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Abstract— We consider a model where multiple queues are
served by a server whose capacity varies randomly and asyn-
chronously with respect to different queues. The problem is to
optimally control large deviations of the queues in the following
sense: find a scheduling rule maximizing

min
i

[

lim
n→∞

−1

n
log P (aiQi > n)

]

, (1)

where Qi is the length of i-th queue in a stationary regime, and
ai > 0 are parameters. Thus, we seek to maximize the minimum
of the exponential decay rates of the tails of distributions of
weighted queue lengthsaiQi. We give a characterization of the
upper bound on (1) under any scheduling rule, and of the lower
bound on (1) under theexponential(EXP) rule. For the case of
two queues, we prove that the two bounds match, thus proving
optimality of EXP rule in this case.

The EXP rule is not asymptotically invariant with respect to
scaling of the queues, which complicates its analysis in large
deviations regime. To overcome this, we introduce and prove
a refined sample path large deviations principle, or refined
Mogulsky theorem, which is of independent interest.

I. I NTRODUCTION

The model we consider in this paper is motivated primary
by the problem of scheduling transmissions of multiple data
users (flows) sharing the same wireless channel (server).
As an example, one can think of the following scenario:
a wireless access point, or base station, receives data traffic
flows destined to several different mobile users, and needs
to schedule data transmissions to the users over a shared
wireless channel, so that the channel is used efficiently. (Cf.
[3], [1], [15] for a more detailed discussion of this scenario.)
The distinctive feature of this model, which separates it
from more “conventional” queueing models, is the fact that
the capacity (service rate) of the channel varies with time
randomly andasynchronouslywith respect to different users.

A little more precisely (but still informally), the model
is as follows. There areN exogenous input (traffic) flows,
which are queued in separate (infinite capacity) buffers,
before they can be served by a channel. Time is divided into
slots. The channel can serve only one of the flows in one
slot. The “aggregate state” of the channel varies randomly
from slot to slot. If the channel state in a given slot ism and
flow i is chosen for service in this slot, the service rate is
µm

i ≥ 0, i.e.,µm
i customers (bits of data) of flowi are served

(transmitted) and leave the system. This and related models
received a significant amount of attention in recent years (cf.
[13] for an overview). It is well known that efficient schedul-
ing rules cannot be “channel state oblivious.” However, it

is also known that large classes of rather “parsimonious”
algorithms, making scheduling decisions based only on the
current channel state and current queue lengths (and/or
current head-of-the-line queueing delays) information can
in fact achieve certain notions of efficiency. For example,
MaxWeight-type algorithms (cf. [2] and references therein)
and Exponential (EXP) algorithm [9] arethroughput optimal
in the sense that they ensure stochastic stability of the queues
as long as such is feasible at all, under any rule. Also, both
MaxWeight and EXP rules exhibit optimal behavior under
heavy traffic conditions (see [13], [10]).

In this paper we would like to address the following issue.
Suppose we want to find a scheduling algorithm (rule), or
queueing discipline, under which the following Quality-of-
Service condition is satisfied:

P{Qi > Bi} ≤ δi , i = 1, . . . , N , (2)

whereQi is the steady state queue length for flowi, Bi > 0
is a predefined threshold, andδi is the maximum acceptable
probability of queue length exceeding the threshold. (This
problem appears in a variety of applications, cf. [4], [11],
[12] for a further discussion and reviews.)

If thresholdsBi are “large,” then conditions (2) can be
“approximately” replaced by the following asymptotic -
“tail” - conditions

β(Qi) ≥ ai , i = 1, . . . , N , (3)

where we use the notation

β(X)
.
= lim

n→∞
−

1

n
logP (X > n) (4)

for the exponential decay rate of the tail of distribution of
random variableX (assuming the above limit exists), and

ai = − log(δi)/Bi.

This is precisely what we will do in this paper.We consider
the problem of finding a scheduling rule such that the tail
conditions (3) are satisfied for some fixed set of positive
parametersai.

This problem in turn is equivalent to solving the following
optimizationproblem

maximize min
i=1,...,N

a−1
i β(Qi) , (5)

where the maximization is over all scheduling disciplines.
Indeed, a discipline satisfying (3) exists if and only if the



maximum in (5) is1 or greater (and the maximum is attained,
to be precise). Finally, if we denote by

Q∗
.
= max

i
aiQi

the maximal weighted queue length, and observe that
mini a

−1
i β(Qi) = β(Q∗), we see that the problem (5) is

equivalent to
maximize β(Q∗) . (6)

To summarize,we want to find a scheduling rule solving
problem (6), i.e. a rule maximizing the exponential decay
rate of the tail of the distribution of the maximal weighted
queue lengthQ∗, with some fixed “weights”ai > 0.

In the case when channel isnot time-varying, i.e., there is
only one channel state and therefore the (potential) service
rates µi are constant, our model essentially fits into the
framework of [11], where, in particular, it is proved that
an extremely simple rule always choosing for service the
queue maximizingaiQi is an optimal solution to problem
(5). (This result was extended in [12] to a queueing network
setting.) However, for our model, where the channelis time-
varying, the above simple rulecannot possibly be optimal
for problem (5), because it ignores the current state of the
channel; moreover, except for degenerate cases, this rule is
not even throughput-optimal - it can make queues unstable
in cases when stability (under a different rule) is feasible.
The main goal of this paper is to establish optimality of the
EXP rule for the problem (5). The EXP rule is defined as
follows: when channel is in statem,

Serve flowi maximizing µm
i exp

(

aiQi

1 +Q
η

)

, (7)

where Q
.
= (1/N)

∑

i aiQi, and η ∈ (0, 1) is a fixed
parameter.

Problems like (5) are naturally approached using Large
Deviations (LD) theory techniques. It is well known in LD
theory that, roughly speaking, the value ofβ(Q∗) under a
given scheduling rule is determined by a “most likely path”
for the processQ∗(t) to reach leveln, starting from 0.
(See the definition ofβ(·) in (4).) Or, equivalently, this is
a most likely path for a “fluid-scaled” process(1/n)Q∗(nt)
to reach level1. In turn, the likelihoods of such rescaled
paths are determined by a sample path large deviations
principle (Mogulsky theorem) for the sequence of fluid-
scaled “driving processes” - namely, input flow and channel
state processes, asn→ ∞. (If the value of the corresponding
LD rate function of a path - or path “cost” - isc, then the
“probability” of the path is “approximately”e−cn, whenn
is large.)

One of the difficulties in the LD analysis of the EXP rule
is that the “standard” sample path large deviations principle
(SP-LDP) is not sufficient for “keeping track” of the path
costs. The basic reason for this is thatEXP rule is not
asymptotically invariant with respect to scaling of queue
lengths. An “asymptotically scaling-invariant” rule is roughly
such that, when queue lengths are large, a scaling of all
queue lengths by the same factor, at any given time, does

not change the scheduling choice. An example of scaling-
invariant rule is a MaxWeight-type algorithm, choosing for
service a flowi maximizing ciQ

γ
i µ

m
i , whereγ and all ci

are arbitrary positive parameters. A slightly more general
rule, maximizing[ciQ

γ
i + di]µ

m
i , wheredi’s are additional

parameters, is not scaling-invariant, but is asymptotically
scaling-invariant.

Fluid scaling is the “relevant” one to study the dynamics of
the queue lengths under an asymptotically scaling-invariant
rule in an (unscaled) time interval of the order ofO(n)
(because rescaling of queue lengths by1/n, for any n,
“preserves the information” on which scheduling choices
are made), and a standard SP-LDP gives the likelihood of
trajectories under this scaling. In contrast, the EXP rule is not
asymptotically scaling-invariant, as seen from the expression
in (7). Even if eventually we are interested in the dynamics
of the queue lengths under EXP rule over an interval of
the orderO(n), the “relevant” time and space scale which
determines such dynamics is of the orderO(nη). (The value
of Q is “typically” O(n). Therefore, the differences of the
order O(nη) between weighted queue lengthsaiQi result
in the orderO(1) ratios of the exponent terms in (7) for
different flows i. But, these ratios are what determines the
scheduling choices.) Consequently, we need the likelihoods
of (unscaled) trajectories over orderO(nη) time intervals;
fluid scaling, however, does not “preserve” this information.
To resolve this difficulty, we introduce and prove what
can be called a “refined” SP-LDP, or arefined Mogulsky
theorem(RMT). Using RMT we introduce the notions of a
generalized fluid sample path(GFSP) and itsrefined cost.
(Roughly speaking, the refined cost of a GFSP “takes into
account” the behavior of (unscaled) process trajectories on
time scales that are “finer” thanO(n).) We show that the
likelihood of building large value ofQ∗ under EXP rule can
be given in terms of GFSP refined costs.

Our RMT result (Theorem 2) and the notions of GFSP and
its refined cost are generic and are of independent interest.
In particular, as the above discussion demonstrates, they are
instrumental in LD analysis of scheduling rules that are not
asymptotically scaling-invariant.

The main results of the paper are as follows. We prove
the upper boundβ(Q∗) ≤ J∗, which holds under any
scheduling rule, whereJ∗ is defined in terms of lowest
cost “simple” (linear) paths to raiseQ∗. The proof of this
upper bound involves only a standard Mogulsky theorem
for the sequence of fluid-scaled input flow and channel
state processes. We introduce and prove a refined Mogulsky
theorem, and introduce the related notion of GFSP. We then
give the lower boundβ(Q∗) ≥ J∗∗, which holds for the EXP
rule, whereJ∗∗ is defined in terms of the lowest refined cost
of a GFSP to raiseQ∗. Finally, for the case of EXP rule
and two flows, we show that the lower and upper bounds on
β(Q∗) match, that isβ(Q∗) = J∗∗ = J∗, thus proving that
the EXP rule is indeed an optimal solution to problem (5)
in this case. (In fact, the complete proof of the latter fact
is given in [14]; in this paper, due to space limitation, we
only give an informal description of the key points of the



proof.) Proving equalityJ∗∗ = J∗ (and thus optimality of
the EXP rule) for arbitrary number of flows is a subject of
future work.

Previous work on the large deviations regime for queues
served by a time-varying server includes [16], which contains
results for a MaxWeight-type rule (maximizingQiµ

m
i ) in

a symmetric model. (“Symmetric” means: all input flows
have equal rate and are non-random; channel statem =
(m1, . . . ,mN ) is a direct product ofN independent and
identically distributed channel statesmi of the individual
flows.) The optimality problem (5) is not addressed in [16],
and the analysis relies in essential way on the symmetry
assumptions.

The rest of the paper is organized as follows. In Section II
we introduce basic notations, definitions, conventions used
in the paper. The system model, formal definition of the
EXP rule, and our main results (Theorem 1) regarding the
estimates ofβ(Q∗) under an arbitrary rule and EXP rule,
including optimality of EXP in the case of two flows, are
given in Section III. The necessary definitions of a sequence
of scaled processes and a standard SP-LDP (Mogulsky
theorem) are presented in Sections IV and V, respectively. In
Section VI we prove the boundβ(Q∗) ≤ J∗ (Theorem 1(i))
for any scheduling discipline. A refined Mogulsky theorem is
formulated and proved in Section VII. Section VIII contains
the definition of a GFSP and proof of the boundβ(Q∗) ≥
J∗∗ (Theorem 1(ii)) under EXP rule. Finally, Sections IX and
X contain an informal description of the proof of optimality
of EXP rule for two flows (Theorem 1(iii)). (The detailed
proof in given in [14].)

II. BASIC NOTATION AND DEFINITIONS

We denote byIR and IR+ the sets of real and real non-
negative numbers, respectively. The correspondingk-times
product spaces areIRk and IRk

+. Eucledian norm of vector
a ∈ IRk is ‖a‖.

The minimum of two real numbersξ1 and ξ2 is ξ1 ∧ ξ2.
and by⌊ξ⌋ and⌈ξ⌉ the integer part and the ceiling of a real
numberξ, respectively.

Let D be the space of RCLL functions (i.e. right con-
tinuous functions with left limits) defined on[0,∞) and
taking values inIR. Unless otherwise specified, we assume
D is endowed with the topology of uniform convergence
on compact sets (u.o.c.). As a measurable space, we always
assume thatD is endowed with theσ-algebra generated by
the cylinder sets. ByA we denote the subset of absolutely
continuous functions inD, and byA0 ⊂ A the subset of
functionsh(·) with h(0) = 0. For any function spaceS, and
any0 ≤ c < d, ζd

cS denotes the space of functions inS with
the domain “truncated” to[c, d]. The subspaces and spaces
with truncated domains inherit the topology andσ-algebra of
D. Given any spaceS, we assume that thek times product
spaceSk has the product topology and productσ-algebra
defined in the natural way.

For anys ≥ 0 and h = (h1, . . . , hk) ∈ Dk [or ζd
cD

k]],

we define the norm

||h||s
.
= max

i=1,...,k
sup
t≤s

|hi(s)|.

Thus the u.o.c. convergence inDk [or ζd
cD

k] is equivalent
to convergence in norm|| · ||s for all s > 0.

We define the scaling operatorΓc, c > 0, for h ∈ Dk as
follows:

(Γch)(t)
.
=

1

c
h(ct) . (8)

For a functionh ∈ D, we define the domain truncation
operatorζd

c , for 0 ≤ c < d, in the natural way:

ζd
c h ∈ ζd

cD and (ζd
c h)(t) = h(t).

For h ∈ D, and 0 ≤ c < d, we also define operator̄ζd
c

(which is a simultaneous domain truncation and shift, as well
as recentering) as follows:

ζ̄d
c h ∈ ζd−c

0 D and (ζ̄d
c h)(t) = h(c+ t) − h(c).

For a set of functions, operatorsζd
c and ζ̄d

c are applied
componentwise.

We use symbol⇒ for the weak convergence of determin-
istic functionsin the spaceD̄, which is the space of RCLL
functions taking values in the set̄IR of real numbers extended
by including +∞ and −∞ (with the natural topology on
ĪR). If h, g ∈ D̄, thenh ⇒ g meansh(t) → g(t) for every
t > 0 whereg is continuous. (Convergence att = 0 is not
required.) The weak convergence⇒ of functions in D̄k is
understood component-wise.

Let Ω
.
= (Ω,F , P ) be a probability space. We assume

thatΩ is large enough to support all the independent random
processes that we use in the paper. Given any subsetB of
a topological space, we usēB andB◦ to denote its closure
and interior respectively.

Typically, we follow the convention of using bold font
for stochastic processes and Roman font for deterministic
functions, including realizations of the random processes.

The following is the standard definition of a large deviation
principle [6, p.5].

Definition 1: (LDP)Let X be a topological space andB
a σ-algebra onX (which is not necessarily the Borelσ-
algebra). A sequence of random variables{Xn} on Ω taking
values inX is said to satisfy the LDP with good rate function
I if for all B ∈ B,

lim sup
n→∞

1

n
logP (Xn ∈ B) ≤ − inf

x∈B̄
I(x),

and

lim inf
n→∞

1

n
logP (Xn ∈ B) ≥ − inf

x∈B◦

I(x),

whereI : X → IR ∪ {∞} is a function with compact level
sets.



III. T HE MODEL AND MAIN RESULTS

A. The model.

The system hasN input flows, consisting of discrete
customers, which need to be served by a singlechannel
(or server). We will denote byN both the set of flows
{1, . . . , N} and its cardinality. Each flow has its own queue
where customers wait for service. (Sometimes, we use terms
“flow” and “queue” interchangeably.)

The system operates in discrete time. A time interval[t, t+
1), with t = 0, 1, 2, . . ., we will call the time slott. In each
time slot the channel can be in one out of the finite set
M = {1, . . . ,M} of channel states, and it can pick one of
the flows for service. If in a given time slot the channel is
in statem ∈ M and flow i ∈ N is chosen for service, then
the integer numberµm

i ≥ 0 customers are served from the
corresponding queuei (or the entire queuei content, if it
is less thanµm

i ). Thus, associated with each channel state
m ∈M is the fixed vector of service rates(µm

1 , . . . , µ
m
N ).

The channel statem(t) in each time slott is drawn
independently according to some probability distributionπ =
(π1, . . . , πM ). Without loss of generality, we can and will
assume thatπm > 0 for all statesm. (The i.i.d. assumption
for the sequence of channel states is to simplify notation
and exposition. All our results are easily generalized for
example to the case when the random channel state process
m(t), t = 0, 1, 2, . . ., is an irreducible discrete time Markov
chain (cf. [7]) with the finite state spaceM .)

Denote byAi(t) the number of typei customers arrived
in time slot t = 1, 2, . . .. We will adopt a convention that
the customers arriving in slott are immediately available for
service in this slot. We will assume that all arrival processes
are mutually independent, each sequenceAi(t), t = 1, 2, . . .,
is i.i.d., with finite exponential moments

EeθAi(1) <∞, ∀θ ≥ 0, ∀i,

and, finally, that eachAi(1) is unbounded. (The existence
of exponential moments assumption is essential. The un-
boundedness ofAi(1) is not essential at all, and assumed
to simplify exposition. The flow independence and i.i.d.
assumptions can be much relaxed, as long as the sequence
of scaled joint arrival processes satisfies an LDP, and “has
no memory” in the limit.)

Let us denote bȳλi
.
= EAi(1), i = 1, . . . , N , the mean

arrival rate for flowi, and assume that̄λi > 0 for all i.
The random process describing the behavior of the system

is

Q(t) = (Qi(t), i = 1, . . . , N), t = 0, 1, 2, . . .

whereQi(t) is the typei queue length at timet.

B. Scheduling Rules. Stability.

A scheduling rule, or aqueueing discipline, picks one flow
to be served in a given time slott, depending on the current
queue length vectorQ(t).

If we denote byDi(t) = min{Qi(t − 1), µ
m(t−1)
i }, the

number of typei customers served in the time slott − 1,
then according to our conventions, for eacht = 1, 2, . . .,

Qi(t) = Qi(t− 1) −Di(t) +Ai(t), ∀i.

Note, that in any time slott, Di(t) can be positive for at
most one of the flowsi, and it is zero for all other flows.

Obviously, under any scheduling rule,Q(·) is a Markov
chain with countable state space. We say that the system
under a given scheduling rule isstable if the Markov chain
has a finite subset of states which is reachable from any other
state with probability1, and each state within the subset is
positive recurrent. Stability implies existence of a stationary
probability distribution. (If the Markov chain happens to
be irreducible, stability is equivalent to ergodicity, andthe
stationary distribution is unique.)

Suppose a stochastic matrixφ = (φmi, m ∈ M, i =
1, . . . , N) is fixed, which means thatφmi ≥ 0 for all m and
i, and

∑

i φmi = 1 for everym. Given φ we define vector
v = (v1, . . . , vN ) = v(φ) as follows:

vi =
∑

πmφmiµ
m
i , i ∈ N. (9)

If each componentφmi of matrixφ is interpreted as a “long-
term” average fraction of time slots when flowi is chosen
for service, out of those slots when the channel state ism,
thenv(φ) is simply the vector of average service rates which
will be “given” to the flows. The set

V
.
= {w ∈ RN

+ | w ≤ v(φ) for someφ}

is called system(service) rate region.
It is well known (cf. [13] and references therein) that

condition λ̄ ∈ V is necessary for stability. Throughout this
paper we assume a slightly stronger condition:

λ̄ < v∗ for some v∗ ∈ V. (10)

(Under our arrival process assumptions, in particular the
unboundedness ofAi(1), it is not hard to show that condition
(10) is also necessary for stability.)

C. Exponential Scheduling Rule.

Let a set of positive parametersa1, . . . , aN andη ∈ (0, 1)
be fixed. The following scheduling rule is called Exponential
[9], or EXP: it chooses for service in time slott a single
queue

i ∈ i(Q(t)) = arg max
i
ci µi(t) exp

(

aiQi(t)

c+ [Q(t)]η

)

, (11)

where µi(t) ≡ µ
m(t)
i , Q(t)

.
= (1/N)

∑

i aiQi(t), and
c, c1, . . . , cN , are some additional positive parameters. (Ties
are broken in an arbitrary, but a priori fixed way, for example
in favor of the smallest index within seti(Q(t)).)

Proposition 1: [9] If condition (10) holds, the system
under the EXP rule is stable.

Proposition 1 says that the EXP rule isthroughput optimal
in the sense that it makes system stable as long as stability
is feasible at all.



In the rest of the paper, to simplify exposition, we assume
that parametersc, c1, . . . , cN are all equal to1. (Setting these
parameters to arbitrary values does not affect main results,
and it does not affect the proofs in any essential way.)

D. Main results.

The functionQ∗(t)
.
= maxi aiQi(t) of the stateQ(t)

will be called maximal weighted queue length. (The corre-
spondingrandom processesare denoted byQ(t) andQ∗(t),
t = 0, 1, 2, . . ..) It will be convenient to extend the domain
of Q(·) and Q∗(·) (as well as other functions introduced
later in the paper), which are naturally defined in discrete
time, to continuous timet by adopting the convention that
the functions are constant within each time slot[k, k + 1),
wherek is integer. Now we are in position to formulate our
main result.

Theorem 1:Suppose condition (10) is satisfied. Then, the
following holds.

(i) There existsT 0 ∈ (0,∞) such that for any scheduling
rule and anyt > T 0, we have the following lower bound:

lim inf
n→∞

1

n
logP

(

1

n
Q∗(nt) > 1

)

≥ −J∗ , (12)

whereJ∗ > 0 is defined and explained later in Section VI.
(ii) Consider the system under the EXP scheduling rule

and the Markov chainQ(·) being in a stationary regime
(which exists by Proposition 1). Then, we have the following
upper bound:

lim sup
n→∞

1

n
logP

(

1

n
Q∗(0) > 1

)

≤ −J∗∗ , (13)

whereJ∗∗, 0 ≤ J∗∗ ≤ J∗, is defined and explained later in
Section VIII (see (28)).

(iii) Consider the system with two flows,N = {1, 2},
under the EXP scheduling rule, in a stationary regime. Then,
J∗∗ = J∗ and therefore

lim
n→∞

1

n
logP

(

1

n
Q∗(0) > 1

)

= −J∗ . (14)

Theorem 1(iii) shows that, in the case of two flows, the
EXP rule is optimal in that it maximizes the exponential
decay rate of the stationary distribution of the maximal
weighted queue lengthQ∗(·). Extending Theorem 1(iii) to
arbitrary number of flows is a subject for future work.

IV. EXTENDED DESCRIPTION OF THE SYSTEM PROCESS.
SEQUENCE OF FLUID-SCALED PROCESSES

As formulation of Theorem 1 suggests (and is typical for
this type of large deviations results for queueing systems),
its proof involves considering a sequence of “fluid-scaled”
versions of the queue length processQ, namely the processes
ΓnQ = ((1/n)Q(nt), t ≥ 0), for n = 1, 2, . . .. In this
section we define this sequence formally. But first, we need
to introduce additional functions associated with the system
evolution.

For t ≥ 0 let

Fi(t)
.
=

⌊t⌋
∑

k=1

Ai(k) and F̂i
.
=

⌊t⌋
∑

k=1

Di(k)

denote the total number of flowi customers, respectively
arrived to and departed from the system by (and including)
time t, that is in the time slots1 ≤ k ≤ ⌊t⌋. (Recall our
convention, introduced in Section III-D, that we extend the
domain of discrete time processes to continuous timet ≥ 0.)
Also, denote byGm(t) the total number of time slots0 ≤
k ≤ ⌊t−1⌋ when the channel was in statem; and byĜmi(t)
the number of time slots0 ≤ k ≤ ⌊t − 1⌋ when the server
state wasm and flow i was chosen for service.

The following set of functions describes the evolution of
the system in time interval[0,∞):

(Q,Q∗, F, F̂ , G, Ĝ),

where

Q = (Q(t) = (Q1(t), . . . , QN (t)), t ≥ 0),

Q∗ = (Q∗(t) ≡ max
i
Qi(t), t ≥ 0),

F = (F (t) = (F1(t), . . . , FN (t)), t ≥ 0),

F̂ = (F̂ (t) = (F̂1(t), . . . , F̂N (t)), t ≥ 0),

G = ((Gm(t), m ∈M), t ≥ 0) ,

Ĝ = ((Ĝmi(t), m ∈M, i ∈ N), t ≥ 0).

The set of functions(Q,Q∗, F, F̂ , G, Ĝ) clearly has redun-
dancies. The entire set is uniquely determined by the initial
stateQ(0), the realizationsF andG of the input flow and
channel state processes, which “drive” the system, and the
realizationĜ, which determines the scheduling choices.

In what follows, we will use bold font
(Q,Q∗,F, F̂,G, Ĝ) when we view this set of functions as
a random process, and use Roman font when we view it as
a deterministic sample path.

For each indexn = 1, 2, . . ., consider a (stochas-
tically equivalent) version of our system, and denote
by (Q(n),Q∗

(n),F(n), F̂(n),G(n), Ĝ(n)) the corresponding
process. The corresponding sequence of fluid-scaled pro-
cesses is defined as

(q(n),q∗
(n), f (n), f̂ (n),g(n), ĝ(n)))

.
= Γn(Q(n),Q∗

(n),F(n), F̂(n),G(n), Ĝ(n))), n = 1, 2, . . . .

V. SAMPLE PATH LARGE DEVIATIONS PRINCIPLE:
MOGULSKY THEOREM

The sequence of processes(f (n),g(n)) is known to satisfy
a sample path LDP, described in this section.

Our assumptions on the input flows imply the following,
for each flowi. The large deviations rate function, associated
with the distribution ofAi(1), is

Li(ξ)
.
= sup

θ≥0
[θξ − logEeθAi(1)], ξ ≥ 0.

Function Li(·) is a non-negative finite convex continuous
function on[0,∞), attaining its unique minimum0 at point
λi, i.e.

Li(ξ) = 0, and Li(ξ) > 0 for ξ 6= λi,



and it is superlinear on infinity, i.e.

Li(ξ)/ξ → ∞, ξ → ∞.

We adopt the convention thatLi(ξ) = +∞ for ξ < 0.
For a vectory ∈ RN we will use notation

L(f)(y)
.
=
∑

i

Li(yi).

(Subscript(f) indicates that this is the rate function associ-
ated with input flows.)

The relative entropy of a probability distributionγ =
(γ1, . . . , γM ) with respect to the distributionπ we denote
by

L(g)(γ)
.
=
∑

m∈M

γm log
γm

πm
.

According to Sanov theorem (cf. Theorem 2.1.10 in [6]),
L(g)(·) is the large deviations rate function for the sequence
of empirical distributions of the channel state overn trials
(with n → ∞). FunctionL(g)(·) is (finite) continuous and
convex on the simplex of probability distributionsγ; we
adopt the convention thatL(g)(·) is defined onRM and is
+∞ outside the above simplex.

For a pair(f, g) of vector-functionsf ∈ DN andg ∈ DM ,
its costJt(f, g) in time interval[0, t] is defined as

Jt(f, g)
.
=

∫ t

0

[L(f)(f
′(s)) + L(g)(g

′(s))]ds, (15)

if ζt
0(f, g) ∈ ζt

0A
N+M
0 , and as+∞ otherwise. More gen-

erally, if functionsf and g have a bounded domain[0, d],
that is(f, g) ∈ ζd

0D
N+M , the costJt(f, g) is still defined as

above, as long ast ≤ d.
The following is (a form of) Mogulsky theorem (cf.

Theorem 5.1.2 in [6]).
Proposition 2: Consider a sequence of scaled processes

(f (n), g(n)), n = 1, 2, . . ., as defined in Section IV. Then,
for every c ≥ 0 and t ≥ 0, the sequence of processes
ζ̄c+t
c (f (n), g(n)) satisfies the LDP with good rate function
Jt(·). In more detail, for any measurableB ⊆ ζt

0D
N+M , we

have the following asymptotic (respectively lower and upper)
bounds:

lim inf
n→∞

1

n
logP (ζ̄c+t

c (f (n), g(n)) ∈ B)

≥ − inf{Jt(h) | h ∈ B◦} , (16)

lim sup
n→∞

1

n
logP (ζ̄c+t

c (f (n), g(n)) ∈ B)

≤ − inf{Jt(h) | h ∈ B̄} . (17)

VI. SIMPLE TRAJECTORIES TO RAISE MAXIMAL

WEIGHTED QUEUE LENGTH. LD LOWER BOUND UNDER

ANY SCHEDULING RULE

Let γ = {γm,m ∈ M} be some (“twisted”) probability
distribution on the set of channel states, not necessarily equal
to the distributionπ. We denote byVγ the corresponding
“twisted” rate region, defined the same way asV but with π

replaced byγ. (ThusV = Vπ.) In addition, for every non-
zero subsetN ′ ⊆ N , we denote byVγ(N ′) the projection
of Vγ onto the corresponding subspaceR|N ′|, where|N ′| is
the cardinality of setN ′. We denote byV ∗

γ (N ′) the subset
of maximal elements ofVγ(N ′), that is

V ∗
γ (N ′)

.
= {v ∈ Vγ(N ′) | v ≤ w ∈ Vγ(N ′) impliesw = v}.

For a fixed non-zero subsetN ′ ⊆ N , consider pairs of a
distributionγ and a vectorλ = {λi, i ∈ N ′} such that there
exists vectorµ = {µi, i ∈ N ′} ∈ V ∗

γ (N ′) for which the
following condition holds:

ai(λi − µi) = ℓ > 0, ∀i ∈ N ′.

(Note that if such vector̂µ exists, it is unique, because this
is the point where the ray emanating from pointλ in the
direction given by{−1/ai, i ∈ N ′}, hits regionVγ(N ′).)
Let us denote

J∗(N
′)
.
= inf

L(g)(γ) +
∑

i∈N ′ Li(λi)

ℓ
,

where theinf is taken over all pairs ofγ andλ, as specified
above.

Finally, we define

J∗ = min
N ′⊆N, N ′ 6=∅

J∗(N
′).

We now give the interpretation of the above definitions.
Let N ′ = N for simplicity. Consider the process with large
index n on a (large) time interval[0, nt] for some fixedt.
Suppose the empirical distribution of the channel states in
this interval is a “twisted” distributionγ, possibly different
from π. Moreover, we assume that the fluid-scaled channel
state process trajectory is “close to” linear:g(n)(s) ≈ g(s) ≡
γs, 0 ≤ s ≤ t. Suppose also that the fluid-scaled input flow
trajectory is “close to” linear:f (n)(s) ≈ f(s) ≡ λs, 0 ≤ s ≤
t, for some vectorλ not necessarily equal to the average rate
vector λ̄. The cost of this linear trajectory of the input and
channel state processes isJt(f, g) = [L(f)(λ) + L(g)(γ)]t.
(In other words, the “probability” of(f (n),g(n)) being close
to (f, g) in the interval[0, t] is roughly exp[−n(L(f)(λ) +
L(g)(γ))t].) Suppose now that vectorsγ and λ satisfy the
conditions specified above, with the corresponding vector
µ. Then, a scheduling rule can be chosen (at least in
principle) such that the (scaled) service process trajectory
is approximately linear:̂f (n)(s) ≈ f̂(s) ≡ µs, 0 ≤ s ≤ t.
Then, if q(n)(0) = 0, the queue length trajectory in[0, t] is
approximately linearly increasing as well, and moreover,

aiq
(n)
i (s) ≈ aiqi(s) = ℓs for eachi.

This means that for all flows,aiq
(n)
i (s) is approximately

equal to their maximumq(n)
∗ (s) at any times, and q(n)

∗ (s)
reaches levelℓt at timet. Thus, the constructed linearsimple
trajectory (f, g, q), which is determined by the vectorsλ, γ
andµ, has the “unit cost of raisingq∗(s)” equal to[L(g)(γ)+
L(f)(λ)]/ℓ. Therefore, the valueJ∗ defined above in this
section is the minimum possible unit cost of raisingq∗(s)
along a simple trajectory.



The key property of the above construction of a simple
trajectory(f, g, q) is as follows. Given vectorsλ andγ, the
corresponding vector of service ratesµ is optimal in the
sense that allaiqi(s), and thenq∗(s), simultaneously reach
level ℓt at time t. Using the condition thatµ is a maximal
element ofVγ(N ′), it is easy to see that if(f, g) is the
trajectory of input and channel state processes “offered” to
the system, thenunder any scheduling ruleandfor any initial
conditionq(0), at least one of theaiqi(t), and thenq∗(t), is
ℓt or greater. Thus, for any scheduling rule,J∗ serves as an
upper bound of the minimum possible cost of raising (scaled)
maximal weighted queue lengthq∗(·) to level 1.

Our simple trajectory construction is in a sense analogous
to, and serves the same purpose as, those in [11], [12]. It
is however necessarily more involved, because in our case
the rate region is more general convex, while in [11], [12]
the outer boundary of the rate region is a hyperplane (which
implies simple “work conservation” properties).

A. LD lower bound under any scheduling rule: Proof of
Theorem 1(i).

The proof formalizes the argument presented above in
this section, using the construction of a simple trajectory
and Mogulsky theorem (Proposition 2). This formalization
is done analogously to the proof of Theorem 3.2(ii) in [12]
(or proof of Theorem 6.8(ii) in [11]). We omit details.

VII. R EFINED MOGULSKY THEOREM (UPPER BOUND)

From the standard large deviations principle for scalar
random variables, we have the following bound, recorded
here for future reference: for any interval[ξ1, ξ2], where
0 ≤ ξ1 < ξ2 ≤ +∞, and any fixedδ > 0, there exists a
sufficiently largeτ > 0 such that, uniformly on non-negative
0 ≤ t1 < t2 satisfyingt2 − t1 ≥ τ :

logP{
1

t2 − t1
[Fi(t2) − Fi(t1)] ∈ [ξ1, ξ2]}

≤ −

[

min
[ξ1,ξ2]

Li(ξ) − δ

]

(t2 − t1). (18)

Note that in the special case whenξ1 > λ̄i, (18) takes the
form

logP{
1

t2 − t1
[Fi(t2) − Fi(t1)] ≥ ξ1}

≤ − [Li(ξ1) − δ] (t2 − t1). (19)

If B ⊂ RM
+ is compact, then according to Sanov theorem

(cf. Theorem 2.1.10 in [6]), we can record the following
property analogous to (18): for any fixedδ > 0, there exists a
sufficiently largeτ > 0 such that, uniformly on non-negative
integers0 ≤ t1 < t2 satisfyingt2 − t1 ≥ τ , we have

logP{
1

t2 − t1
[G(t2) −G(t1)] ∈ B}

≤ −

[

min
γ∈B

L(g)(γ) − δ

]

(t2 − t1). (20)

We will need the following generalization of the definition
of cost Jt(f, g) (see (15)). For any constantC > 0 and a

pair (f, g) of vector-functionsf ∈ DN and g ∈ DM , we
define functionJ (C)

t (f, g), t ≥ 0, as follows:

J
(C)
t (f, g)

.
=

∫ t

0

[
N
∑

i=1

Li(f
′
i(s) ∧C) + L(g)(g

′(s))]ds, (21)

if ζt
0(f, g) ∈ ζt

0A
N+M
0 , and is+∞ otherwise.

Suppose we have an integer functionu(n) ↑ ∞ asn→ ∞,
which is sublinear inn, i.e., u(n)/n ↓ 0. (An example of
such a function isu(n) = ⌈nα⌉, with 0 < α < 1.) For
any (non-decreasing) RCLL vector-functionh ∈ DN+M , and
eachn, we denote byUnh the continuous piece-wise linear
function obtained fromh as follows: we divide the time
interval [0,∞) into subintervals of equal lengthu(n)/n, that
is [0, u(n)/n], [u(n)/n, 2u(n)/n], . . . and linearizeh within
each subinterval.

Theorem 2:Consider a sequence of scaled processes
(f (n), g(n)), n = 1, 2, . . ., as defined in Section IV. Let
t > 0 be fixed. Suppose, for eachn there is a fixed
measurableB(n) ⊆ ζt

0D
N+M , which is a subset of the set

of feasible realizations of(f (n), g(n)) in [0, t]. Then, for any
fixed functionu(n) as defined above, we have the following
asymptotic upper bound:

lim sup
n→∞

1

n
logP (ζt

0(f
(n),g(n)) ∈ B(n))

≤ − lim sup
C→∞

lim inf
n→∞

inf{J
(C)

t(n)(U
nh) | h ∈ B(n)} , (22)

wheret(n) is the largest multiple ofu(n)/n not greater than
t, i.e.,

t(n) .
=
u(n)

n
⌊

t

u(n)/n
⌋. (23)

Proof. To avoid clogging notation, assume thatt(n) = t
for eachn, i.e., the time interval[0, t] is divided into the
integer numbertn/u(n) of u(n)/n-long subintervals.

Given the properties of rate functionsLi, the functional
J

(C)
t (·) is non-decreasing inC whenC is sufficiently large,

namely forC ≥ maxi λ̄i. Therefore, it suffices to show that
for a fixedC > maxi λ̄i, we have

lim sup
n→∞

1

n
logP (ζt

0(f
(n),g(n)) ∈ B(n))

≤ − lim inf
n→∞

inf{J
(C)
t (Unh) | h ∈ B(n)} . (24)

The rest of the proof is a fairly straightforward combinatorial
estimate.

Let us fix a smallδ > 0. We choose a large integerK >
0 and divide interval[0, C) into K subintervals, eachǫ =
C/K-long, namely[kǫ, (k + 1)ǫ) with k = 0, 1, . . . ,K − 1.
The k-th interval defined above, withk = 0, 1, . . . ,K − 1,
we will call k-th “bin”. In addition, the interval[C,∞) we
also call a bin and give it the indexk = K. We will choose
K to be large enough so that the total variation of each
function Li in each of the binsk = 0, 1, . . . ,K − 1 is less
thanδ/(4N). We will chooseτ > 0 such that the estimates
(18)-(19) hold for alli and for the intervals[ξ1, ξ2] in (18)
being closures of all binsk = 0, 1, . . . ,K − 1 and with ξ1



in (19) replaced byC; in addition, we require that (18)-(19)
hold with δ replaced byδ/(4N).

Let us divide the simplex of all vectors representing
probability distributionsγ on the set of channel statesM
into K + 1 non-intersecting subsets (“bins”), such that the
total variation ofL(g)(γ) within the closure of each bin is at
mostδ/4. (The latter can always be achieved by makingK
larger, if necessary.) We also will increaseτ , if necessary, to
make sure that the estimate (20) holds for all the bins, with
δ replaced byδ/4.

Let Ĵ denote thelim inf in the RHS of (24). From now on
in this proof we will only consider sufficiently largen such
that inf{J

(C)
t (Unh) | h ∈ B(n)} > Ĵ − δ, andu(n) > τ ,

whereτ is the one chosen above.
Consider a fixedn, a vector-functionh = (fi, i =

1, . . . , N ; g) ∈ B(n), and its piece-wise linearizationUnh =
(Unfi, i = 1, . . . , N ;Ung). Recall that each component
of Unh has a constant non-negative derivative in each of
the tn/u(n)-long time-subintervals of[0, t]. Thus, vector-
function h can belong to one of the finite number[(K +
1)(N+1)]tn/u(n) of “aggregate bins,” according to which bins
the (constant) slopes of the componentsUnfi and Ung
belong to, in each of the time-subintervals.

Now, consider any fixed aggregate bin, let us call itBab,
containing at least one function belonging toB(n), and let us
pick some fixedh ∈ B(n). (Recall thatJ (C)

t (Unh) > Ĵ−δ.)
Then, using estimates (18),(19) and (20), for each of the time
subintervals (more precisely - for each of the corresponding
unscaledu(n)-long intervals), we obtain the following upper
bound:

logP{ζt
0(f

(n),g(n)) ∈ Bab}

≤ −[J
(C)
T (Unh)n− u(n)δ

tn

u(n)
] ≤ −Ĵn+ δn+ δtn .

Since the total number of aggregate bins is
exp{ (N+1) log(K+1)t

u(n) n} with [(N +1) log(K+1)t]/u(n) →
0 asn→ ∞, we have

lim sup
n→∞

1

n
logP (ζt

0(f
(n),g(n)) ∈ B(n)) ≤ − Ĵ + δ(1 + t) .

Sinceδ can be chosen arbitrarily small, the proof is complete.

VIII. L ARGE DEVIATIONS UPPER BOUND VIAREFINED

MOGULSKY THEOREM: PROOF OFTHEOREM 1(II )

From now on we specify the functionu(n), defined in
Section VII, to be

u(n) = ⌈nα⌉, n = 1, 2, . . . ,

for some fixedα ∈ (0, η). Also, consider some fixed
sequenceCn, n = 1, 2, . . ., such thatCn > 0 andCn ↑ ∞.

Definition 2: Suppose an increasing subsequenceN of
the sequence of positive integers is fixed, and the following
conditions (i) and (ii) hold.

(i) For each n ∈ N , there is a fixed (feasible) re-
alization (q(n), q

(n)
∗ , f (n), f̂ (n), g(n), ĝ(n)) of the process

(q(n),q∗
(n), f (n), f̂ (n),g(n), ĝ(n)).

(ii) As n→ ∞, we have the weak convergence

(q(n), q
(n)
∗ , f (n), f̂ (n), g(n), ĝ(n)) ⇒ (q, q∗, f, f̂ , g, ĝ) (25)

for some set of functions(q, q∗, f, f̂ , g, ĝ), and the weak
convergence

J̄ (Cn) .
= (J

(Cn)

t(n) [Un(f (n), g(n))], t ≥ 0) ⇒ J̄ = (J̄t, t ≥ 0)
(26)

for some non-negative non-decreasing functionJ̄ .
Then, the entire construction

ψ = [N ; (q(n), q
(n)
∗ , f (n), f̂ (n), g(n), ĝ(n)), J̄ (Cn), n ∈ N ;

(q, q∗, f, f̂ , g, ĝ); J̄ ]

will be called ageneralized fluid sample path(GFSP). The
non-decreasing function̄J will be called the refined cost
functionof the GFSP.

Remark. A set of functions(q, q∗, f, f̂ , g, ĝ), defined as a
limit of a sequence of fluid scaled trajectories of a process,
is sometimes called afluid sample path(FSP), cf. [12].
Therefore, the term “generalized” in the above definition
of a GFSP refers to the fact that GFSP contains not only
the “fluid limit” of a (pre-limit) sequence, but the sequence
itself. Moreover, the pre-limit sequence is required to satisfy
condition (26).

Given that (unscaled) functionŝF (n)
i , G(n)

m , Ĝ(n)
mi obvi-

ously have uniformly bounded increments within one time
slot, it is easy to observe that GFSP componentsf̂ , g, ĝ
are non-decreasing Lipschitz continuous (and then absolutely
continuous) functions witĥf(0) = 0, g(0) = 0, ĝ = 0.

For a givin GFSP, if we denoteT ∗ = sup{t | ‖f(t)‖ <
∞, J̄t < +∞}, the following is easy to verify:‖q(t)‖ <∞
for all t < T ∗; if t1 andt2 are points of continuity off (or,
equivalently, ofq), and0 ≤ t1 < t2 < T ∗, then

J̄t2 ≥ Jt2(f, g), J̄t2 − J̄t1 ≥ Jt2(f, g) − Jt1(f, g). (27)

Consequently bothf and q are absolutely continuous in
the interval [0, T ∗), with f(0) = 0, and therefore the
convergence in (25) is in fact uniform on compact subsets
of [0, T ∗). (It also follows that (27) holds for any0 ≤ t1 <
t2 < T ∗.)

The following simple facts (in Lemmas 1 and 2 below)
have straightforward proofs and recorded for future refer-
ence.

Lemma 1:Suppose, there exists a sequence
{(f (n), g(n)), n ∈ N} of feasible realizations of the
(scaled) input and channel state processes, such that

(f (n), g(n)) ⇒ (f, g).

Then, there exists a GFSP, having(f, g) as its components
and such that its refined cost function̄J is equal to the cost
function (Jt(f, g), t ≥ 0).

Lemma 2: [Compactness.]Suppose, a sequence of GFSP
kψ, k = 1, 2, . . ., is such that the values of‖kq(0)‖ are
uniformly bounded. Then, there exists a GFSPψ such that,
along some subsequence ofk,

[(kq, kq∗,
kf, kf̂ , kg, kĝ); kJ̄ ] ⇒ [(q, q∗, f, f̂ , g, ĝ); J̄ ].



Let J∗∗ denote the lowest refined cost of a GFSP which
“brings” q∗(t) to level1 from the zero initial stateq(0) = 0.
Namely,

J∗∗
.
= inf

t≥0
J∗∗,t, (28)

where

J∗∗,t
.
= inf{J̄t | ψ : q(0) = 0, q∗(t) ≥ 1}. (29)

From the definition ofJ∗ in Section VI (via the construction
of simple trajectories) and Lemma 1, we conclude that

J∗∗ ≤ J∗, (30)

because we can always construct a GFSP for which(f, g) is
a simple trajectory withq∗(t) ≥ 1 for somet > 0, and with
Jt(f, g) being arbitrarily close toJ∗.

The goal of this section is to establish the following fact,
which is Theorem 1(ii) rephrased in terms of the sequence
of fluid-scaled processes.

Theorem 3:For each parametern = 1, 2, . . ., consider
a version of the system in a stationary regime. Then, the
corresponding sequence of fluid-scaled processes is such that

lim sup
n→∞

1

n
logP

(

q∗
(n)(0) > 1

)

≤ −J∗∗ . (31)

We will not give a complete proof of Theorem 3 here. We
only provide a key step of such proof, Theorem 4 below,
which demonstrates how Theorem 2 is applied to obtain LD
upper bounds for the sequence of fluid-scaled processeson a
finite time interval, in terms of GFSPs and their refined costs.
The rest of the proof of Theorem 3 is carried out analogously
to the proof of a similar result in Section 10 of [12], which
uses classical Wentzel-Freidlin constructions to “translate”
LD results on a finite time interval into the LD results in a
stationary regime. (In addition, the proof of Theorem 3 will
utilize some of the properties of local fluid sample paths,
defined and analyzed later in this paper.)

Theorem 4:For a fixedT ≥ 0, let us denote

J∗∗,≤T
.
= inf{J̄t | ψ : q(0) = 0, q∗(t) ≥ 1 for somet ≤ T}

≡ inf
t≤T

J∗∗,t.

Then, we have:

lim
c↓0

lim sup
n→∞

1

n
log sup

‖q(n)(0)‖≤c

P

(

sup
t∈[0,T ]

q∗
(n)(t) > 1

)

≤ −J∗∗,≤T . (32)

(Thesup over‖q(n)(0)‖ ≤ c is supremum over all processes
with non-random initial state satisfying this condition.)

Proof. We have

sup
‖q(n)(0)‖≤c

P

(

sup
t∈[0,T ]

q∗
(n)(t) > 1

)

≤ P
(

(f (n),g(n)) ∈ B(n,c)
)

,

where

B(n,c) .
= {(f (n), g(n)) | ∃q(n)(0), t ≤ T,

such that‖q(n)(0)‖ ≤ c andq(n)
∗ (t) > 1}.

By Theorem 2,

lim sup
n→∞

1

n
logP

(

(f (n),g(n)) ∈ B(n,c)
)

≤ − lim sup
C→∞

lim inf
n→∞

inf{J
(C)

t(n)(U
nh) | h ∈ B(n,c)} , (33)

wheret(n) is as in (23), but witht replaced byT in the RHS.
Using GFSP definition (and the fact that for largeC cost
J

(C)
t is non-decreasing inC), it is easy to see that thelim sup

in the RHS of (33), let us denote it byJ∗∗,≤T,c, is exactly
the lowest refined cost of a GFSP such that‖q(0)‖ ≤ c and
q∗(t) ≥ 1 for somet ≤ T . (We choose a subsequence with
infinitely increasingC to construct a GFSP with refined cost
J∗∗,≤T,c and satisfying the above conditions; at the same
time all such GFSP have the refined cost at leastJ∗∗,≤T,c.)
SinceJ∗∗,≤T,c is non-increasing inc, J∗∗,≤T,c ↓ J∗∗,≤T,0 ≡
J∗∗,≤T . (The fact that the limit ofJ∗∗,≤T,c cannot be strictly
greater thanJ∗∗,≤T,0 easily follows from Lemma 2.) This
completes the proof.

IX. L OCAL FLUID SAMPLE PATHS

In view of (30), to prove optimality of the EXP rule (or
any given rule) in the sense of (6), it suffices to show that
under this rule the equalityJ∗∗ = J∗ in fact holds. One
way to approach this is to show that assumptionJ∗∗ < J∗
leads to a construction of a simple trajectory (as defined in
Section VI) withunit cost(of raisingq∗(·) from 0 to 1) being
strictly less thanJ∗ - a contradiction.

Using this approach for the EXP rule naturally leads to
the notion of a local fluid sample path (LFSP), and its cost
function. The definition of the boundJ∗∗ in terms of GFSPs
and their refined costs, allows us to “properly” define LFSP
cost function.

Due to space limitation, in the rest of this section we
give an informal intuitive description of LFSPs. (Rigorous
definitions and results are given in [14].) For the purposes
of this discussion, let assume that EXP parameterη = 1/2,
and parameter0 < α < 1/2 is arbitrary.

Let us fix arbitrary numberS > 0. Suppose, we have
a GFSPψ such thatq∗(0) = 0 (which is equivalent to
q(0) = 0) and, for some finiteT > 0, q∗(T ) = 1 and
J̄T = J∗∗ + ǫ < J∗, for a smallǫ > 0. Then, for eachn,
breaking down the interval[0, T ] into subintervals of the
length of the ordern1/2, and working with the functions
q(n) and other components of GFSPψ, the following can
be shown. For every sufficiently largen, we can find an
interval [t

(n)
1 , t

(n)
2 ] within [0, T ], satisfying the following

conditions:

t
(n)
2 − t

(n)
1 = Sσn, σn

.
= [q̄(n)(t

(n)
1 )]1/2n1/2/n,

q
(n)
∗ (t

(n)
2 ) − q

(n)
∗ (t

(n)
1 ) > 0,

J̄
(Cn)

t
(n)
2

− J̄
(Cn)

t
(n)
1

q
(n)
∗ (t

(n)
2 ) − q

(n)
∗ (t

(n)
1 )

< J∗. (34)



We introduce rescaled functions as follows (the actual def-
inition in [14] is somewhat different), each defined fors ∈
[0, S]:

⋄q
(n)
i (s)

.
=

1

σn
[q

(n)
i (t

(n)
1 + σns) − q

(n)
∗ (t

(n)
1 )], i ∈ N,

⋄q
(n)
∗ (s)

.
= max

i
⋄q

(n)
i (s),

⋄f
(n)
i (s)

.
=

1

σn
[f

(n)
i (t

(n)
1 + σns) − f

(n)
i (t

(n)
1 )], i ∈ N,

⋄g
(n)
m (s)

.
=

1

σn
[g(n)

m (t
(n)
1 + σns) − g(n)

m (t
(n)
1 )], m ∈M.

Then we show that we can find a subsequence of{n} such
that

(⋄q
(n), ⋄q

(n)
∗ , ⋄f

(n), ⋄g
(n)) → (⋄q, ⋄q∗, ⋄f, ⋄g), (35)

where all functions are defined on the interval[0, S], all
functions in the RHS are absolutely continuous, and the
convergence is uniform. The 4-tuple(⋄q, ⋄q∗, ⋄f, ⋄g) is what
we will call an LFSP. It can be shown (using convexity of
the rate functionsL(f)(·) and L(g)(·), along with the fact
that nα/n = o(n1/2/n) asn→ ∞), that

lim inf
n→∞

σ−1
n [J̄

(Cn)

t
(n)
2

− J̄
(Cn)

t
(n)
1

] ≥ JS(⋄f, ⋄g). (36)

We then show that the constructed LFSP satisfies the follow-
ing conditions:

⋄q∗(S) − ⋄q∗(0) > 0, (37)

JS(⋄f, ⋄g) − J0(⋄f, ⋄g)

⋄q∗(S) − ⋄q∗(0)
< J∗, (38)

where (38) is obtained using bounds (34) and (36).
We also show (see [14]) that an LFSP satisfies a certain

set of differential inclusions, some of which a generic for
fluid limits (and LFSP is a fluid limit, although defined on
a “local” scale) and some are specific to EXP rule.

X. EXP RULE OPTIMALITY IN THE TWO FLOWS CASE

As described in the previous section, the assumptionJ∗∗ <
J∗ leads to the existence of LFSPs with (roughly speaking)
the unit cost of raising⋄q∗(·) being strictly less thanJ∗
(see (38)). It is shown in [14], that, in the case of EXP
scheduling rule and two flows, this fact (along with the
dynamic properties of LFSPs under EXP rule) allows us
to construct a simple trajectory (see Section VI) with unit
cost strictly less thanJ∗. This is a contradiction proving
Theorem 1(iii).
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