.

pi= Y v <1, Vi€l (2.1)
(i,k)EGj

It is clear that the underlying stochastic process describing the behaviour of
the network is a continuous time countable Markov chain. We will say that the
network is stable if the underlying Markov chain is ergodic.
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Remark 2.1 All results of the paper hold as well if each customer class i €
has a more general interarrival time distribution. It is sufficient that it is a phase
type distribution (i.e. has a rational Laplace transform) and all residual times are
uniformly bounded by a distribution with finite mean. We can also allow such
distributions for the service times, if the queueing disciplines in the nodes satisfy
condition (QD2) below in addition to condition (QD1).

(QD2) NON-PREEMPTIVENESS WITHIN EACH CUSTOMER TYPE. Once serving an
(i, k)-customer has been started, no other (i, k)-customer can be served before the
service of the customer in service has been completed. In other words, service of
any customer can not be preempted by another customer of the same type.

In the nodes with queueing disciplines not satisfying condition (QD2) (exam-
ples of such disciplines are preemptive-resume LCFS and Processor Sharing), it is
essential that the the service time is exponentially distributed.

3. Notational Conventions.

Throughout the paper we will use the following notational conventions. The
set of real numbers is denoted by R. The norm of a function h = h(¢) with the
domain of definition = = {¢} is defined by

||A]] = sup [A(E)].
£e=

For a finite set of functions, the norm || - || means the sum of the norms of the
components.

If it is not stated otherwise, convergence of functions (or sets of functions)
h — h* (or lim h = h*) means point-wise convergence everywhere in their domain
of definition.

The scaling operator. The scaling operator o,, a > 0, maps a function
h = h(§) with domain of definition = = {£} to the function

(7ah)(€) = ~h(a)

with domain of definition .
o= {af | € € E}.

(The case of a vector argument £ is clearly included.)
For any set of functions H = {h, = h(£),y € '}, in particular vector func-
tions,
ooH ={oah,,v €T}

Two functions (or sets of functions) h* and h are called similar if h* = o4 h for
some a > 0.
The truncation operator. The truncation operator ny, T € R, maps

a function h = h(§) with domain of definition = = {£} to the same function
(mrh)(€) = h(§) with the truncated domain of definition

mE =2 {¢< T}

In the case of a vector argument ¢ this truncation is applied to the domain of
definition of each component function.
The set of functions H = {h,,~y € I'} is mapped to the set of functions

nrH = {nrh, |y €T}

4. The Underlying Stochastic Process. Family of Scaled Processes.

5



Consider the process
Q(t) = {Qik(t)) (Z)k) € G}) t Z 0;

where ¢ (t) is the number of (7, k)-customers in node j = (i, k) at time ¢. Except
for some special cases, ¢(t) is not a Markov process.
Consider the sequence of scaled processes

1

n
or, using the definition of the scaling operator,
q" = ong.

The following result has been proven in [14].

LEMMA 4.1. Suppose there exists a constant T > 0 such that

Tim_ Bljq"(T)]] = 0 (4.1)
for an arbitrary sequence of scaled processes ¢"(t),||l¢"(0)|]| = 1, n = 1,2,....

Then the queueing network under consideration is stable. The sequence ||¢™(T)|| is
uniformly integrable, and therefore condition (4.1) is equivalent to convergence in
probability:

llg" (T[] = 0. (4.2)

Following [14], we will consider the process describing the network behaviour
in more detail.

Let fir(t),t > 0, be the total number of (i, k)-customers that arrived at node
j = 7(i, k) at or before time ¢, including the customers present in the node at initial
time 0. In order to describe the initial tate of the network properly, we will extend
the functions fi(¢) to the domain ¢ < 0. If n = ||¢(0)|| is the initial number of
customers in the network, we will assume that these customers subsequently arrived
at the negative time instants

—0 <t <th 1 <...<t; <O0.

The order of arrival of customers of different types corresponds to the order in which
they are present in the queues at initial time 0. Now each function fi(¢) is well
defined for all t € R. Note that for some fixed Ty < 0,

fie(t) =0, Vit <T,.

Let w;x(t),t € R, denote the sum of service times of all (4, k)-customers that arrived
at node j = j(i, k) before or at time .

Let fik(tl,tz), t1,t2 € R, denote the number of those (i, k)-customers that
arrived at node j = j(i, k) before or at time ¢; and departed before or at time ¢o.
Obvious properties of the functions fik(tl,tQ) are

fin(tits) = fn(ta,ta), t1 >t (4.3)

fiu(tr,t2) =0, t2 <0 (4.4)

Let w;(t1,t2), t1,ts € R, denote the total time till time ¢, spent at node j = j(i, k)
on serving the (i, k)-customers that arrived before or at time ¢;. The functions
Wik (t1,12) satisfy properties analogous to (4.3) and (4.4). Finally, let u;x(y),y > 0,
be the sum of the service times of the first [y] (¢, k)-customers that arrived at node
j = j(i, k). Here [y] denotes the integer part of y.
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The underlying stochastic process then is

§= (f,f,w,/lf),u),

where
f = {fik(t),t S R, (Z,k) S G}

and all other components are defined similarly. We will also use the notation f =

{f;, 1€J}, fj ={fir, (i,k) € G;}, and so on; and we write z = (f, f).

The sample paths of the process s, which we also will denote by s, belong to
the space . .
S=FxFxWxWxU,

where
F=XjesFj, Fj=Xgrea,Fir

Fix = {fu(t),t € R}

F= XjEJF'j; ﬁj = X(i,k)EGjF'ik
Fiy, = {fi(t1,t2), t1,t2 € R}
U= x;caUj, Uj=X(@irec,Uik
Uik = {wir(t),t > 0}.

The spaces W and W are defined analogously to the spaces F' and I respec-
tively.

Each component space Fj;, consists of functions such that for some Ty < 0
fir(t) =0, t < T,

and f;r(t),t € [To,00), is an element of the Skorohod space D[}, 00).
The component spaces W;;, and Uj, are defined similarly to Fj.

Each space Ek consists of the functions fik (t1,t2) that satisfy the following
conditions for some Tp < 0.

1) fik(tl,tg) =0if t1 S TO or to S To.

2) For any fixed to > Tp, the function fik(tl, t2),t1 > Tp, belongs to the Skorohod
space D[Tp, 00).

3) The function ((ﬁk (t1,t2),t1 > Tp),t2 > Tp) as a function of ¢, is an element of
the D[Tp, 00)-valued D[Tp, 00) Skorohod space. Each component space Wi is
defined similarly to Fyi. The space X is defined as a product of F" and 3 only,
X = F x F; its elements will be denoted by z = (J, f).

The sample paths of the process s satisfy the following additional conditions.
a) The number of events (customer arrivals and departures) that occur on any
finite time interval is finite. Clearly, the sample paths satisfy this condition
with probability 1, but we can assume that the condition is true for all sample
paths.
b) For each j € J

(wj, fj,0;5) = B;(fj,us), (4.5)
where B; is a deterministic operator, specified by the queueing discipline in

node j.
c) Foreachi e I and k=2,3,..., K(i),

fir(t) = fir(0) + fip—1(t,t), t>0. (4.6)
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For any constant ¢ > 0 we define a corresponding scaled process
s¢ = (fc,fc,wc,wc,uc) = 0.8.
Note that s! = s.
Obviously, the scaled process ¢° = o.q is a projection of the process s°. In

the sequel, we will use the superscript ¢ in our notation for the scaled processes s€,
including the original process s, and for projections of the process s°.

The sample paths of any process s¢, ¢ > 0, also belong to the space S; their
properties are induced by the properties of the sample paths of the process s, and
in particular they satisfy conditions (4.5) and (4.6):

(w$, f5,05) = Bj(ff,us), j€J, (4.7)

where by definition
Bj(f;,uj) = ocBj(fj,u))

and
(1) = f50) + foo i (tt), t >0, i€, k=2,3,...,K(i). (4.8)

Let S¢ C S, ¢ > 0, be the set of all possible sample paths of the process s°.
Similarly, for example, F° C F, Fy C Fj and Fjj C Fj; are the sets of possible
sample paths of f¢, f7 and fj respectively.

The set of functions

FoO =mof = {f5(0),t < 0}

will be called the initial state of the process s°.

Let

L= N+ ol
I G

Informally, L is an upper bound for the mean intensity at which events (customer
arrivals and departures from any node) can occur in the network.
Consider the set of non-negative, non-decreasing, continuous functions

FO = {fur(t),t < 0} (4.9)
satisfying the Lipschitz condition with constant L as well as the condition
fir(aTo) =0, V(i k)€ G, (4.10)

with
IO =a>0 (4.11)

and Tp = -L7 1 <0.
The following Lemma is a corollary of Lemma 4.1.
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LEMMA 4.2. Suppose there exists a constant T > 0 such that for any constant
a > 0, any set of functions f(®) specified above by (4.9)-(4.11) and any sequence of
scaled processes

s¢, c=cp — 00, N — 00,

with
o0 5 f£0)

such that the following condition holds
Ellg*(aT)|| = 0.

(In this case it is equivalent to convergence of ||¢°(aT')|| to 0 in probability). Then
the stochastic network under consideration is stable.

Proor: Consider a sequence of scaled processes s™,n — oo, with ||¢"(0)|| = 1. We
assign arrival times to the customers present in the system at time 0 in the following
way. If n is the number of customers at time 0 in the original (non-scaled) process,
then we assume that their arrival times were

’nTo, (n — I)T[), . ,To.

The sequence s" has a subsequence s, — oo, {I} C {n} satisfying the conditions
of the Lemma with ¢ = 1. Application of Lemma 4.1 completes the proof.

It is well known, that the sequence of scaled processes described in Lemma 4.2
“should” generally speaking converge to a deterministic (fluid) process. But in the
case of multiclass queueing networks we cannot expect that the limiting process will
always be “truly deterministic”, i.e. concentrated on a unique sample path, see for
example the network with priority queueing discipline described in [14]. In Theorem
7.1 we will show that the sequence of scaled processes s¢, ¢ — 0o, converges weakly
to a (fluid) process with sample paths defined as fixed points of a special operator
A. Informally speaking, this operator A is obtained by the limiting transition in
equations (4.7) and (4.8), as ¢ — oo.

The following simple Lemma explains the definition of the operator A and the
fluid process sample paths given in the next section. It is also an important part of
the proof of the convergence result.

LEMMA 4.3 (AsyMPTOTIC LIPSCHITZ PROPERTIES). The sequence of scaled pro-
cesses s°, ¢ — oo, defined in Lemma 4.2 satisfies the following conditions.
For any (i,k) € G, t, t; <ty, and any e >0

lim P{flck(tg) — ick(tl) < L(tQ — tl) + 6} =1 (412)

c— 00
Tim P{Joief5 (1) — wie(H)] < e} =1 (4.13)
Jim P{f§.(t2,t2) — f&(tr,t1) < L(to —t1) + e} = 1 (4.14)
lim P{|vit £, (t1,ta) — @5, (t1,t2)] < €} = 1. (4.15)

c— 00

In addition, for any i € I, any t > 0 and any € > 0
dim P{If5 () ~ £5(0) = Xt < ¢} = L. (4.16)
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The proof of this Lemma follows directly from the law of large numbers. Note
that conditions (4.12), (4.13), and (4.16) hold for arbitrary service and interarrival
time distributions such that all residual time distributions are bounded by a distri-
bution with finite mean value. Conditions (4.14) and (4.15) hold under these more
general assumptions, if the queueing disciplines in the corresponding nodes 7(i, k)
satisfy condition (QD2) (see section 2). Onunly if the queueing disciplines in some
nodes do not satisfy condition (QD2), the exponential distribution of the service
times in those nodes is essential.

5. Sample paths of a fluid process.

For each (i, k) € G denote by Fy, (1) C Fix the subset of Fy;, consisting of the
functions f;(t) satisfying the condition that fi;(¢) is non-negative, non-decreasing,
and Lipschitz continuous with constant L. Furthermore, for each (i, k) € G denote
by ﬁiML) C ﬁ'ik the subset of ﬁ'ik consisting of the functions fik (t1,t2) satisfying
the following conditions:

1) fik(tl,t2) is a non-negative function, which is non-decreasing, continuous and

Lipschitz with constant L with respect to each argument;

2) fik(t, t) as a function of ¢ is Lipschitz with constant L;

3) fi(0,0)=0;
4) fir(ti,t2) = fix(ta, t2) if t1 > to.
The subsets Wiy (1) € Wi and Wik’(L) C Wi, are defined similarly to Fy (1)
and ﬁik’( 1) respectively except for the Lipschitz constant, which should be chosen
equal to v; L instead of L.

Finally, for each (i,k) € G the subset U, (1) C Uy, by definition contains
exactly one function

ik (y) = viry, y > 0.

We will also use the notation
Fy ) = Xa; Firry, J€J

Fy = % Fj 1)

and so on. Define the subsets
S(ry = Fiuy X Wipy x Fipy x Wizy x Uy € S

and R
Xy = Fuy x Fp) € X

Define the operator A; mapping elements of Fj 1) into subsets f ﬁML) in the
following way. Fix an element (sample path) f; € Fj ). Then fj € F']-,( L) is an
element of A;(f;) if and only if there exists a sequence ¢ = ¢, — oo and sequences
(of sample paths)

i €F;, ujeU;, c¢— o0,

satisfying the conditions

fi—= 1 (5.1)
u§ — Uj = XG; Uik, (5.2)

such that R R
fi—= 1 (5.3)
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’lﬁ; — {'Uikfik; (Z,k?) S Gj}, (54)
where .
(w5, fi,05) = Bj(f,u5), j€J. (5.5)
B;(+) is a deterministic operator (see (4.7)) and convergence is understood as con-
vergence everywhere. In this case convergence everywhere is equivalent to uniform
convergence on compact sets, because all functions are monotonic and the limiting
functions are continuous.

Remark 5.1 A wide class of queueing disciplines (including FCFS, Priority
disciplines, Head-of-the-Line Processor Sharing) has the following property.

(QD3) UNIQUENESS PROPERTY. For any f; € Fj 1 there is a unique f; = A;(f;)
such that convergences (5.3) and (5.4) take place for any sequences f§ and uf,
¢ — 00, satisfying (5.1) and (5.2).

Remark 5.2 The definition of the operator A; implies its explicit expression in
many cases, when the queueing discipline in node j satisfies the uniqueness condition
(QD3). (For example, explicit expressions for the operator A; for the FCFS and
Priority disciplines were considered and used in [14].) In other cases, it still allows
us to get properties of the elements of the set 4;(f;).

LeEMMA 5.1 (CONTINUITY). The operator A; is continuous in the following sense.
If
a—=g G—g 1=12,...,

where g,q1 € Fj (1), i € A;(gi), then
g€ 4;(9)-

The operator A mapping elements of X, into subsets of X () is defined as

A

follows. Fix an element (sample path) z = (f, f) € X(z). Then z* = (f*, f*) €
A(z) if and only if it satisfies the following conditions:

fred;f), Vied
*(t)_{fik(0)+)\it,t20 if k=1
FET U f0) + fr (1), 620 if k> L

Note that the operator A does not change the initial state f(©) = 1o f = mo f*.
The continuity of the operators A; obtained in Lemma 5.1 implies continuity
of the operator A.

LEMMA 5.2 (CONTINUITY). The operator A is continuous in the following sense.
If

=z, yu—y [=1,2,...,
where z,y,; € X (1), yi € Ay C X1, then
y € Azx.

Let X C X(1), be the set of fixed points of the operator A, i.e.
X:{HZEX(L) |$€A£U}

Each element z of the set X will be called a sample path of the fluid process or just
a fluid sample path. Denote by

X(f) ={ze X |mf=r
the set of fluid sample paths with fixed initial state f(®).
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Remark 5.3 It should be noted that even if the queueing discipline in each
node j satisfies the uniqueness property (QD3) (i.e. each operator A; is not mul-
tivalued), uniqueness of a fluid sample path is not guaranteed for all initial states.
Thus, the dynamics of a fluid system is quite complicated even in the case of “well-
behaved” queueing disciplines in nodes and a relatively simple (“output-input”
type) interaction between the nodes. For a treatment of the network dynamics
in the case of a more general interaction between the nodes see [12].

The g-projection of a fluid sample path x,
a(t) = {gi (V) = fu (V) = fur(t,0), (i,k) € G}

describes the “amount of fluid” of each type in all network nodes at any time ¢t > 0.
Therefore, the norm ||g(¢)|| can be interpreted as the total amount of fluid in the
network at time .

The continuity of the operator A (Lemma 5.2) and the fact that X C Xy,
imply the following properties of the family of fluid sample paths.

LEMMA 5.3.
1) The set X is a closed set in X r,.

2) For any fixed initial state f(*) the set X(f(©)) is compact in X z,).
3) For any constant a > 0, the set

{ze X ||IfO) =a, fulaTy) =0,(i,k) € G}

is compact in X(r,).
6. Similarity.

Similarity is an inherent property of the family of fluid sample paths. It is
implied by the definition of a fluid sample path as the limit of a sequence of sample
paths of scaled processes.

LEMMA 6.1 (SIMILARITY). The family X of the fluid sample paths is invariant
with respect to the scaling operator o,. Namely, if x € X then

ot € X, Va>0. (6.1)
In particular, for any initial state f(©)
X(0af) =0, X(f?) Va>o0.
Proor: For any j € J, any f; € Fj (1), and any a > 0,
Aj(oaf;) = 0ad;(f;)- (6.2)
Indeed, if conditions (5.1)-(5.5) from the definition of the operator A; hold, then
Uaf]‘? — 0afj
aau§ — 040 = G
Uaf]‘? — aafj
oS = {viroafir, (i,k) € Gy}
(0aWws, 00 ff,00®S) = Bj(0aff, 0aus).

But o, f] € Fj‘w,aafjc € F']-“C, etc. This proves equation (6.2).
Equation (6.2) implies that for any x € X, and any a > 0,

A(oqz) = 04 Ax.

This proves the Lemma.
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Obviously, a fluid sample path z contains information on the contents of the
queues in all network nodes at any time t. We need to define the state of a fluid
sample path at time ¢ as a construction describing the contents of the queues at
time ¢ only, and so it will not carry extra information on the past and future of
the system. This will enable us to use both the similarity and the “memoryless”
properties (see Lemma 6.2) of fluid sample paths. The state ¢(*) defined below is
such a construction. It still carries more information than just the content of the
queues, but it does have the properties we need.

Consider the following projection ¢ of fluid sample paths z € X. The sample
path

¢ = (¢",t>0),

which we will also call a fluid sample path, is defined as follows

o = (o}, (i.k) € G},
where
o4 = {6 (©) = fult+© — fult+ €1, <0}
We will call the construction ¢®) the state of (a deterministic process) ¢ at time ¢.
Obviously,

#0) = O
16D = [lgOIl = g (t), t>0.
G

Denote by

¢ ={¢=0¢x)|zeX}
the set of all possible fluid sample paths ¢ and by ®(¢(®)) the subset of all ¢ with
fixed initial state ¢(©).

Similarity and continuity properties of the family of fluid sample paths z imply
the corresponding properties of its ¢-projections:

1) for any ¢\%, i .
B(040") = 5, 8(¢V), Va > 0;

2) for any constant a > 0, the set
{z € @[]0 = a, ¢ (aTp) =0, (i,k) € G}
s compact.
The following “memoryless” property along with similarity plays a central role
in the proof of the main result of this section, Theorem 6.1.
LEMMA 6.2. Let ¢ = (¢(),t > 0) € ®. Then for any t* > 0,
o =(p® =" 1>0) € d(e")),
PRrROOF: Similarly to the proof of Lemma 6.1, it is easy to verify that the sequences

of the sample paths of the scaled processes defining the fluid sample path ¢, can be
used to construct the sequences defining the fluid sample path . We omit details.

Remark 6.1 If the queueing disciplines in all nodes satisfy the Uniqueness
property (QD3) (see section 5), then the following stronger version of Lemma 6.2
is valid. -

For any ¢ € ® and any t* > 0, the element

p={o",0<t<t, o 1>} ed
if and only if
o1 = (91, > 0) € B¢,
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We further need some simple technical observations for proving Theorem 6.1.
We will say that two states of a fluid sample path, ¥; and s,

Um = {(zpm)zk(f):g <0, (i,k) € G}7 m=1,2

are equivalent, and we denote this by ; =2 1o, if they are equal up to a time &
change; more precisely, if there exists a non-decreasing function 8 = 6(¢£),¢ < 0,

f(—o0) = —o0, 6(0) =0,
such that
(V1) (§) = (¥2)ir(6(£)),§ <0, V(i,k) € G.
We will call two fluid sample paths ¢1,¢» € ® equivalent, if ¢)§t) = gzﬁgt),Vt > 0.

LEMMA 6.3. The initial state $\©) of any fluid sample path ¢ is equivalent to some
initial state f(°) satisfying conditions (4.10) and (4.11).

LEMMA 6.4. If ¢§°> = ¢g°), then the sets fi>(¢§0)) and ®( go)) coincide up to equiv-

alence of their elements, i.e. ¢; € ®( go)) if and only if there exists ¢o € ®( go))
such that ¢1 =2 ¢s.

THEOREM 6.1. The following two properties (FL1) and (FL2) of the family ® of
fluid sample paths are equivalent.

(FL1) There exists a constant T > 0 such that for any fluid sample path ¢ € ®,
with ||¢(®)|| > 0, the following conditions are satisfied:

t. = min{t > 0 [|¢!]| = 0} <||¢||T

and
6] =0, Vt>t..

(FL2) For any ¢ € ®, with ||¢(0)|| =1,
: (t) O =
tllzlg||¢ I <ol =1,

or, in other words, there is no ¢ € ® such that [|¢®|| > ||¢?||,V¢ > 0.

PROOF OF THEOREM 6.1: Only the implication (FL2) = (FL1) needs to be proven.
Due to the similarity property, it is sufficient to prove (FL1) for the case that
||¢(@]|| = 1; throughout the proof we will always assume that this holds. The proof
consists of the following sequence of statements (FL3) - (FLT).

(FL3). There exists a constant 0 < r < 1 such that for any ¢ € ® with ||¢(?)|| =1,
i (t)
inf o™ <.
Suppose (FL3) is not true. Then there exist sequences r, 1T 1, and ¢, €
3,167 =1,n=1,2,..., such that
(n)ir(To) =0, V(i,k) € G,
i ()] >
inf{|¢n [ 2 ™.
Therefore, there exists a subsequence ¢;, I — oo, {l} C {n}, such that
o ped, [0 =1
and

inf [|®) || =
inf o™ = 1.

This contradicts (FL2), thus proving property (FL3).
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(FL4). For any ¢ € & with ||¢V|| = 1,

inf [|®) || =
inf o™ =0.

By virtue of (FL3) we have for arbitrary ¢ that
t; =min{t > 0| ||¢®]| = r} < oo, (6.3)

where r < 1 is the constant, from the statement of (FL3). But ¢(*) is similar to the
initial state o /r¢(t1) with norm 1. Therefore, the similarity property implies that
forany m =1,2,...,

tm = min{t > 0| ||¢V|| = r™} < 0.
Property (FL4) has been proven.
(FL5). Let 0 < r < 1 be fixed. Then there exists a constant T1 < oo such that

sup min{t > 0] |[¢?| =r} < T1.
1o ]|=1

If (FL5) would not hold, then similarly to the proof of (FL3) we would obtain
¢ with ||¢(®]| = 1, such that
inf [|¢\")]] > r.

£>0
This contradicts (FL4) and so property (FL5) is proved.
(FL6). The following property holds:

sup min{t > 0] ||| = 0} < 0.
l[¢©)]|=1

Let r be the constant introduced in the statement of (FL5). Consider any ¢ with
|¢(@]| = 1 and the sequence t; <tz < ... < t,, < ... defined by (6.3). Property
(FL5) and the similarity property imply that ¢, — t,, 1 < T1r™~!. Therefore,

lim ¢, =t"<T=T,/(1-r).

m—00

Continuity of the norm ||¢®|| as a function of ¢ > 0, implies ||¢(*<)|| = 0. This
proves property (FLG6).

(FL7). If||¢p*)|| = 0, then ||¢D|| =0, Vt > t,.

The set {t > t. | ||[¢!)|] > 0} is open. So, there exists an interval [t;,ts]
such that [|¢)]| = 0 and ||[¢®|| > 0, t; < t < t». For any e with 0 < € <
sup;, <;<, |[0® || let te = min{t > ¢, | ||¢!V|| = €}. Property (FL6) and similarity
imply that

t. = min{t > t. | ||¢D]| = 0} <t + €T.

If € | 0, then ¢ | t; and # | ¢1. This contradicts the choice of the interval [t, t2].
This completes the proof of property (FL7) and consequently of Theorem 6.1.

7. Convergence to a Fluid Process. Sufficient stability condition.
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Consider the sequence of scaled processes

c

s, ¢c— o0 (7.1)
introduced in Lemma 4.2. So we have
o0 — £(0)

with f(©) satisfying conditions (4.9)-(4.11). Condition (4.10) allows us to assume
that the space S is restricted to the functions with time arguments ¢, t1, t2 €
[aTp, 00]. Therefore, on each component space Fi, Eie s, Wi, Wik, Uik, (i,k) € G,
we will consider the Skorohod topology and the Borel o-algebra induced by this
topology.

The o-algebra B(S) on S is defined as the direct product of the o-algebras on
the component spaces.

THEOREM 7.1. Consider the sequence of scaled processes defined by (7.1). Let the
measure Q° on (S,B(S)) be the distribution of s°. Then
1) the sequence of measures Q°, ¢ — oo is relatively compact;
2) any limiting point (in the sense of weak convergence) ) of the sequence Q° is
such that

Qz e X(fh =1 (7.2)

PROOF:

1) Consider the sequence of projections of measures Q¢ on a component space,
say Fj,. The asymptotic Lipschitz properties from Lemma 4.3 imply density
of the sequence of projections of the measures ()¢ on the component space
(cf. Theorem 3.7.2 in [8]). This in turn implies density and therefore relative
compactness of the sequence of measures Q¢ on the entire space S.

2) Let @ be a limiting point (in the sense of weak convergence) of the sequence of
measures ()¢, ¢ — oo. To simplify notation we will assume that the sequence
Q€ itself converges to Q.

L
“ St = Sy [ Wwik = vinfur, (i, k) € G}
{tir = varfir, (i, k) € G}
{fir(t) = £ (0) = Nit, ¢t > 0],i € T} {mof = fO}.
Asymptotic Lipschitz conditions (Lemma 4.3) imply that
Q(S:) = 1.

To verify this, we can construct a countable set of events, each of which has Q-
measure 0, such that their union contains any element of the set S\ S;. To do this,
we use the following argument based on the standard properties of convergence of
probability measures in a Skorohod space. Consider, for example, the component
space Fy.. ay, There exist sets Cy and Cy that are countably dense in [Ty, 00), such
that for any (¢1,%2) € C1 x Cs the projection mapping

S = fik(tl,tz)

is continuous with )-probability 1. Therefore, the distribution of any finite dimen-
sional projection { f.(t1,t2), (t1,t2) € C} (C is a finite subset of C; x C3) converges
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weakly to the distribution induced by the limiting measure ). We omit further
details.
For any c,

Q°([SD =1,

where S°¢ is the set of all possible sample paths of the process s¢, and [-] denotes
the closure of a set.
Then

Q([S:]) =1,

where S, = J,. S¢.

Therefore, Q(S1N[S2]) = 1. The set Sy [)[S2] consists of the elements of Sy
that are limiting points of the set Sy. By virtue of the definition of the operator A,
we get

Q{z e X(Ff)}) =1. (7.3)
This completes the proof.

THEOREM 7.2. Property (FL2) of the family of fluid sample paths with a =
|| f©]| = 1, is sufficient for stability of the class of stochastic networks described in
section 2.

(FL2) For any fluid sample path = € X and any initial state f(©) with ||f(©)|| =
1

J

inf lg@®Il <1.

ProOF: Theorem 6.1 implies that property (FL2) is equivalent to (FL1). Therefore,
there exists 7' > 0 such that for any fluid sample path z € X with any initial state
FO, O =1,

lla(t)l =0, Vvt>T. (7.4)

Consider the sequence of processes s¢ introduced in Theorem 7.1 and the sequence
Q° of their distributions on S. Then Theorem 7.1 and (7.4) imply that

lg“(D)I] =0

in probability. Hence, the conditions of Lemma 4.2 with ¢ = 1 (and therefore any
a > 0 due to similarity) are satisfied. This completes the proof.

8. Conclusions.

The necessity of condition (1.6) for stability of stochastic networks is an im-
portant open problem. The relaxed form (1.8) of condition (1.6) makes it very
plausible that some form of necessity indeed holds. Some results in this direction
were recently obtained in [7] and [13].
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