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Abstract

We consider a model of random access (Slotted-Aloha-type) communication net-
works of general topology. Assuming network links receive exogenous arrivals of pack-
ets for transmission, we seek dynamic distributed random access strategies whose goal
is to keep all network queues stable. We prove that two dynamic strategies, which we
collectively call Queue length based Random Access (QRA), ensure stability as long
as the rates of exogenous arrival flows are within the network saturation rate region.

The first strategy, QRA-I, can be viewed as a random-access-model counterpart
of MaxWeight scheduling rule, while the second one, QRA-II, is a counterpart of the
Exponential (EXP) rule. The two strategies induce different dynamics of the queues
in the fluid scaling limit, which can be exploited for the Quality-of-Service control in
applications.
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1 Introduction

In this paper we consider a model of random access (Slotted-Aloha-type) communication
networks of general topology. Assuming network links receive exogenous arrivals of packets
for transmission, we seek dynamic distributed random access strategies whose goal is to keep
the network queues stable. (Queues are formed by packets waiting for transmission at the
links.) We prove that two dynamic strategies, which we collectively call Queue length based
Random Access (QRA), ensure stability as long as the rates of exogenous arrival flows are
within the network saturation rate region.

Our basic network model (formally defined in Section 3) is that of [14], which in turn is
a slight generalization of those in [15, 24]. (A closely related - but different - model was
considered in [13]. All the models mentioned above generalize the classical Slotted Aloha
system [17].) Very informally, there is a finite set A/ of nodes n, and a finite set of directed
communication links ¢ = (n, m) connecting some of the node pairs. Time is slotted. In each
slot, node n transmits a “packet” (or, accesses channel) with probability p,, and it chooses
one of its outgoing links ¢ = (n, m) to transmit on with probabilities p,,/p, summing up to
1. Link access probabilities p; are chosen generally speaking dynamically, but once they are
chosen for a slot, each node transmits independently of the others. A general interference
structure between the nodes is defined, so that some of the simultaneous transmissions on
the network links can fail due to the interference from other transmissions. Thus a set
of (constant) link access probabilities p = {p;} determines the corresponding set of link
throughputs 1 = {y;} - this dependence is denoted by pu(p).

The network saturation throughput region M for the above model is the set of all vectors
p(p) for all possible access probability sets p, along with all non-negative vectors x which
can be dominated by such p(p). In other words, region M is the set of all link throughput
vectors which can be achieved by static random access strategies (i.e. those using constant
access probabilities), under the assumption that all link queues are “saturated” (i.e. have
unlimited number of packets available for transmission at any link at any time). Paper [14]
shows that the outer (Pareto) boundary of the saturation throughput region M is character-
ized essentially as the set of throughput vectors maximizing (over M) the system objective
function ) . w; log y;, for all possible sets w = {w;} of non-negative weights assigned to the
links. (See [13] for an analogous result for a related model.) An important property of the
optimal solution p* for a given set of link weights w is that the corresponding set of access
probabilities p = p(w) (such that p* = p(p)) can be determined in a distributed fashion;
namely, to determine “its own” access probabilities each node will only need to “know” the
weights of the nodes in its appropriately defined “local neighborhood.” (This property was
established earlier in [15] for the case when all w; = 1.) It was also suggested in [14] (and
[13]) that a network can be controlled by changing link weights dynamically to satisfy some
desired constraints of the link throughput allocation while keeping such allocation efficient
(i.e., Pareto optimal). In fact, a specific algorithm was proposed in [14] which seeks to max-
imize system utility ), o;log p; subject to the desired lower bounds on the link rates, and
shown to have good performance.



In this paper we study the network model described above, but consider the case when each
link 7 receives a flow of exogenous packet arrivals at the average rate ;. The question is how
to set access probabilities dynamically so that all link queues are stochastically stable. Let
Qi(t) be the queue length at link 7 in time slot ¢, and dynamic link weight w;(t), at time ¢,
is a function of Q;(t). A QRA algorithm uses (dynamic) link weights w;(¢), and sets access
probabilities in each slot ¢ to p(w(t)). We consider two different variants of QRA algorithm.
The first, QRA-I, uses weights w;(t) = a; +7:Q;(¢)?, with parameters o;; > 0, v; > 0, 3 > 0.
The second algorithm, QRA-II, uses weights w;(t) = «; exp[v;Q;(¢)]*, oz > 0, v > 0, and

€ (0,1). Our main result is that both QRA-T and QRA-IT algorithms ensures stability of
the queues as long as the input rates vector A = {\;} of input rates lies (strictly) within the
saturation throughput region M. We note that QRA-I algorithm was essentially introduced
in [14], but the algorithm stability issue was not addressed there; QRA-II algorithm is new.

The reason why we consider two different algorithm is because, although they both ensure
stability (as long as A is within M), they induce different behavior of the queues. This
is demonstrated by our analysis of their fluid sample paths (FSP), which are roughly the
limits ¢(t), t > 0, of “fluid-scaled” processes (1/r)Q(rt), t > 0, as r — co. One can say that
QRA-TI is the random-access-model counterpart of much studied MaxWeight-type scheduling
algorithms. (MaxWeight algorithms were originally introduced in [23], and then extended
and generalized to accommodate a large variety of models and scenarios. Cf. [22, 7] for
recent reviews.) The dynamics of an FSP under QRA-I is such that a Lyapunov function
of the form 3, ¢;7ig;(t)’™" is non-increasing. In contrast, FSPs under QRA-II algorithm
are such that max;v;q;(¢) is non-increasing. In this sense, QRA-II is the counterpart of
the “exponential” (EXP) scheduling rule [19], which has the same property and is known
to keep the values of 7;Q;(t) roughly equal in the heavy traffic limit [20]. Thus, QRA-II
algorithm (unlike QRA-I) allows one, to a certain extent, “directly control” the ratios of
different queues - a useful feature for Quality-of-Service control in applications.

In terms of technique, the stability analysis od QRA-II is more involved than that of QRA-I.
Similarly to the situation with EXP algorithm, the conventional fluid scaling, leading to
FSPs in the limit, is insufficient, and we additionally need to consider a “local fluid scaling,”
leading to local fluid sample paths (LFSP). Analysis of LFSP dynamics for QRA-II (in the
proof of Theorem 4) is substantially different from previous analyses of LFSPs under EXP
algorithm in that it requires a completely different Lyapunov function. We believe that this
part of our work is of independent interest.

We have to clarify why one would need QRA algorithms at all, and not simply use previ-
ously known MaxWeight and EXP algorithms for our model. Both MaxWeight and EXP
algorithms would have the following form: in each time slot choose access probabilities so as
to

maximize Z w; (t) s, (1)

)

with weights w;(t) defined as for QRA-I and QRA-II, respectively. Such an algorithm will
ensure stability of the queues as long as input rate vector A lies within system maximum
stability region V. Region V is typically strictly larger than our saturation rate region M,
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because it is defined as the largest region within which stability is feasible at all under any
strategy, including strategies utilizing global and instantaneous state sharing and coordina-
tion between network nodes. However, due to the fact that “instantaneous service rates” u;
enter the sum in (1) linearly, solving (1) in each time slot would typically involve global (com-
binatorial) optimization, not allowing a distributed solution. In contrast, a QRA algorithm
chooses access probabilities which

maximize Z w;(t) log p;, (2)

2

and this can be done in a distributed fashion. Thus, although QRA algorithms guarantee
stability within a typically smaller region of input rates, they are much more easily imple-
mentable in practice.

We would like to mention one more line of previous research (see [3] and references therein),
which aims at characterizing stability region S under static random access strategies (i.e.
those with constant access probabilities) for the classical Slotted Aloha system (where all
links interfere with each other). It is easy to see that the closure of S contains the saturation
throughput region M, that is A C S. It has long been conjectured that for Slotted Aloha
in fact M = S. This conjecture was proved in brilliant work [3], but only for the case when
exogenous arrival processes are dependent in a special way.

The rest of the paper is organized as follows. Section 2 introduces basic notation. Our
network model is described in Section 3, and the queueing stability problem for the case of
exogenous arrival processes is defined in Section 4. Section 5 defines saturation throughput
region. The QRA algorithms and our main stability result (Theorem 1) are presented in
Section 6. Section 7 contains the proof of Theorem 1; the key part of this proof (Theorem 2)
is then proved separately for QRA-I and QRA-IT in Sections 8 and 9.

2 Basic Notation and Conventions

We use the notations R, R, and R, for the sets of real, real non-negative and real positive
numbers, respectively. Corresponding I-times product spaces are denoted R', R%, and R% ..
The space R! is viewed as a standard vector-space, with elements € R! being row-vectors
r = (x1,...,77); -y is scalar product, ||z|| = (z-2)/? is Eucledian norm, inducing standard
metric.

Vector equalities and inequalities are understood componentwise. Sometimes, where it can-
not cause confusion, we slightly abusive notation by applying log and exp componentwise,

logz = (logxy,...,logz;), expx = (expxy,...,expxy),

and by writing
vXq= (Mg, V4qr)

for the componentwise product of vectors.



For a scalar function F'(z), € R!, and subset M € R, z* € arg max,¢,, F(z) means that z*
maximizes F'(x) within M. Abbreviation u.o.c. means uniform on compact sets convergence
of functions. Usually, we will consider this convergence for functions (or vector-functions) of
the time ¢ € [0, 00), in which case u.o.c. convergence means uniform convergence in [0, b] for
any b > 0. We denote [z]” = min{z, 0}, [2]* = max{z,0}, and for a non-negative a define
[z] as zif a > 0 and [2]T if a = 0.

3 Basic Model

We consider the basic model of [14], which is a generalized version of the model of [15, 24].
The system consists of a finite set N = {1,2,..., N} of nodes, and operates in discrete time,
with time slots indexed by ¢ = 0,1,2,.... Let D,, C N \ n denote the subset of nodes to
which node n has data to send. A node n at any time ¢ may attempt transmission of one
unit of data, called packet, or customer, to one of the nodes m € D,,. When this happens,
we say that node n makes transmission attempt on the link (n, m). We will denote by

Z={(m,m)[neN, meDy}

the set of all system links, and by [ its cardinality (i.e., the total number of links). Through-
out the paper, for brevity, we often (but not always) denote links (n,m) € Z by a single
index 1.

We make the following additional model assumptions:

(al) A node cannot simultaneously (i.e., within the same slot) transmit on two or more
different links.

(a2) If a node transmits in a slot, any simultaneous attempt to transmit to this node will
fail.

(a3) If there are two or more simultaneous transmissions to a node, they all collide and fail.
(ad) Any transmission attempt by node n will interfere with and “erase” any attempt to
receive a packet at any of the nodes within some subset of N, denoted by A,,. (The model
of [15, 24] additionally assumes that m € N, implies n € N,,.)

Note that assumptions (a3) and (a4) imply that D,, C N,. (In other words, a transmission
attempt by node n may interfere with receiving at more nodes than it actually sends traffic
to.) Also, by assumption (a2), n € N, for all n.

We consider a class of random access (“Slotted Aloha-type”) transmission schemes, defined
as follows. In each time slot ¢, each node n chooses the set of link access probabilities
Prm, M € Dy, such that

Pn= > Pam <L (3)

meD,

Node n attempts a transmission of one packet (customer) in slot ¢ with probability p,
(which can be called node access probability) independently of other nodes, and when it does



transmit it chooses a particular link m € D,, to transmit on, also randomly, with probabilities
Pnm/Pn- Resulting link transmission success probabilities (or, average link throughputs) in
the slot are given by

Hnm = Pnm H (1 - pk)' (4)

k: meNy, k#n

We emphasize that access probabilities p,,, may depend on time, past history, and be mutually
dependent across nodes and links. However, once py,,,’s are chosen for a given slot, the node
transmission attempts are independent.

If random access scheme is static, that is probabilities p,,, stay constant in time, f,,,’s are
time-average link throughputs.

The dependence of the set (vector) of link throughputs u = (u;, @ € ) € RL on the set
(vector) of link access probabilities

p€P={(p; i €I)e[0,1]" | (3) holds},

given by (4), will be denoted by u(p). Clearly, function u(p) is continuous.

4 Stability Problem

Suppose there is an exogenous arrival process of packets (customers) of average rate J\;, to
be transmitted on link 7. To simplify exposition, we will assume that the arrival processes
for different links are mutually independent, and the process for link 7 is given by an i.i.d.
sequence A;(t), t = 0,1,2,..., of non-negative integer random variables, where A;(t) is
the number of packets (customers) arriving in slot t. (Obviously, \; = E'A;(t).) Also for
simplicity, we assume that P{A;(t) = 0} > 0. (These assumptions on the arrival processes
can be replaced by much more general Markov assumptions, e.g. those in [2]. Essentially,
all we will need is that the underlying stochastic process describing evolution of the system
under the strategy we will introduce later in Section 6 is Markov.)

Customers waiting for transmission form queues, one queue per each link. Queue length
(number of waiting customers) at the link 7 at time ¢ is denoted by Q;(¢).

The problem is to find a dynamic random access strategy, i.e. a dynamic rule for choosing
access probabilities p;, such that the link queues remain stochastically stable. For a random
access strategy such that the queueing process Q(t) = (Q;(t), i € Z), t > 0, is a Markov
chain (as will be the case for the QRA strategies we introduce later in Section 6), stochastic
stability is understood as ergodicity of this Markov chain.

Obviously, stability cannot be expected for arbitrary input rates A = (\;, i € Z). The QRA
strategies of Section 6 is such that they ensure stability, as long as A lies within the saturation
throughput region, which we introduce next.



5 Saturation Throughput Region

We define the system saturation throughput region M, which we will often call simply through-
put region, as the set of all non-negative vectors, which can be majorized by vectors of the
form p(p), namely,

M = {y/ €[0,1]" | i < p(p) for some p € P}. (5)

Region M has the following simple interpretation. Suppose, each link is “saturated,” that
is there is unlimited number of packets available for transmission. A vector y’ is within
M if there exists a static random access strategy, with some constant vector p of access
probabilities, that provides average throughput of at least p on each link 7. It is easy to
observe that region M is a compact subset of the positive quadrant Rfr.

It is shown in [14] that the subset of maximal elements (or, Pareto boundary) of M, i.e., set
M*={p e M |p <y €M implies pi = "}, (6)

is essentially equal to the set of points p € M maximizing (“weighted proportional fairness”)
objective Y, w; log y1;, for different non-negative weights w;. The choice of access probabil-
ities p such that p(p) maximizes > w;log p; over M is given by Proposition 1 below, which
is Theorem 1 of [14], which in turn is a generalization of the corresponding result in [15].

For each n € N/, let us denote by
S, ={(l,k) | k€ Dy, keN,}

the set of all links (¢, k) which either originate at n or are such that a transmission by node
n interferes with that on (¢, k).

Proposition 1 For arbitrary set of positive weights w = (wyy,, (n,m) € I) € RL, there
exists a unique set of access probabilities p € P which maximizes the function

> o 10g frm (p)- (7)

(n,m)eT

The optimal p is given by:

pnm - -
Z(é,k)esn Wek

The dependence of the set (vector) of access probabilities p € P on the set (vector) of positive
link weights w € R%_, given by (8), will be denoted by p(w). We will extend the domain of
p(w) for all w € R’ using the convention that p,, = 0 when w,,, = 0. (Expression (8) is
well defined when w,,,,, > 0, but may not be when w,,,, = 0.) Clearly, p(w) is continuous at
any point w € RfrJr. It is not necessarily continuous at points w with some 0 components.
However, some continuity properties, namely those in Proposition 2(iii) below, do hold and
will suffice for our purposes.



Proposition 2 (i) Function p(w), w € RL, is invariant with respect to scaling of w by a
positive constant.

(ii) Suppose w' € R%. Then,

p € arg maxZw;m 10g Tpm if and only if ., = pnm(p(w")) for all (n,m) with w!,, > 0.
TEM
(9)

(We use convention that 0(—oc0) = 0.)

(i) Suppose w — w' € RL. Then,

(11i.1) If w),, = 0 and w), > 0 for at least one (¢, k) € S,,, then ppm(w) — 0 = ppp(w'). In
particular, if w),, =0 and w!, > 0, then pyy,(w) — 0.

(1i1.2) If w),,, > 0, then

Prm(w) — pnm(wl) and finm(p(w)) — ,unm(p(w,))' (10)

The proof is straightforward - we omit it.

Remark. Expression (8) can be equivalently rewritten as

wnm

=, (11)
Zke/\/n Wk

pnm

where

Wi = Z W (12)

is the sum of the weights of all links “incoming” to node k. As explained in [14], given the
set of weights w, the calculation of access probabilities p,,, according to expression (11) can
be done in “distributed way,” namely, nodes will only need to “know” weights of their own
links and exchange a minimum amount of information with their “neighboring” nodes.

6 Queue Length Based Dynamic Strategies. Stability
Results

Consider the model described in Sections 3-4. Without loss of generality - rather with
a gain of generality - we assume that a transmission attempt (with non-zero probability)
is allowed on any link ¢ in any slot ¢, regardless of whether or not there are customers
in the queue available for transmission in that slot. (Any transmission attempt interferes
with transmissions on the other links in the usual way.) In particular, it is possible to
have a “successful transmission attempt” on link 7 that transmits no customer from the
corresponding queue, because none was available. We also adopt a convention that the A;(¢)
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customers arriving at link i in slot ¢ are not counted into the queue length Q;(¢) at time ¢,
but are immediately available for transmission at time ¢. (This convention is non-essential,
made just to make expressions “cleaner.”) Given our conventions, we obviously have the
following recurrence for the queue length:

Qi(t+1)=[Q:(t) + Ai(t) — hi(t)]T, t=0,1,2,..., (13)

where h;(t) = 1 if there was a successful transmission attempt on link 7 at time ¢, and
hi(t) = 0 otherwise.

We are going to study the following two dynamic strategies, which will be collectively referred
to as QRA algorithms (Queue length based Random Access):

FEach node n maintains dynamic weights w;(t), ¢t = 0,1,2,..., of “its” outgoing links, de-
pending on the corresponding queue lengths. Fach node n sets its access probabilities in slot
t according to the expression (11). In other words, the set of access probabilities in the net-
work at time t is given by p(w(t)). QRA-I algorithm uses weights w;(t) = a; + %:Qi(t)?,
with parameters a; > 0, v; > 0, # > 0. QRA-II uses weights w;(t) = «; exp[v;Q;(¢)]*, with
parameters c; > 0, v; > 0, and € (0,1).

Given our assumptions on the arrival processes (in Section 4), it is clear that, under both
QRA algorithms, the queue length (vector-) process Q(t), t = 0,1,2,..., is an irreducible
(and aperiodic) Markov chain with countable state space.

Theorem 1 Suppose vector of input rates A is such that

A< p* for some p* € M. (14)
Then,
(i) Markov chain Q@ = {Q(t), t =0,1,2,...} is ergodic under the QRA-I policy;

(i) Markov chain @ is ergodic under the QRA-II policy, and the additional (exponential
moment) assumption on the input flows:

Ee 4 < oo for some ay > 0 and all i. (15)

Remark 1. If input processes are not i.i.d., condition (15) can be relaxed to (36) - the latter
condition is the one actually used in the proof.

Remark 2. In essence, QRA-I algorithm was introduced in [14], in a somewhat different
context, where the arrival processes and queue lengths are “virtual,” and used to enforce
minimum desired throughputs on the links. However, the queueing stability problem was
not addressed in [14].

Remark 3. As already discussed in the introduction, QRA-II algorithm is the “random-
access-model” counterpart of EXP algorithm [19, 20]. (The latter algorithm applies to a
different model.) The queue weights w;(¢) used in the original EXP algorithm have the form

@i (0)]
T+ hRUI

9
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where vQ(t) = (1/1) Y., 7Qi(t). The form w;(t) = «; exp[Q;(t)]* was later used in [10]
(again, for a different model). These two forms result in equivalent behavior of fluid sample
paths (FSP) and local fluid sample paths (LFSP), which are used in our stability proofs, and
thus, in principle, either form can be used in QRA-II. The latter form is better suited for
a distributed implementation. We emphasize that previous stability analyses in [19, 20, 10]
are for a different model, and do not apply to the model of this paper.

7 Proof of Theorem 1

We prove stability using fluid limit technique [18, 6, 5, 21, 8]. (For the application of this
technique in a discrete-time setting, close to that of this paper, cf. [2].)

Let QM = (QM(t), t = 0,1,2,...), denote a queue length process @ with a fixed initial
condition such that [|Q)(0)|| = r, » > 0. In the analysis to follow, all variables associated
with a process Q) will be supplied with the upper index (r). It will be convenient to extend
the definition of the process Q") to continuous time t > 0 by adopting the convention that

Q(t) = Q([t])-

The following result follows from the state dependent Lyapunov-type stability criterion for
countable Markov chains, obtained first by Malyshev and Menshikov [16]. (In the specific
form (16) a Markov chain ergodicity criterion was introduced in [18].)

Proposition 3 Suppose there exist constants € > 0 and T > 0 such that for any sequence
of processes {Q),r 1 oo}, we have

fimsup [ [QU ()] <1~ ¢ (16)

T—00

Then the (original, discrete time) Markov chain @ is ergodic.

To verify condition (16) of Proposition 3, fluid limit technique introduces the sequence of
fluid-scaled processes,

g"(t) = %Q(’")(rt), t>0. (17)

Note that it suffices to verify (16) under the additional condition that the sequence of rescaled
initial states (1/7)Q((0) converges, which is equivalent to

¢ (0) = ¢(0) as r — oo, where ||g(0)| = 1. (18)

Then, we establish the following result.

10



Theorem 2 There exist constants € > 0 and T" > 0, for which the following holds. Consider
a fized sequence of rescaled processes {q"),r 1 oo}, satisfying condition (18). Then, all
processes of the sequence can be constructed on a common probability space, such that the
following holds with probability 1. Any subsequence of the sequence of realizations of {¢™,r 1
o0}, has in turn a further subsequence u.o.c. converging to a trajectory q¢ = (q(t), t > 0),
which we call a fluid sample path (FSP), and which, in particular, satisfies the following
properties:

lq(0)[| =1, (19)
function q(t), t > 0, is Lipschitz continuous, (20)
la(M)| <1 —e (21)

Theorem 2 will be proved separately for QRA-I (under assumptions of Theorem 2(i)) and
QRA-II (under assumptions of Theorem 2(ii)), in Sections 8 and 9, respectively. Fluid
sample paths will be defined differently for QRA-I and QRA-II. We emphasize that not only
the equations describing their dynamics will be different, but their definitions are in fact
somewhat different as well.

Once Theorem 2 is established (for both QRA-I and QRA-II), this completes the proof of
Theorem 1. Indeed, for any fixed 7" > 0 the uniform integrability of the family of random
variables (1/7)[|QM (rT)|| (indexed by r, as in Proposition 3) is easily established, using
majorization of the queue lengths by the cumulative arrival processes [18, 6]. This fact and
Theorem 2 verify the assertion of Proposition 3.

8 Proof of Theorem 2 for QRA-I

8.1 Probability space construction and other preliminaries

Let us denote by
FO) =Y Ai(s), t=0,1,2,..., i€T,

the total number of customer arrivals at link ¢ by (and excluding) integer time t. We also
denote by

FO() =3 hils), t=01,2,..., i€T,

the total number of successful transmissions on link i by (and excluding) time ¢.

Without loss of generality, we will assume that random transmission attempt decision by
node n at time ¢, given its “current” (depending on ) set of access probabilities p,,, m €

11



D,, is determined by the random variable y,(¢), uniformly distributed in [0,1]. (Random
variables y,(t) are mutually independent across all n and ¢.) Namely, node n assumes some
fixed ordering of the nodes in D,,: my,... ,my. Then, if y,,(t) € ¢nm, = [0,Pnm,], node n
attempts transmission on link (n,my); if yn(t) € dnms = Prmys Prymy + Prms), it attempts
on link (n,ms); and so on. If y,(t) € (pn, 1], node n does not attempt a transmission. We
denote

Z[{yn ) <&, neNH t=0,1,2,..., {=(&,..., &) €0, 1Y, (22)

where I{-} is an event indicator (not to be confused with I as the number of links).

)

we extend the time domain of functions F)(t), F ( ), and Y (¢, €) to all real t > 0 by
adopting the convention (as we already did for Q") (¢)) that they are constant within each
time slot [/, ¢ + 1) for all integer ¢ > 0.

We will use vector notations F)(¢) = (F" (¢ ( ), i € I), FO(t) = (F"(t), i € I). Finally,
t

By our definitions and conventions, F(0) = 0, ﬁ'(’")(()) =0, and Y(0,€) = 0 for every
£ €10,1]V. We also have the following “integral form” of the recurrence (13):

A

Q) = Q7O+ E7 ) = V() — | min Q) + F7(5) - EV(5)} , t20, i€,
(23)

Without loss of generality we can assume that processes F()(-) and Y")(-,-), although carry
index (r), do not depend on r. (For every r they are constructed from the same underlying
sequences i.i.d. random variables.) Then, along any fixed sequence of r 1 oo, the following
functional strong law of large numbers (FSLLN) properties hold: with probability 1

(1/r)F7(rt) — At, wo.c., Vi €T, (24)

(1/r)Y(rt, &) = [[] &t, woec. (25)

neN

(In (24) and (25), u.o.c. means that the convergence is uniform on ¢ and (¢, &), respectively,
within any bounded subset.)

8.2 Fluid Sample Paths: Definition

Consider a sequence of 1 oo. For each 7, let (QU) (), F™)(.), F™)(.), Y()(..)) be a real-
ization (that is, a fixed sample path) of the corresponding random process, with some fixed
initial condition Q((0), [|Q™(0)|| = 7. The entire realization is uniquely determined by
QM (0), F™(.), and Y)(-,-)). Assume this sequence of realizations satisfies conditions (24)
and (25).

12



Consider the following rescaled trajectory for each r:

~

(" = (@), t20), [0 =(FO), t20), O =), t>0),
where f0)(t) = (1/r)FO(rt), fO)(t) = (1/r)F(rt), and (recall) ¢ () = (1/r)Q) (rt).

A triple of vector-functions (¢ = (q(t), t > 0), f = (f(t), t > 0), f = (f(t), t > 0)) is
called a fluid sample path (FSP), if the uniform on compact sets (u.o.c.) convergence

(@, O, ) = (q. f. f) (26)

holds for at least one sequence (¢, (), f(")) of scaled trajectories (with r T oc), such that
(24) and (25) hold.

We note that the definition of the FSPs given here, as well as their dynamic properties
derived in next Section 8.3, do not require condition (14).

8.3 Fluid Sample Paths: Basic Dynamics

Lemma 1 Any fluid sample path satisfies the following conditions: (19),

functions q(-), f(-), f(-), are Lipschitz continuous, with f;(t) = i, (27)
q.(t) =[N — vi(t)];:(t), Vi € Z, for almost all t > 0, (28)
v(t) € argmax[y x ¢(t)°] - log x. (29)

zeM

Proof. Consider a fixed FSP, and any fixed sequence of rescaled paths (¢, f), f(’")) which
“defines” this FSP (via convergence (26) and the other conditions). Properties (19) and (27)
are obvious, given the FSP construction. (Property f;(t) = A;t follows from (24).) Therefore
almost all points £ > 0 are such that proper derivatives of component functions of the FSP
exist - such time points will be called regular. It will suffice to show (28)-(29) for a given
regular point ¢ > 0. Indeed, switching to rescaled paths in (23) and taking the limit on r,
we obtain

gi(t) = 4:(0) + fi(t) — fi(t) — sfen[(i)ll]{%(o) + fils) = fi()}| ,t>0,i€Z. (30)
Denote v;(t) = f!(t) and recall that f/(t) = \;. Given (30), we see that the equation in
(28) holds trivially if ¢;(¢) > 0. If ¢;(¢) = 0 we must have ¢.(t) = 0 (by regularity), and
then \; —v;(t) < 0 because otherwise (30) would imply that the right derivative (d*/dt)q;(t)
exists and is equal to A; — v;(¢) > 0. This proves (28).

13



Let us prove (29). Now, consider the FSP, and the corresponding rescaled trajectories in a
small interval [t, % + €]. By continuity of ¢(+) and by(26), all values of ¢")(s) = Q") (rs), s €
[t,t + €], for all sufficiently large r, are close to ¢(t), as long as ¢ > 0 is small. For each
r, consider the corresponding unscaled trajectory of Q)(-) in the (corresponding) time
interval [rt,rt + re]. It will be convenient to assume that the trajectory with index r uses
rescaled dynamic weights wzm(s) = wi(s)/r = a; /T + %[Qgr)(s)]ﬂ/r. (This does not change
anything, by Proposition 2(i).) We see that, in [rt, rt + re], wl(r)(s) is close to v;¢;(t)?. Then,
it is easy to see from Proposition 2(iii) that, for any link ¢ = (n,m) with ¢;(¢) > 0, the
corresponding interval ¢, ,, (see the construction governing transmission attempts) is close
to such interval corresponding to the access probabilities p(y x ¢(t)). (Again, this is for
the unscaled trajectory in the interval [rt,rt + re|, with small € and for large values of r.)
Given the definition (22), condition (25), and again Proposition 2(iii), this implies that the
time-average rate of successful attempts in the interval [rt, 7t +re] is close to u;(p(y x q(t)?).
This shows (we omit e-d formalities) that, for all links ¢ with ¢;(¢) > 0,

vi(t) = p(p(y x (1)),

which, by Proposition 2(ii), implies (29). |

8.4 Stability of Fluid Sample Paths. Conclusion of Proof of The-
orem 2

All statements of Theorem 2, except (21), easily follow from the fact that (24) and (25) hold
w.p.1, the FSP construction, and FSP property (27). It remains to show that FSPs satisfy
(21), which is done in the following

Theorem 3 Consider function
)= 3 Ty e R (31)
B+14 g

(It depends on u* as a parameter.) Suppose X\ satisfies (14), and consider the family of
Lipschitz continuous trajectories (q(t), t > 0), satisfying (28) and (29). Then, for any
€1 > 0 there exists e > 0, such that

W(g(t)) > € implies %\Il(q(t)) <o (32)

As a corollary, there exist € > 0 and T > 0 such that (21) holds uniformly for all FSPs.

Remark. Lipschitz continuous trajectories satisfying (28) and (29) also arise in a completely
different setting, namely, in the “session level” stability analysis of communication networks
with “concave-utility-based” allocation of service rates to different sessions; see [9, 4, 25].
(We want to emphasize that the derivation of properties (28) and (29) in our setting is
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completely different.) In all the previous work cited above the region M (which has a
different meaning from ours) is convex. In our model, region M is not necessarily convex,
and in fact non-convex in most cases. However, for the purposes of establishing trajectory
stability in Theorem 3, convexity of M is not important. Since this last point may not be
immediately clear from the previous work (some of which does use convexity of M, even
though it does not have to), and for completeness, we present the proof of Theorem 3.

Proof. Denote log u* = u* and logv(t) = u(t). Then, we have

Va0 = 3 )’
_ Z %Qi(t)ﬁ[)\i — )]
< D () e — e = e (ft) — )] (33)

= Z%‘Qi (t)° [% - 1} - [Z Yiqi(8)ui(t) — Z%fli(t)ﬂuf (34)
< Z%’Qi(t)ﬂ [A—: - 1} : (35)

i
The inequality (33) uses convexity of the exponent function, and inequality (34) < (35) is
because Y, viqi(t)Pu;(t) — 3, viqi(t)Pu; > 0 by condition (29). The RHS of (35) is negative
and bounded away from 0 as long as ¥(¢(t)) is positive and bounded away from 0. |

9 Proof of Theorem 2 for QRA-II

9.1 Preliminaries

Recall that we are now in the conditions of Theorem 2(ii), and therefore under additional
assumption (15), which implies large deviations (Cramer’s) bound for the input processes.
For any i € Z and any v > 0, there exists a constant a = a(r) > 0 such that, for all
sufficiently large n, uniformly on £ > 1,

1 k+n—1
Pr{|— DA - N v <e ™. (36)
t=k

Let arbitrary v > 0 and L > 0 be fixed. Let us also pick any ¢ > 0 such that { <n =1 — k.
For each n, let us cover the interval [0,7L] with Pf = |rL/r¢| + 1 equal non-overlapping
ré-long intervals [(j — 1)r¢, jr¢), 1 < j < Pr. Define for each i € Z, and each £ € [0, 1],

F = F(jr¢) — F7((j — 1)r¢), the number of arrivals of flow i in the time interval

2,] [

[(G = D)rs, jro),
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V=¥, =Y (G - 1,0

Let us denote

F.(T.)
E{(L,v) = U T—Z - A

1<j<Py

Yj(’j)ﬁ
Gi(Lve = U {%—5

1<G<Pp

>V},

Lemma 2 The following properties hold (with Q. being the set of strictly positive rational
numbers):

Pr{ (J ﬁGE{(L,y) =0, VieTl, (37)

II,LGQ+ k=1r=k
Pr{ U NUGiLre| =0 vieT. (38)
v LEQy  £€[0,1], €04  k=lr=k

Equivalently, with probability 1, for any rational numbers L > 0, v > 0 and £ € [0, 1], there
exists finite k such that for all r > k,

Ei(L,v)

. max - )‘Z <v ) (39)
i€T, 1<j<Py ré
Gr(L, ,6)
1 ) ) _ < .
z'eI,Hllg;{gpg ré §=v (40)

Proof uses Cramer’s bound (36) and Borel-Cantelli lemma. (See [19], Lemma 4.3, for the
proof of (37), and (38) is proved analogously.) |

9.2 FSP definition and stability. Proof of Theorem 2

Consider the system under the QRA-II algorithm. For this algorithm we define fluid sample
paths (FSP) in exactly same way as for QRA-I (in Section 8.2), except we require that,
in addition to (or, rather, instead of) (24) and (25), a defining sequence (¢, f), f() of
scaled sample paths satisfies stronger conditions (39) and (40). (Such FSPs clearly satisfy
the initial condition (19) and Lipschitz condition (27), but certainly not the conditions (28)
and (29) - the FSP dynamics under QRA-II is very different.) With this FSP definition, the
proof of all statements of Theorem 2, except (21), is almost automatic. To establish (21),
we prove the following key property of the FSPs under QRA-II algorithm.
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Theorem 4 Suppose a point p* € M N RL is such that for some real ¢, v;(uf — ) = ¢
for all i. [We do not necessarily assume (14), and thus a positive ¢ may or may not exist.]
Then, in addition to (19) and (20), every FSP satisfies the following condition at every
regular point t > 0 where max; v;q;(t) > 0:

%mlaxviqi(t) < —c. (41)

The above definition of the FSPs for QRA-II, as well as that for QRA-I, does not require
condition (14). And Theorem 4 holds regardless of (14). If condition (14) does hold, then p*
can be chosen to be the point where the ray in the direction (1/71,...,1/7), starting at A,
hits the boundary of M, in which case ¢ > 0, and % max; v;¢;(t) < —c < 0, which of course
proves (21).

Proof of Theorem 4 Properties (19) and (20) are proved the same way as for QRA-I
algorithm (and for fluid limits in general). To prove (41), consider a fixed FSP and a sequence
of rescaled pre-limit trajectories, defining it. We will use notation: z(t) = max; v,q;(t),
2 (1) = max; 7iq§T)(t), ZW(rt) = max; %-QZ(-T)(rt). Suppose (41) does not hold. Then, there
exists a regular point ¢ such that z(¢) > 0 and 2/(t) > —¢; > —c. We will show that this
leads to a contradiction. We can choose constants § > 0, 6; > 0, and ¢y € (¢, ¢), such that

2(s) > 6, Vsel[t,t+0],

and
z(t+0) — 2(t)

J

> —Cy .

For each r, let us now divide the interval [¢,¢ + 0] into 7%0/¢ intervals, each of length ‘]’"Tn,
where 7 = 1 — k, and ¢ > 0 is an arbitrary fixed constant. (Since r%§/¢ may not be an
integer, we should divide into, say, [r®§/¢] intervals. To avoid trivial complications and
heavy notation, we assume that r"d/¢ is integer. It will be clear that we do not lose the
correctness of the argument.) Note that in the “unscaled time”, each subinterval is of length
Orn.

From the Dirichlet principle, for all sufficiently large r, in at least one of the subintervals
(of length “), the average rate of change of z(")(.) is greater than or equal to (—cs). We
pick such a subinterval [s(™), s(") + @] for each r. Let us choose a further subsequence of the
sequence of indices {r} (which we will still denote by {r}), such that s — s, for some fixed
s € [t,t + 6]. Obviously, the right end-point s + h’T" of the subinterval also converges to s.

From the subsequence {r}, we choose a further subsequence such that the order of values

of %—q,?’")(s(’")),i € Z, remains same. For example, without loss of generality, we can assume
that
2 = gl () = 2 g (50)

Finally, for each ¢+ € Z, consider the following trajectories:

p(7) =g (57 4+ /) = 20O, r e (0,4,

i

17



and choose a subsequence such that for each 1,

y”(0) = ;(0)

where max; y;(0) = y1(0) = 0 (by our construction), and each other y;(0) is either finite
non-positive or —oo. Let us consider only the case when all y;(0) are finite. (If not, it
is easy to observe that, in the (unscaled) time interval [rs(™, rs(™ 4 r7¢] the queues with
¥:(0) = —oo have asymptotically vanishing impact on the service of queues with y;(0) > —oo.
So, essentially same argument, restricted to the subset of queues with finite y;(0) applies.)

We notice that the trajectory ylm(-) is obtained from the trajectory QET)(-) by the time

“speedup” of r" and the “space” scaling by the factor 1/r" (in addition to the time shift).

In the next step, we can and do choose a further subsequence of {r}, such that the sequence
{ygr)(-), i € T}, converges u.o.c. in [0, ] to a Lipschitz continuous trajectory {y;(-), i € Z},
which we call a local fluid sample path (LFSP). In this step we use properties (39) and
(40) which guarantee that, roughly speaking, the functional law of large numberes holds not
only over any (unscaled) interval of length dr, but also uniformly over the set of ¢r"-long
subintervals of it.

It is also not hard to see that the LESP trajectory satisfies the following conditions (42) and
(43) at every regular point 7 € [0, /]

y;(T) = %P‘z - Mi(T)]v Vi e Iv (42)
1i(7) € arg max[a x e®2¥(7] - log (43)
zeM

. 2
13

as 1 — oo, uniformly in i and in 7 € [0,/]; and recall that y;¢\” (s + 7/r%) — 20 (50"

r=5y") (7). We have

i

where as = r/2(s)". Indeed, note that 2™ (sM)/z(s) — 1 and 7,4 (s©) + 7/r%)/2(s) — 1
)

Q" (s + r17)]F = ZO (505 = 15 | [3g" (55 + 7/r7)]F — 20 (50| =
= (sl (7),
where 2 is a number “between” z(")(s) and %qg’")(s“) +7/r*). (Here we simply applied the
mean value theorem for an increment of function x*.) But, 2 — z(s) as r — oo, uniformly
in ¢ and 7, and therefore we have uniform convergence

Q" (s 4 1)) = Z0) (W) —

It remains to consider the behavior of the sample path in the unscaled time interval [s(’")r +
17, 8T r 4+ 17 4 A7), with small fixed A7, as r becomes large, and use the form of the
QRA-II scheduling rule. (The argument here is analogous to the one used to prove (29) for
QRA-TI rule. We omit details.)

18



By definition of LFSP, max; y;(0) = 0, and by our construction,
max y;(£) > —col > —cl. (44)
We will use the following Lyapunov function:

1
W(r)=) u’.‘v_aiemyi(ﬂm}’

i

where, recall, u* € M is such that v;(uf — A;) = ¢ for all 7. We have

T i
We denote w;(7) = log p4;(7), u; =log uf. Then,
d Qi aolys (1) 4er
GO = @3 e

Q; i\ T CT *
= ap ) —e@ TN — (7))

g )

Qi ol (T)erl T * * ® *
< D2t O — (] () = ) (45)

= e Zaie“mmuf — Zaie“mmui(ﬂ <0. (46)

Since W(7) is non-increasing and ¥(0) is bounded, we see that for some constant K, depend-
ing only on the system parameters and on c,

mzaxyi(r) < Kz(s)"—cr, 7€][0,/]. (47)

Recall that function z(-) is defined on the time scale of FSP (not LESP), and it is Lipschitz
and 2z(0) < max~;. Then, Kz(s)" is uniformly bounded within any finite interval (of FSP
time scale), and in particular for s € [¢,t + d], with ¢ and § chosen at the beginning of this
proof. Therefore, since ¢ could be chosen arbitrarily large, (47) contradicts (44). |
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