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Abstract—We consider a model where multiple queues are is also known that large classes of rather “parsimonious”
served by a server whose capacity varies randomly and asyn- algorithms, making scheduling decisions based only on the
chronously with respect to different queues. The problem is 0 ¢\, rent channel state and current queue lengths (and/or
optlmally control Iarge.dewatlons of thg gueues in the following current head-of-the-line queueing delays) information ca
sense: find a scheduling rule maximizing ) ’ 5 q 8 9 g _y

1 in fact achieve certain notions of efficiency. For example,

min | lim 710gP (a: Qs > N)] ) (1)  MaxWeight-type algorithms (cf. [2] and references theyein
where @; is the length ofi-th queue in a stationary regime, and f"‘”d Exponential (EXP) algorithm [9] a.tbroug.h.put optimal
a; > 0 are parameters. Thus, we seek to maximize the minimum I the sense that they ensure stochastic stability of theegie
of the exponential decay rates of the tails of distributions of as long as such is feasible at all, under any rule. Also, both
weighted queue lengths:;Q;. We give a characterization of the  MaxWeight and EXP rules exhibit optimal behavior under
upper bound on (1) under any scheduling rule, and of the lower  heayy traffic conditions (see [13], [10]).
bound on (1) under the exponential(EXP) rule. For the case of In this paper we would like to address the following issue
two queues, we prove that the two bounds match, thus proving ) - - )
optimality of EXP rule in this case. Suppose we want to find a scheduling algorithm (rule), or

The EXP rule is not asymptotically invariant with respect to  queueing discipline, under which the following Quality-of
scaling of the queues, which complicates its analysis in large Service condition is satisfied:
deviations regime. To overcome this, we introduce and prove
a refined sample path large deviations principle, orrefined P{Q;,>B;} <¢;,i=1,...,N (2)
Mogulsky theorem which is of independent interest. )
where(); is the steady state queue length for flows; > 0

. INTRODUCTION is a predefined threshold, adgis the maximum acceptable
The model we consider in this paper is motivated primarprobability of queue length exceeding the threshold. (This
by the problem of scheduling transmissions of multiple datproblem appears in a variety of applications, cf. [4], [11],
users (flows) sharing the same wireless channel (servef)2] for a further discussion and reviews.)
As an example, one can think of the following scenario: If thresholdsB; are “large,” then conditions (2) can be
a wireless access point, or base station, receives dati& trafapproximately” replaced by the following asymptotic -
flows destined to several different mobile users, and neetsil” - conditions
to schedule data transmissions to the users over a shared )
wireless channel, so that the channel is used efficiently. (C AQi) 2 ai, i=1,...,
[3], [1], [15] for a more detailed discussion of this scendri where we use the notation
The distinctive feature of this model, which separates it 1
from more “conventional” queueing models, is the fact that A(X) = lim ——log P(X >n) 4
the capacity (service rate) of the channel varies with tim '
randomly andasynchronouslyvith respect to different users.
A little more precisely (but still informally), the model
is as follows. There aréV exogenous input (traffic) flows, a; = —log(d;)/B;.
which are queued in separate (infinite capacity) buffers,
before they can be served by a channel. Time is divided intt‘EI
slots. The channel can serve only one of the flows in on
slot. The “aggregate state” of the channel varies random
from slot to slot. If the channel state in a given slotiisand arar_neterSai. _ . . . .
flow i is chosen for service in this slot, the service rate is Th|§ pr_oblem in turn is equivalent to solving the following
u* >0, i.e.,p customers (bits of data) of floware served optimizationproblem
(transmitted) and leave the system. This and related models maximize min _a; '8(Q;) , (5)
received a significant amount of attention in recent yedts (c i=1,.,N
[13] for an overview). It is well known that efficient schedul where the maximization is over all scheduling disciplines.
ing rules cannot be “channel state oblivious.” However, ithdeed, a discipline satisfying (3) exists if and only if the

N, ®)

for the exponential decay rate of the tail of distribution of
random variableX (assuming the above limit exists), and

This is precisely what we will do in this pap&kle consider
e problem of finding a scheduling rule such that the tail
nditions (3) are satisfied for some fixed set of positive



maximum in (5) isl or greater (and the maximum is attainednot change the scheduling choice. An example of scaling-

to be precise). Finally, if we denote by invariant rule is a MaxWeight-type algorithm, choosing for
. service a flowi maximizing ¢;Q; n", where~ and all ¢;
Qu = max a;Q; are arbitrary positive parameters. A slightly more general

the maximal weighted queue lengtrand observe that 'Ule: maximizing[c,Q; + dilu;", whered,'s are additional
min; a;lﬁ(Qi) = B(Q.), we see that the problem (5) is para_me'Fers, is not scaling-invariant, but is asymptdgical
equivalent to scahn_g-mva_rlan.t. _
(6) Fluid scaling is the “relevant” one to study the dynamics of
the queue lengths under an asymptotically scaling-inatiria
To summarizewe want to find a scheduling rule solvingrule in an (unscaled) time interval of the order 6fn)
problem (6), i.e. a rule maximizing the exponential decagbecause rescaling of queue lengths bn, for any n,
rate of the tail of the distribution of the maximal weighted‘preserves the information” on which scheduling choices
queue lengthQ.., with some fixed “weightst; > 0. are made), and a standard SP-LDP gives the likelihood of
In the case when channeln®t time-varying, i.e., there is trajectories under this scaling. In contrast, the EXP rsiledt
only one channel state and therefore the (potential) serviasymptotically scaling-invariant, as seen from the exgoss
rates p; are constant, our model essentially fits into thén (7). Even if eventually we are interested in the dynamics
framework of [11], where, in particular, it is proved thatof the queue lengths under EXP rule over an interval of
an extremely simple rule always choosing for service ththe orderO(n), the “relevant” time and space scale which
queue maximizingz;Q; is an optimal solution to problem determines such dynamics is of the ord&m"). (The value
(5). (This result was extended in [12] to a queueing networkf @ is “typically” O(n). Therefore, the differences of the
setting.) However, for our model, where the chaneg¢ime- order O(n") between weighted queue lengthgQ; result
varying, the above simple ruleannot possibly be optimal in the orderO(1) ratios of the exponent terms in (7) for
for problem (5) because it ignores the current state of thelifferent flowsi. But, these ratios are what determines the
channel; moreover, except for degenerate cases, thissulestheduling choices.) Consequently, we need the likelisood
not even throughput-optimal - it can make queues unstabi¢ (unscaled) trajectories over ordéx(n”) time intervals;
in cases when stability (under a different rule) is feasiblefluid scaling, however, does not “preserve” this informatio
The main goal of this paper is to establish optimality of thefo resolve this difficulty, we introduce and prove what
EXP rule for the problem (5). The EXP rule is defined agan be called a “refined” SP-LDP, or rafined Mogulsky
follows: when channel is in state, theorem(RMT). Using RMT we introduce the notions of a
a; Qi generalized fluid sample pafGFSP) and itgefined cost
. +@n> . (1) (Roughly speaking, the refined cost of a GFSP “takes into
account” the behavior of (unscaled) process trajectories o
where @ = (1/N)Y,a,Q;, andn € (0,1) is a fixed time scales that are “finer” tha®(n).) We show that the
parameter. likelihood of building large value of).. under EXP rule can
Problems like (5) are naturally approached using Largee given in terms of GFSP refined costs.
Deviations (LD) theory techniques. It is well known in LD  Our RMT result (Theorem 2) and the notions of GFSP and
theory that, roughly speaking, the value @fQ.) under a its refined cost are generic and are of independent interest.
given scheduling rule is determined by a “most likely pathin particular, as the above discussion demonstrates, tteey a
for the processQ.(t) to reach leveln, starting from0. instrumental in LD analysis of scheduling rules that are not
(See the definition of3(-) in (4).) Or, equivalently, this is asymptotically scaling-invariant.
a most likely path for a “fluid-scaled” proce$s/n)Q. (nt) The main results of the paper are as follows. We prove
to reach levell. In turn, the likelihoods of such rescaledthe upper bounds3(Q.) < J., which holds under any
paths are determined by a sample path large deviatioesheduling rule, whereJ, is defined in terms of lowest
principle (Mogulsky theorem) for the sequence of fluid-cost “simple” (linear) paths to rais€.. The proof of this
scaled “driving processes” - namely, input flow and channelpper bound involves only a standard Mogulsky theorem
state processes, as— oo. (If the value of the corresponding for the sequence of fluid-scaled input flow and channel
LD rate function of a path - or path “cost” - is then the state processes. We introduce and prove a refined Mogulsky
“probability” of the path is “approximatelye=<", whenn theorem, and introduce the related notion of GFSP. We then
is large.) give the lower boun@(Q..) > J.., which holds for the EXP
One of the difficulties in the LD analysis of the EXP rulerule, whereJ.,., is defined in terms of the lowest refined cost
is that the “standard” sample path large deviations priacip of a GFSP to raise).. Finally, for the case of EXP rule
(SP-LDP) is not sufficient for “keeping track” of the pathand two flows, we show that the lower and upper bounds on
costs. The basic reason for this is tH&KP rule is not ((Q.) match, that iIS3(Q.) = J.. = J., thus proving that
asymptotically invariant with respect to scaling of queughe EXP rule is indeed an optimal solution to problem (5)
lengths An “asymptotically scaling-invariant” rule is roughly in this case. (In fact, the complete proof of the latter fact
such that, when queue lengths are large, a scaling of @l given in [14]; in this paper, due to space limitation, we
gueue lengths by the same factor, at any given time, doesly give an informal description of the key points of the

maximize 3(Q.) .

Serve flowi maximizing p;" exp (



proof.) Proving equalityJ.. = J. (and thus optimality of we define the norm

the EXP rule) for arbitrary number of flows is a subject of

future work. [|h]]s = HllanbupUz (s)]-
Previous work on the large deviations regime for queues

served by a time-varying server includes [16], which corgai

results for a MaxWeight-type rule (maximizin@; ;™) in

a symmetric model. (“Symmetric” means: all input flows

have equal rate and are non-random; channel state-

(m,...,my) is a direct product ofN independent and 1

identically distributed channel states; of the individual (TCh)(t) = =h(ct) . (8)

flows.) The optimality problem (5) is not addressed in [16], ¢

and the analysis relies in essential way on the symmetry For 4 functionh, € D, we define the domain truncation

Thus the u.o.c. convergence PF [or (¢D*] is equivalent
to convergence in nortfj - ||s for all s > 0.

We define the scaling operatdf, c > 0, for h € D* as
follows:

assumptions. operator¢?, for 0 < ¢ < d, in the natural way:
The rest of the paper is organized as follows. In Section I
we introduce basic notations, definitions, conventionsluse ¢he D and (Ch)(t) = h(t).

in the paper. The system model, formal definition of the
EXP rule, and our main results (Theorem 1) regarding theor 4 € D, and0 < ¢ < d, we also define operatojg
estimates ofg(Q.) under an arbitrary rule and EXP rule, (which is a simultaneous domain truncation and shift, as wel
including optimality of EXP in the case of two flows, areas recentering) as follows:
given in Section lll. The necessary definitions of a sequence
of scaled processes and a standard SP-LDP (Mogulsky (%hc ¢f=°D and ((%h)(t) = h(c+t) — h(c).
theorem) are presented in Sections IV and V, respectively. |
Section VI we prove the bound(Q.) < J, (Theorem 1(i)) For a set of functions, operatorg’ and ¢¢ are applied
for any scheduling discipline. A refined Mogulsky theorem isomponentwise.
formulated and proved in Section VII. Section VIII contains We use symbok- for the weak convergence of determin-
the definition of a GFSP and proof of the bouAdQ.) > istic functionsin the spaceD, which is the space of RCLL
Jw (Theorem 1(ii)) under EXP rule. Finally, Sections IX andfunctions taking values in the s#t of real numbers extended
X contain an informal description of the proof of optimality by including +00 and —oo (with the natural topology on
of EXP rule for two flows (Theorem 1(iii)). (The detailed ). If h,g € D, thenh = ¢g meansh(t) — g(t) for every
proof in given in [14].) t > 0 whereg is continuous. (Convergence &at= 0 is not
required.) The weak convergenee of functions inD* is
understood component-wise.

Let @ = (Q,F, P) be a probability space. We assume

We denote bylR and IR, the sets of real and real non- that€2 is large enough to support all the independent random
negative numbers, respectively. The correspondirtgnes Processes that we use in the paper. Given any subseft
product spaces ar&* and IR% . Eucledian norm of vector @ topological space, we uge and B° to denote its closure

Il. BASIC NOTATION AND DEFINITIONS

a € R* is ||al|. and interior respectively.

The minimum of two real numberg, and &, is & A &. Typically, we follow the convention of using bold font
and by |¢| and [¢] the integer part and the ceiling of a realfor stochastic processes and Roman font for deterministic
numberé, respectively. functions, including realizations of the random processes

Let D be the space of RCLL functions (i.e. right con- The following is the standard definition of a large deviation
tinuous functions with left limits) defined ofo, cc) and Principle [6, p.5].

taking values inlR. Unless otherwise specified, We assume Definition 1: (LDP)Let X be a topological space arsl
D is endowed with the topology of uniform convergenced o-algebra onX’ (which is not necessarily the Borei-
on compact sets (u.0.c.). As a measurable space, we alwa@/gebra). A sequence of random variab{é, } on (2 taking
assume thaD is endowed with ther-algebra generated by Values inX is said to satisfy the LDP with good rate function
the cylinder sets. Byd we denote the subset of absolutely! if for all B € B,

continuous functions i, and by A4, C A the subset of

functionsh(-) with h(0) = 0. For any function spac#, and lim sup — log P(X, € B) < — inf I(z),

any0 < ¢ < d, ¢4S denotes the space of functionsSrwith nee v€B

the domain “truncated” tdc, d]. The subspaces and space

with truncated domains inherit the topology andlgebra of

D. Given any space, we assume that the times product lgglogf - log P(X,, € B) > — inf I(z),
spaceS* has the product topology and produetalgebra
defined in the natural way. wherel : X — IRU {co} is a function with compact level

For anys > 0 andh = (hq,...,h;) € DF [or ¢¢D¥]], sets.



[1l. THE MODEL AND MAIN RESULTS If we denote byD;(t) = min{Q;(t — 1), /""" V}, the
number of typei customers served in the time slot- 1,
A. The model.

then according to our conventions, for eachk 1,2,.. .,

The system hasV input flows, consisting of discrete ;
customers which need to be served by a singthannel Qi(t) = Qi(t — 1) = Di(t) + Ait), Vi.
(or server). We will denote byV both the set of flows Note, that in any time slot, D;(t) can be positive for at
{1,..., N} and its cardinality. Each flow has its own queuemost one of the flows, and it is zero for all other flows.
where customers wait for service. (Sometimes, we use termsQbviously, under any scheduling rulgy(-) is a Markov
“flow” and “queue” interchangeably.) chain with countable state space. We say that the system

The system operates in discrete time. A time intefkagH-  under a given scheduling rule sableif the Markov chain
1), with ¢ =0,1,2,..., we will call thetime slott. In each has a finite subset of states which is reachable from any other
time slot the channel can be in one out of the finite sestate with probabilityl, and each state within the subset is
M = {1,..., M} of channel statesand it can pick one of positive recurrent. Stability implies existence of a stasiry
the flows for service. If in a given time slot the channel iorobability distribution. (If the Markov chain happens to
in statem € M and flowi € N is chosen for service, then be irreducible, stability is equivalent to ergodicity, atige
the integer numbep;* > 0 customers are served from thestationary distribution is unique.)
corresponding queue (or the entire queué content, if it Suppose a stochastic matrix = (¢, m € M, i =
is less thanu;"). Thus, associated with each channel state, ... N) is fixed, which means that,,; > 0 for all m and

m € M is the fixed vector of service rat¢gy*, ..., u5). i, and )", ¢.,; = 1 for everym. Given ¢ we define vector
The channel staten(t) in each time slott is drawn v = (v1,...,vy) = v(¢) as follows:

independently according to some probability distributioa: ]

(z',...,7M). Without loss of generality, we can and will Vi = Zﬂmquz‘“;n ; 1EN. ©)

assume thatr,,, > 0 for all statesm. (The i.i.d._ ass_umption_ If each componen,,; of matrix ¢ is interpreted as a “long-
for the sequence of channel states is to simplify notatiop,,» ayverage fraction of time slots when flawis chosen
and exposition. All our results are easily generalized fof,, service, out of those slots when the channel state,is
example to the case when the random channel state procggs, () is simply the vector of average service rates which

m(t), t=0,1,2,..., is an irreducible discrete time Markov ;i pe “given” to the flows. The set
chain (cf. [7]) with the finite state spac¥.)

Denote byA,(t) the number of type customers arrived V ={weRY | w<v(¢) for someg}
in time slott = 1,2,.... We will adopt a convention that

is called systen{service) rate region

It is well known (cf. [13] and references therein) that
condition A € V is necessary for stability. Throughout this
paper we assume a slightly stronger condition:

the customers arriving in sletare immediately available for
service in this slot. We will assume that all arrival pro@sss
are mutually independent, each sequeAgg), t =1,2,.. .,
is i.i.d., with finite exponential moments
B < oo, W8> 0. Vi, A <wv* for some v* € V. (10)
(Under our arrival process assumptions, in particular the

and, finally, that each;(1) is unbounded. (The existence unboundedness of;(1), it is not hard to show that condition
of exponential moments assumption is essential. The u(it0) is also necessary for stability.)
boundedness ofi;(1) is not essential at all, and assumed ) _
to simplify exposition. The flow independence and i.i.dC: EXPonential Scheduling Rule.
assumptions can be much relaxed, as long as the sequencket a set of positive parameteds, . .. ,ax andn € (0,1)
of scaled joint arrival processes satisfies an LDP, and “h&e fixed. The following scheduling rule is called Exponentia
no memory” in the limit.) [9], or EXP: it chooses for service in time slota single

Let us denote by\; = EA;(1), i = 1,...,N, the mean queue
arrival rate for flows, and assume that; > 0 for all 4. 0.

- ; o _ a;Qi(t)
The random process describing the behavior of the systerh € 1(Q(t)) = argmaxc; y;(t) exp ( ) , (11)

c+ Q)"

where u;(t) = u;”(t), Q) = (1/N)Y,a;Q;(t), and

Q) =(Qit), 1=1,...,N), t=0,1,2,... c,c1,.. ,ij\)f are some adE:Ii)tionaI (pésit?v%:parangezters. (Ties
are broken in an arbitrary, but a priori fixed way, for example
in favor of the smallest index within setQ(t)).)

Proposition 1: [9] If condition (10) holds, the system
under the EXP rule is stable.

A scheduling ruleor aqueueing disciplingpicks one flow Proposition 1 says that the EXP ruletisoughput optimal
to be served in a given time slotdepending on the current in the sense that it makes system stable as long as stability
queue length vecto®(t). is feasible at all.

is

where@;(t) is the typei queue length at time.

B. Scheduling Rules. Stability.



In the rest of the paper, to simplify exposition, we assumdenote the total number of flow customers, respectively
that parameters, ¢, . .., c are all equal td. (Setting these arrived to and departed from the system by (and including)
parameters to arbitrary values does not affect main resultime ¢, that is in the time slotd < k& < |¢]. (Recall our
and it does not affect the proofs in any essential way.)  convention, introduced in Section IlI-D, that we extend the
domain of discrete time processes to continuous tirne).)

) Also, denote byG,,(t) the total number of time slotg <

The function Q..(t) = max; a;Qi(t) of the stateQ(!) . < |¢—1]| when the channel was in state and byG,; ()
will be called maximal weighted queue lengt{The corre- he number of time slotg < k < [t — 1] when the server
spondingrandom processeare denoted b)(t) andQ. (),  state wasn and flowi was chosen for service.
t=0,1,2,....) It will be convenient to extend the domain  Thg following set of functions describes the evolution of
of Q(-) and Q.(-) (as well as other functions introducedne system in time intervaD, co):
later in the paper), which are naturally defined in discrete

time, to continuous time by adopting the convention that (Q,Q*,F7F7G7é),
the functions are constant within each time dlotk + 1),

D. Main results.

wherek is integer. Now we are in position to formulate ourWhere

main result. Q= (Q(t) = (Qu(t),....Qn (1)), t=>0),
Theorem 1:Suppose condition (10) is satisfied. Then, the

following holds. Qu = (Qu(t) = maxQs(t), ¢ =0),

(i) There existsT € (0, 00) such that for any scheduling

rule and anyt > T°, we have the following lower bound: F=F®=E®,... @), t20),
F=(F@) = (E®),...,Fx(), t>0),
liminf * log P <1Q*(nt) > 1) >_J.. (12 (F(e) = (B ) w(0) )

nmee n n G=((Gn(t), me M), t>0),

where J, > 0 is defined and explained later in Section VI. A . .
(i) Consider the system under the EXP scheduling rule G = ((Gmilt), me M, i€ N), t>0).

and the Markov chairQ(-) being in a stationary regime  The set of function$Q, Q., F, F', G, G) clearly has redun-
(which exists by Proposition 1). Then, we have the followingjancies. The entire set is uniquely determined by the initia
upper bound: stateQ(0), the realizations¥ and G of the input flow and
) 1 1 channel state processes, which “drive” the system, and the
hfl_?;p log P (gQ*(O) > 1) <—Juw,  (13)  realization, which determines the scheduling choices.
In  what follows, we will use bold font
(Q,Q.,F,F,G,G) when we view this set of functions as

Section VIII (see (28)). N
(iii) Consider the system with two flowsy — {1,2} a random process, and use Roman font when we view it as
y v v a deterministic sample path.

under the EXP scheduling rule, in a stationary regime. Then

where J,., 0 < J.. < J,, is defined and explained later in

"For each indexn = 1,2,..., consider a (stochas-
J«x = Ji and therefore . . .
tically equivalent) version of our system, and denote
lim * log P lQ*(O) 1) = (1a) by (Q(”),Q*("),F(”),F(”),.G("), G™) the corresponding
n—oo 1 n process. The corresponding sequence of fluid-scaled pro-

Theorem 1(iii) shows that, in the case of two flows, th asses is defined as
EXP rule is optimal in that it maximizes the exponential )
decay rate of the stationary distribution of the maximal (@™, q. ™, £ §) g glm)y)
weighted queue lengtQ.(-). Extending Theorem 1(iii) to . ., ) () wn) Bn) () @A) B
arbitrary number of flows is a subject for future work. =I"Q™, Q7 FLFYL G, GY)), n=1,2,..

V. SAMPLE PATH LARGE DEVIATIONS PRINCIPLE
MOGULSKY THEOREM

IV. EXTENDED DESCRIPTION OF THE SYSTEM PROCESS
SEQUENCE OF FLUID'SCALED PROCESSES

As formulation of Theorem 1 suggests (and is typical for 'N€ sequence of proces.s(e"é")., g@) is known to satisfy
this type of large deviations results for queueing systems3 Sample path LDP, described in this section. _
its proof involves considering a sequence of “fluid-scaled” OUr assumptions on the input flows imply the following,
versions of the queue length proc&snamely the processes for each flow:. The large deviations rate function, associated
Q = ((1/n)Q(nt), t > 0), for n = 1,2,.... In this with the distribution ofA;(1), is
sec;tion we defingl this sequence forma]ly. But.first, we need Li(€) = suplo¢ — log EeeAi(l)L £€>0.
to introduce additional functions associated with the esyst 0>0
evolution.

Function L;(-) is a non-negative finite convex continuous
Fort >0 let

function on[0, co0), attaining its unique minimurf at point
[t] . Lt] i, i.e.
Fi(t) =Y Ai(k) and F;=> Di(k)
k=1

=1 Lz(§> =0, and Ll(f> > 0 for &£ N\,



and it is superlinear on infinity, i.e.

Li(§)/§ — o0, §— o0

We adopt the convention thdl; () = +oo for £ < 0.
For a vectory € RV we will use notation

ZL (1:).

Lip(y

replaced byy. (ThusV = V,.) In addition, for every non-
zero subsetV/ C N, we denote bva(N’) the projection
of V, onto the corresponding subspagé"'!, where|N’| is

the cardlnallty of setV’. We denote byV*(N’) the subset

of maximal elements oV, (N'), that is
VI(N) ={v e Vo (N') | v <w e V,(N') impliesw = v}.

For a fixed non-zero subs@f’ C N, consider pairs of a

(Subscript(f) indicates that this is the rate function associdistributiony and a vecton = {);, < € N’} such that there

ated with input flows.)
The relative entropy of a probability distribution =
(71,--.,vm) With respect to the distributiom we denote

by
Z Ym IOg —_

meM

According to Sanov theorem (cf. Theorem 2.1.10 in [6])
L4 (-) is the large deviations rate function for the sequenc

of empirical distributions of the channel state ovetrials
(with n- — oc). Function L) (-) is (finite) continuous and
convex on the simplex of probability distributions we
adopt the convention that,)(-) is defined onk* and is
400 outside the above simplex.

For a pair(f, g) of vector-functionsf € DV andg € DV,
its cost J;(f, g) in time interval [0, t] is defined as

Ji(fg) = / Lo (') + L (¢ (), (15)

it ¢t(f,9) € ¢CAY™, and as+oo otherwise. More gen-
erally, if functions f and g have a bounded domail, d],
that is(f, g) € ¢(¢DN+M  the costs,(f, g) is still defined as
above, as long as< d.

The following is (a form of) Mogulsky theorem (cf.
Theorem 5.1.2 in [6]).

Proposition 2: Consider a sequence of scaled processgs

exists vectory = {u;, i € N'} € VZ(N') for which the
following condition holds:

az(/\lf,uz) :£>0, Vie N'.

(Note that if such vectof: exists, it is unique, because this
is the point where the ray emanating from pointin the
direction given by{—1/a;, i € N'}, hits regionV,(N’).)
et us denote
Ligy(7) + Xiens Li(Ni)
g )
where theinf is taken over all pairs of and )\, as specified

above.
Finally, we define

J«(N') = inf

J, = J.(N').

min

N’'CN, N'#£0

We now give the interpretation of the above definitions.
Let N’ = N for simplicity. Consider the process with large
index n on a (large) time interval0, nt] for some fixedt.
Suppose the empirical distribution of the channel states in
this interval is a “twisted” distributiony, possibly different
from =. Moreover, we assume that the fluid-scaled channel
state process trajectory is “close to” lineaf® (s) ~ g(s) =
~vs, 0 < s < t. Suppose also that the fluid-scaled input flow
trajectory is “close to” linearf (™ (s) ~ f(s) = As, 0 < s <
for some vecton not necessarily equal to the average rate

(n)  g(n)
(£, g), n=1,2,..., as defined in Section IV. Then, vector \. The cost of this linear trajectory of the input and

for everyc > 0 andt > 0, the sequence of processes, ch
annel state processesJg f,g) = [Ly)(A) + Ly (7)]t.
+t(f(n)  (n) 9 () 9\7
¢ett(f™, g™)) satisfies the LDP with good rate functlon(In other words, the “probability” off(), g(™)) being close

t HYN+M
J¢(+). In more detail, for any measurable C ¢}D L We o (f.g) in the interval[0, ] is roughly exp[—n (L) (A) +
have the following asymptotic (respectively lower and uppe L,(7))f].) Suppose now that vectors and A satisfy the

hounds: conditions specified above, with the corresponding vector
hmlnf_logp(cc-i-t(f(n) (n)) € B) 1. Then, a scheduling rule can be chosen (at least in
n—oo principle) such that the (scaled) service process trajgcto
> wf{J,(h) | he B°} , (16) Is approximately linearf (™) (s) ~ f(s) = ps, 0 < s <.
Then, if ¢ (0) = 0, the queue length trajectory i0, ] is
lim sup 1Og P(CETH (M| gy e B) approximately linearly increasing as well, and moreover,
e (n) ;
_ a;q; ' (s) =~ a;q;(s) = ¢s for eachs.
< — inf{Jy(h) | h€ B} . a7
This means that for all flowsg; (")(s) is approximately
VI. SIMPLE TRAJECTORIES TO RAISE MAXIMAL

equal to their maxmurrq*”)( ) at any times, and qfk")(s)
reaches levelt at timet. Thus, the constructed lineaimple
trajectory (f, g, ¢), which is determined by the vectorks
andy, has the “unit cost of raising, (s)" equal to[L 4 (v)+
Ly (N)]/¢. Therefore, the value/, defined above in this
section is the minimum possible unit cost of raisings)
along a simple trajectory.

WEIGHTED QUEUE LENGTH LD LOWER BOUND UNDER
ANY SCHEDULING RULE

Let v = {vm,m € M} be some (“twisted”) probability
distribution on the set of channel states, not necessayigple
to the distribution7. We denote by, the corresponding
“twisted” rate region, defined the same waylaut with 7



The key property of the above construction of a simplg@air (f,g) of vector-functionsf € DV andg € DM, we

trajectory (f, g, ¢) is as follows. Given vectora and~, the  define function{(f, g), t > 0, as follows:
corresponding vector of service ratgsis optimal in the . N

sense that alk;¢;(s), and theng,(s), simultaneously reach ;(c) - / L.(f I / 21
level ¢t at timet. Using the condition that is a maximal T f9) = o [; i(fils) N O+ L) (9'(9))]ds, (21)
element of V,(N'), it is easy to see that iff,g) is the

trajectory of input and channel state processes “offered” if ¢4(f,g) € ¢SA) ™, and is+oo otherwise.
the system, theander any scheduling rulendfor any initial Suppose we have an integer functiom) T oo asn — oo,

conditiong(0), at least one of the;q;(t), and theng, (¢), is  which is sublinear im, i.e., u(n)/n | 0. (An example of
¢t or greater. Thus, for any scheduling rulg, serves as an such a function isu(n) = [n], with 0 < o < 1.) For
upper bound of the minimum possible cost of raising (scale@ny (non-decreasing) RCLL vector-functibre DV and
maximal weighted queue length(-) to level 1. eachn, we denote byU"h the continuous piece-wise linear
Our simple trajectory construction is in a sense analogotignction obtained fromh as follows: we divide the time
to, and serves the same purpose as, those in [11], [12].interval [0, oo) into subintervals of equal lengti(n)/n, that
is however necessarily more involved, because in our cakel0,u(n)/n], [u(n)/n,2u(n)/n],... and linearizeh within
the rate region is more general convex, while in [11], [12Fach subinterval.
the outer boundary of the rate region is a hyperplane (which Theorem 2:Consider a sequence of scaled processes
implies simple “work conservation” properties). (f™, g), n = 1,2,..., as defined in Section IV. Let
) t > 0 be fixed. Suppose, for each there is a fixed
A. LD Iowe.r bound under any scheduling rule: Proof ofheasyrablen™ c CYDN+M | which is a subset of the set
Theorem 1(i). of feasible realizations off ™), g(™) in [0,¢]. Then, for any
The proof formalizes the argument presented above fixed functionu(n) as defined above, we have the following
this section, using the construction of a simple trajectorgsymptotic upper bound:
and Mogulsky theorem (Proposition 2). This formalization

n—oo

. 1
is done analogously to the proof of Theorem 3.2(ii) in [12] lim sup —log P(¢i(E™ g™y e BM)
(or proof of Theorem 6.8(ii) in [11]). We omit details. nee
IR . . (©) n (n)
VIl. REFINED MOGULSKY THEOREM (UPPER BOUND) < — limsup liminf inf{J,;(U"h) [ h € B}, (22)

C—o0
From the standard large deviations principle for Scalarheref("> is the largest multiple ofi(n) /n not greater than
random variables, we have the following bound, recorde\éyie ’

here for future reference: for any intervég;,&,], where "7 . u(n) ¢

0 <& <& < o0, and any fixeds > 0, there exists a ¢ = —Lu(n)/nJ~ (23)

sufficiently larger > 0 such that, uniformly on non-negative Proof. To avoid clogging notation, assume th&t) — ¢
0 < t; <ty satisfyingty — t; > 7: ’

for eachn, i.e., the time interval0,¢] is divided into the
1
10gP{H[Fi(t2) = Fi(t)] € [&1,&]}

integer numbetn/u(n) of u(n)/n-long subintervals.
Given the properties of rate functiods;, the functional
Jt(c)(~) is non-decreasing i@’ whenC' is sufficiently large,
< - {min L&) — 6} (ta — t1)- (18) namely forC' > max; );. Therefore, it suffices to show that

[€1,¢2] ) for a fixedC' > max; \;, we have
Note that in the special case whén > \;, (18) takes the 1
form . limsup —log P(¢h(E™, gm) e BM)
log P{——[Fi(t2) — Fi(t1)] = &1} .
2~ h < — liminf inf{J{O(U"h) |he BM}.  (24)
< —[Li(&) — 0] (t2 — ). (19) e

] . The rest of the proof is a fairly straightforward combin&ibr
If B c R} is compact, then according to Sanov theorengstimate.

(cf. Theorem 2.1.10 in [6]), we can record the following | ¢t ys fix a smalls > 0. We choose a large integdf >
property analogous to (18): for any fixéd> 0, there exists a ( gnd divide intervall0, ) into K subintervals, each =
sufficiently larger > 0 such that, uniformly on non-negative C/K-long, namelyke, (k + 1)) with k = 0,1,..., K — 1.
integers0 < t; < ¢, satisfyingt, —t; > 7, we have The k-th interval defined above, with = 0,1,..., K — 1,
we will call k-th “bin”. In addition, the intervalC, co) we
also call a bin and give it the indeéx= K. We will choose
K to be large enough so that the total variation of each
< - [min Lig(v) — 6} (ta —t1). (20) function L; in each of the bing = 0,1,..., K — 1 is less
7eB thand/(4N). We will chooser > 0 such that the estimates
We will need the following generalization of the definition(18)-(19) hold for alli and for the intervald;, &) in (18)
of cost Ji(f,g) (see (15)). For any constait > 0 and a being closures of all bing = 0,1,..., K — 1 and with&;

log P{ﬁ[G(tg) _G(th)] € B)



in (19) replaced by; in addition, we require that (18)-(19) (ii) As n — oo, we have the weak convergence
hold with ¢ replaced bys/(4N). W () e(n) A (m) ~(n s

Let us divide the sir/n(ple>2 of all vectors representing (¢ . F0 g™ 5" = (0.0, f. f.9.8) (25)
probability distributionsy on the set of channel statdd for some set of functiongq, q., f, f,gjg), and the weak
into K + 1 non-intersecting subsets (“bins”), such that the&onvergence
total variation ofL ) () within the closure of each bin is at HCw) = HC) iy () () o
mostd /4. (The latter can always be achieved by makisg 7 " = (Jyo) U™ (/™ 9", t 2 0) = J = (Ji, £ 2 0)

larger, if necessary.) We also will increasgif necessary, to . ) - (26)
make sure that the estimate (20) holds for all the bins, witfPf SOme non-negative non-decreasing function
§ replaced bys/4. Then, the entire construction

Let J denote theim inf in the RHS of (24). From now on ¥ = [N; (q(n),qin)’ FOF0 g gy - JCn) e A
in this proof we will only consider sufficiently large such

thatinf{J\")(U"h) | h € B™} > J -6, andu(n) > T, (@0 f.f.9.9); ]
wherer is the one chosen above. . will be called ageneralized fluid sample pafGFSP). The
Consider a fixedn, a vector-functionh = (fi, i = non-decreasing functioo’ will be called therefined cost

1,...,N;g) € B™, and its piece-wise linearizatidi”h =  fnctionof the GESP.

(U"fi, i = 1,...,N;U"g). Recall that each component Remark. A set of functions(q, ¢, f, f, g, §), defined as a
of U™h has a constant non-negative derivative in each Qfmit of a sequence of fluid scaled trajectories of a process,
the ¢n/u(n)-long time-subintervals of0,¢]. Thus, vector- s sometimes called &luid sample path(FSP), cf. [12].
function 1 can belong to one of the finite NUMbEIK +  Therefore, the term “generalized” in the above definition
1)(NHD]in/uln) of “aggregate bins,” according to which binsof 3 GFSP refers to the fact that GFSP contains not only
the (constant) slopes of the componeiits f; and U"g  the “fluid limit” of a (pre-limit) sequence, but the sequence

belong to, in each of the time-subintervals. _ itself. Moreover, the pre-limit sequence is required tdséat
Now, consider any fixed aggregate bin, let us calBif,  condition (26).

containing at least one function belonging¢™, and letus  Given that (unscaled) functions™, G, ™) obvi-

H 1 n C n 7 . . . . .
pick some fixedh € B™. (Recall that/;” (U h) > J—4.) _ously have uniformly bounded increments within one time
The.n, using estimates (;8),(19) and (20), for each of the timyjot, it is easy to observe that GFSP componefis, §
subintervals (more precisely - for each of the correspandirgre non-decreasing Lipschitz continuous (and then aleglut
unscaled:(n)-long intervals), we obtain the following upper continuous) functions withf(0) = 0, g(0) = 0,4 = 0.

bound: For a givin GFSP, if we denot&™ = sup{t | || f(®)| <
log P{¢(£™), ™) € Bay} 00, J; < +00}, the following is easy to verifyf|q(t)|| < co
©) tn . for all t < T*; if t; andt, are points of continuity off (or,

< —[Jr (U h)n —u(n)d——] < —Jn+dn + dtn . equivalently, ofg), and0 < ¢; < t, < T*, then

u(n)
Since the total number of aggregate bins is Ji = Ju(f,9), Ju —Ju = Ji,(f,9) — i (f.9). (27)

(N+1) log(K+1)t : . .
exp{ a(n) n} with [(N +1)log(K +1)t]/u(n) = consequently bothf and ¢ are absolutely continuous in
0 asn — oo, we have the interval [0,7%), with f(0) = 0, and therefore the
. 1 tre(n) o(n) (n) - convergence in (25) is in fact uniform on compact subsets
) . < _ 3
h?_,bo%p n log P(Go(£™, ™) € B) < = J +0(1+1) of [0,7™). (It also follows that (27) holds for an§ < ¢; <
fo < T*)

Sinced can be chosen arbitrarily small, the proof is complete. . . .
y P D The following simple facts (in Lemmas 1 and 2 below)

have straightforward proofs and recorded for future refer-
VIIl. L ARGE DEVIATIONS UPPER BOUND VIAREFINED ence.
MOGULSKY THEOREM: PROOF OFTHEOREM 1(1) Lemma 1:Suppose, there exists a sequence
{(f™, g™, n € N} of feasible realizations of the

From now on we specify the function(n), defined in )
(scaled) input and channel state processes, such that

Section VII, to be
(n) ,(n)
u(n)=[n%], n=1,2,..., (S, 9™) = (f,9).

Then, there exists a GFSP, havififj g) as its components

for some fixedo: € (0,7). Also, consider some fixed and such that its refined cost functionis equal to the cost

sequenc&’,, n=1,2,..., such that”,, > 0 andC,, T cc.

- i . : function (J:(f,g), t > 0).
Definition 2: Suppose an increasing subsequenéeof ;
the sequence of positive integers is fixed, and the following Lemma 2: [Compactnessjuppose, a sequence of GFSP

= , 8 Y, k = 1,2,..., is such that the values df*q(0)| are
con_dmons (1) and (if) hold. : ) . uniformly bounded. Then, there exists a GF&RBuch that,
(i) For eachn € W, there is a fixed (feasible) re- along some subsequencefaf
alization (¢, ¢{™, (W, f ¢ ) of the process 9 g

(@™, q. ™, ) F) g(n) g(n)y, [("q, *q, BF, ¥ F, Fg, *9); *T = (0,94, f2 Fr9,8); )



Let .J.. denote the lowest refined cost of a GFSP which such that]|¢™ (0)|| < ¢ and¢{™ () > 1}.
“brings” ¢.(t) to level 1 from the zero initial statg(0) = 0.
Namely, By Theorem 2,

=i 1
Sk %gg J**7t7 (28) lim sup — IOgP ((f(n), g(n)) e B(nc))
n

where . o
L < — limsup liminf inf{Jt((nE(U"h) | h e B("’C)} , (33)
Jiwp =1nf{Jy | ¥ : ¢(0) =0, g.(¢t) >1}.  (29) C—oo N

From the definition of/, in Section VI (via the construction Wheret(") is as in (23), but witlt replaced byl” in the RHS.
of simple trajectories) and Lemma 1, we conclude that Using GFSP definition (and the fact that for large cost
Jt(c) is non-decreasing i), it is easy to see that than sup

Jow < I, (30) in the RHS of (33), let us denote it by... <7, is exactly

because we can always construct a GFSP for which) is ~ the lowest refined cost of a GFSP such thet0)| < c and
a simple trajectory withy, (¢) > 1 for somet > 0, and with  ¢«(¢) = 1 for somet < T'. (We choose a subsequence with
J:(f,g) being arbitrarily close ta,. infinitely increasingC' to construct a GFSP with refined cost

The goal of this section is to establish the following fact;/«+,<7.c @nd satisfying the above conditions; at the same
which is Theorem 1(ii) rephrased in terms of the sequendéne all such GFSP have the refined cost at lest<r..)
of fluid-scaled processes. SinceJ.. <7, IS non-increasing i, J.. <r.c | Jus, <10 =
a version of the system in a stationary regime. Then, tH@€ater than/.. <7, easily follows from Lemma 2.) This
corresponding sequence of fluid-scaled processes is sach tfompletes the proof. n

lim sup 1 log P <q*(n)(0) > 1) < _J. . (31) IX. LOCAL FLUID SAMPLE PATHS
We willnin—éct)ogi\?/le a complete proof of Theorem 3 here. We In \{iew of (30.)’ to prove optimality of the EXP rule (or
only provide a key step of such proof, Theorem 4 belowi Y 9Ven rule) in the sense of (6), |t_suﬁ|ces to show that
which demonstrates how Theorem 2 is applied to obtain LBnder this rule the_equalltw** = J« in fact hplds. One
. way to approach this is to show that assumptibn < J.

upper bounds for the sequence of fluid-scaled procazses leads to a construction of a simple trajectory (as defined in
finite time interval in terms of GFSPs and their refined costs . : . >IMp ! y .
The rest of the proof of Theorem 3 is carried out analogous e_ct|on V1) withunit cost(of raisingg. (-) from 0 to 1) being

to the proof of a similar result in Section 10 of [12], whichg{mCﬂ.y Iess_ than/, - a contradiction.
) - : “ Using this approach for the EXP rule naturally leads to
uses classical Wentzel-Freidlin constructions to “trates]

N . . _the notion of a local fluid sample path (LFSP), and its cost
LD results on a finite time interval into the LD results in a . L .

) . " - function. The definition of the bound,., in terms of GFSPs
stationary regime. (In addition, the proof of Theorem 3 will

utilize some of the properties of local fluid sample pathsanOI their refined costs, allows us to "properly” define LFSP

. ) : ¢ost function.
defined and analyzed later in this paper.) Due to space limitation, in the rest of this section we
Theorem 4:For a fixedT > 0, let us denote P .

give an informal intuitive description of LFSPs. (Rigorous

Juw <7 =inf{J; |1 : q(0) =0, g.(t) > 1for somet < T} definitions and results are given in [14].) For the purposes
. of this discussion, let assume that EXP parameter 1/2,

= 3;13 Six t- and parameted < o < 1/2 is arbitrary.

Let us fix arbitrary numbelS > 0. Suppose, we have

Then, we have: a GFSPv such thatg.(0) = 0 (which is equivalent to

i Tim s 110 - Pl s ™ (1) > 1 q(0) = 0) and, for some finitel" > 0, ¢.(T) = 1 and
elo P g”q(m(gm te[opT] R Jr = Ju +€ < J,, for a smalle > 0. Then, for eachn,
B 7 breaking down the interval0,T] into subintervals of the
< —Jiw<T - (32)  length of the ordem!/2, and working with the functions

(Thesup over||¢™ (0)|| < cis supremum over all processesq(n) and other components of GFSF; the following can
with non-random initial state satisfying this condition.) ~ P& shown. For every sufficiently large, we can find an

Proof. We have interval [£™¢{™] within [0,T], satisfying the following
conditions:
. . (n)
sup P sup q.'"(t) >1 " " N
lat) (0} <e (te[O-ﬂ " ) t) =" = Sou, o0 =g ()]0 n,
<p ((f<n>’g<n>) c B<n,c>> ’ ¢ (1) = M (M > o,
where jt(g:?) _ jt((%z,)
2 L < J.. (34)

B = {(,g™) [ 3 (0), 1< T, a5 — g (1)



We introduce rescaled functions as follows (the actual def-
inition in [14] is somewhat different), each defined fore

(1]
[0,S]:
n . 1 n n n n .
oql(‘ )(3)20_[(1@( )(tg )+0n5)_q5< )(tg ))]7 1€ N, [2]
20" () = maxog " (5), )
n . 1 n n n n .
of () = (Y +ons) — V), i€ N,
1” [4]
o0 (5) = — g (1" + ons) — gl (1)), m € M.
" 5]
Then we show that we can find a subsequencéngfsuch  [6]
that
[7]
(oq(n)7 oqgen)7 of(n)7 og(")) = (05051 0f109); (35) [8]

where all functions are defined on the interyal 5], all (g
functions in the RHS are absolutely continuous, and the
convergence is uniform. The 4-tuplgg, +4.,«f, «9) IS what

we will call an LFSP. It can be shown (using convexity of
the rate functions s (-) and L, (-), along with the fact

thatn®/n = o(n'/?/n) asn — oc), that (10]

lim inf a,jl[J(C") — j(cn)] > Js(of109)-

pops t(zn) t(ln)

(36) [11]

We then show that the constructed LFSP satisfies the follow-
ing conditions: [12]

JS(Oqug) - JO(owa)
oq*(s) — ol (O)
where (38) is obtained using bounds (34) and (36).

We also show (see [14]) that an LFSP satisfies a certajig]
set of differential inclusions, some of which a generic for
fluid limits (and LFSP is a fluid limit, although defined on [16]
a “local” scale) and some are specific to EXP rule.

[13]

< Js, (38)

[14]

X. EXP RULE OPTIMALITY IN THE TWO FLOWS CASE

As described in the previous section, the assumpliQn<
J. leads to the existence of LFSPs with (roughly speaking)
the unit cost of raising,q,(-) being strictly less than/,
(see (38)). It is shown in [14], that, in the case of EXP
scheduling rule and two flows, this fact (along with the
dynamic properties of LFSPs under EXP rule) allows us
to construct a simple trajectory (see Section VI) with unit
cost strictly less than/,. This is a contradiction proving
Theorem 1(iii).
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