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Abstract

We consider the problem of scheduling CDMA data users on the for-
ward link. The goal is to meet their QoS requirements defined in terms
of probabilistic packet delay bounds. The constraint is the limit on the
total forward link transmit power. Each user’s channel condition is char-
acterized by the forward link power required to achieve a unit data rate.

This paper extends the work reported in [1], in which several sim-
plifying assumptions were made, including the assumption that channel
conditions are constant in time. In this work, we study a more realistic
scenario, in which transmission rates can only be chosen from a discrete
finite set, rate scheduling can only be done at discrete scheduling intervals,
and, most importantly, the users’ channel conditions may vary in time.

We show that if the discrete rate set and discrete scheduling intervals
are the only additional constraints, a straightforward adjustment of the
Largest Weighted Delay First (LWDF') scheduling scheme [14, 1] provides
QoS performance that is very good.

In the case of varying channel conditions a Modified LWDF (M-LWDF')
scheme with properly chosen parameters provides good QoS and is easily
implemented. Moreover, we show how M-LWDF can be used to achieve
alternative QoS defined in terms of a predefined minimum long-term
throughput for each user.

We also derive theoretical results showing that the M-LWDF rule is
optimal in the sense of providing maximal possible throughput; if there is
any scheduling discipline at all which can handle the offered traffic for all
users, then the M-LWDF will do so too.



1 Introduction

This work is a follow up and extension of work [1]. As in that paper, we consider
the forward link of a CDMA cell that supports N data users. Each user ¢ has
its own probabilistic Quality of Service (QoS) requirement of the form

Pr{Wz- > Ti} < §; , (1)

where W; is the steady-state packet delay for user i, and parameters T; and d; are
the delay threshold and the maximum probability of exceeding it, respectively.
Depending on the amount of interference (both background noise and other-
cell interference) different users require different amounts of power for the same
data rate of transmission. We assume that each mobile 4 is characterized by
the weight ¢;, the transmission power requirement per unit data rate. Generally
speaking, ¢; depends on time t. We assume that the total Base Station (BS)
transmit power is limited and normalized to 1. Therefore the following linear
constraint on the mobile data transmission rates p;(t) must hold at all times:

N

S cituilt) <1. (2)

i=1

We assume that rate scheduling decisions (i.e., p; reassignments) can only be
made at the boundaries of scheduling intervals of constant length a. The goal is
to find a good rate scheduling rule (in other words a queueing discipline) which
will try to satisfy the QoS requirement (1) for all (or for as many as possible)
users, while satisfying the constraint (2).

The model analyzed in [1] was mostly conceptual; the main goal was to
study tradeoffs between different types of scheduling rules, and the capacity
implications of users having different weights ¢;. For this reason, the following
simplifying assumptions were made in [1]:

1) Continuous rate set. Transmission rates yu; may be set to any non-negative
value as long as (2) holds.

2) Continuous time scheduling. The scheduling interval was very short, 1
ms, which (for the parameter setting used) was essentially equivalent to the
ability to change transmission rates continuously in time.

3) Constant channel conditions. The weights ¢; were different for different
mobiles, but constant in time.

It has been shown in [14] that the Largest-Weighted-Delay-First (LWDF)
scheduling rule is asymptotically optimal when T;’s are large and 4;’s are small.
The simulations in [1] show that the LWDF indeed appears to be nearly opti-
mal. This rule clearly showed the best QoS performance among all other rules
simulated in [1].

The LWDF scheduling rule is as follows:

In the scheduling interval starting ot time t, serve at the mazimal possible
rate a single user j such that

CL]'W]' (t) = mzaxa,-Wz-(t) 5 (3)



where W;(t) is the user i flow delay at time t (i.e., the mazimum waiting time of
any packet in the queuwe), and a; >0, i =1,... ,N, is a fized set of constants.
The choice of the constants a; which makes LWDF nearly optimal is

The goal of the present paper is to find good rate scheduling rules for a more
realistic scenario in which the above assumptions 1)-3) do not hold.

In Sections 2 and 3 we show that the LWDF rule provides good performance,
even when the assumptions 1) and 2) are removed. In the case of LWDF with
discrete rate set and discrete time scheduling, the delay characteristics of users’
flows are affected very little, unless the scheduling interval is large enough to be
of the order of a packet transmission time.

In Section 4 we drop the assumption 3) and consider the case of varying
channel conditions. In this case, if the scheduling interval is short enough to
follow time variations of ¢;(t) (as is the case in Qualcomm’s High Data Rate
proposal [3]), a scheduling algorithm can take advantage of channel variations by
giving some priority to users with (temporarily) better channels. Since channel
conditions of different users vary in time in an asynchronous manner, the QoS
of all users can be improved, as compared to scheduling schemes which do not
take channel conditions into account. (A scheduling rule providing proportional
fairness in the achieved long-term throughput of different users is proposed and
analyzed in [15].) We show that if QoS is defined by (1), then the Modified
LWDF (M-LWDF) rule provides very good QoS performance. This rule is as
follows:

In the scheduling interval starting at time t, serve at the mazximal possible
rate a single user j such that

Wit _ W)
¢;(t) ioc(t)
where v; >0, i =1,... N, is an arbitrary fized set of constants.

The choice of constants 7; which results in good QoS performance of M-

LWDF is
Yi = QiCq
where ¢; is the measured short-term average (or median) of ¢;(t).

We also show in Section 4.2 that the M-LWDF discipline can be used to
provide Quality of Service defined not by (1), but in terms of ensuring certain
minimum long-term throughput for each user.

In Sections 5 and 6 we derive theoretical results showing that the M-LWDF
rule is optimal in the sense of user flows’ stability. We show that the M-LWDF,
with arbitrary choice of constants -;, ensures that the system is able to handle
the offered traffic of all users, if this is feasible at all with any other rule.

1.1 Simulation Framework

In all simulations in this paper, we consider a cell containing N = 16 users
uniformly distributed throughout the cell. The ¢; values of the 16 users are



listed in Figure 1. Those were generated randomly and independently according
to the distribution of a mobile Signal-to-Noise-Ratio derived in [16].

The traffic for each mobile is generated by an ON-OFF source, with ON and
OFTF periods independent and exponentially distributed with means 93 msec and
907 msec, respectively. When the source is ON the (Poisson) flow of packets is
generated at the rate of 9 packets/sec. The packet sizes are independent and
exponentially distributed. We adjust the load of the system by changing the
mean packet size.

The QoS parameters were always set as follows. The deadline T; was equal to
3 sec for the 8 “close” (smaller ¢;) and 7 sec for the 8 “far” (greater ¢;) users. The
deadline violation probability §; = 0.1 for all users. In the simulations we record
the packet delay distribution of the “closest” (smallest ¢;) and the furthest,
(greatest ¢;) user, as they represent two extremes of the delay distribution.

2 Discrete Rate Set

Let ‘R denote the finite set of rates which the base station can use for a trans-
mission to a mobile. For convenience, let us adopt the convention that 0 € R.
Then the maximum rate u; at which we can transmit to user ¢ is given by
i = max{p € R :cp < 1}. If we transmit to a single user i, we typically incur
a waste in power of 1 — p;c; > 0. This excess power can be used to transmit to
other mobiles. This leads us to the following greedy scheduling algorithm, which
is a straightforward adjustment of the Largest Weighted Delay First scheduling
discipline, which proved to provide very good QoS performance in case of the
continuous rate set (see [1]) and has some nice asymptotic optimality properties
[14].

The transmission rates u;(t) at time ¢ are assigned as follows. Renumber
the mobiles so that ¢ < j = a;W;(t) > a;W;(t), where W;(t) is the user ¢ traffic
delay at time ¢ (i.e., the current waiting time of the head-of-the-line packet).
For p > 0 and ¢ > 0, define the function R(p;c) = max{y € R : cu < p}. Then
the rate p;(t) assigned to mobile 7 is computed iteratively by

m(t) = R(L;e1) , (4)

i—1
/J/z(t):R I_Z/J/j(t)cj;ci ’ i:2a"'7Na (5)
j=1

where N is the number of mobiles.

The rate set R used for our simulations was {0} U {9.6 x 2/ : j =0,...,6},
where all rates are in kbps.

The simulation results comparing the performance of the system with the
LWDF discipline adjusted for the discrete rate set system to the performance
of the system with “pure” LWDF (i.e., one with a continuous rate set of [0, 00))
are shown in Figures 3 and 4. In those simulations the scheduling interval is
1 ms, as in [1]. The mean packet size is set to 15500 bits, which corresponds to



an average arrival rate of 13 kbps, an arrival rate during the ON period of 139.5
kbps, and a system load of 91%. As might be expected, the use of a discrete
rate set pushes the delay profile to the right and increases the average delay.
The probability of violating the deadline increased by about 0.02 for the closest
user and 0.03 for the furthest user. In a busy period the transmitter was able
to utilize (on average) 96.5% of the available power.

The main conclusion we can draw from the simulations is that (at least for
our parameter setting) the impact of the discrete rate set restriction is small.

3 Discrete Time Scheduling

In the simulations of the previous section (as well as in [1]), the scheduling
interval was 1 ms. This means the transmission rates were recomputed every 1
ms. This means that even for the maximum possible transmission rate (within
our rate set) 614.4 kbps, the ratio of scheduling interval duration to the mean
packet transmission time was about 0.04. Thus, so far we were modeling a
situation when transmission rates could be changed essentially continuously in
time. In many practical situations however it is impossible or highly undesirable
to have a very short scheduling interval. For example, in CDMA2000 systems
the scheduling interval must be a multiple of 20 ms (one frame duration).

In this section we investigate the effects of the scheduling interval being 20
ms or a multiple of 20 ms.

We will assume that

1. delays can only be computed to within multiples of 20 ms,
2. transmissions may start only at the boundaries of scheduling intervals.

With the above assumptions, it is never necessary to assign to a mobile i a
rate higher than the lowest rate in R that would cause its buffer to be emptied
during the scheduling interval. Therefore, the following further adjustment of
the LWDF scheduling discipline is natural.

For p > 0, ¢ > 0, and @ > 0, define the function R*(p;c,Q) = R(p;c) A
min{y € R : pa > Q}, where a is the scheduling interval duration, the min is
equal to oo if the condition is infeasible, and A denotes the minimum of two
numbers. The transmission rates p;(t) for the scheduling interval [¢t,t + a) are
assigned as follows. Renumber the mobiles so that ¢ < j = a;W;(t) > a;W;(¢),
and let Q;(t) be the queue length (number of bits in the buffer) for user ¢ at
time ¢. Then

p(t) = R (Le1, Qu(t)) (6)
) = B [ 1= 3 wit)essen it | ")



The results of running this algorithm with scheduling intervals 20 ms, 40 ms,
and 100 ms, are presented in Figures 5 through 10. The delay distributions are
compared to those of (the discrete rate adjusted) LWDF discipline with 1 ms
scheduling interval. We see that the increase in probability of deadline violation
is quite small for 20 and 40 ms scheduling interval, and becomes significant only
when the scheduling interval becomes of the order of 100 ms.

4 Varying Channel Conditions

4.1 Introductory Discussion

Let us consider the even more realistic case in which the channel conditions vary
with time. In other words, suppose that for each user i, ¢; = (¢;(t),t > 0) is a
random process. Of primary interest to us will be the impact of fast fading. So,
we are interested in ¢; having the form

ci(t) = &&i(t) , (8)

where ¢; is a constant determined by shadow fading effects, and &; is a fast (say
Raleigh) fading process.

The channel time variations can be exploited to achieve better QoS for all
users. Very roughly speaking, if user i (temporarily!) has a good channel (i.e.,
low ¢;(t)), then this provides an opportunity to give this user a higher data rate
and to efficiently use the BS transmission power. Thus, as channel conditions
change, it seems sensible and natural to dynamically reallocate users’ data rates
to give some priority to users which at the time have a good channel.

The first issue that arises immediately is one of the scheduling interval length.
The scheduling interval must be short enough for the rate adjustments to follow
fast fading. This is feasible, and in fact a 1.67 ms frame size is used in the HDR
proposal [3]. In both simulations and analysis, we will assume that ¢; values
stay constant over a scheduling interval, and that, for the upcoming scheduling
interval, these values are known to the base station.

Recall that our goal is to find algorithms that try to satisfy the QoS of
different users. In the case of time varying channels, this problem is much
more complicated. Even the issue of stability is quite non-trivial in this case.
(Informally, by stability we mean the existence of a stationary regime for the
queue length process, i.e., the property that queues do not have an inherent
tendency to grow to infinity. See Section 5 for precise definitions.) Indeed, in
the case of constant ¢;’s and (for simplicity) a continuous rate set, the queues
are stable if and only if

p= Z i < 1
K3

where p is the system nominal load, i.e. average BS power requirement (recall
that maximum BS power is 1), A; is the mean data rate (in bps) for user i. The
situation is not that simple if the ¢;’s are varying with time. For a system which
makes scheduling decisions oblivious of the ¢; values (such as the LWDF scheme



previously discussed, which in the case of a continuous rate set always chooses
for service the queue with maximal a;W;(t)), the average transmission rate to
mobile ¢ is (roughly) E(1/¢;). Therefore the nominal load in this case is

p= Z Ni/E(1/c;) . 9)

The ¢;-oblivious schemes are expected to make queues stable if p < 1. (This
statement is certainly correct for LWDF but may need modification for other
disciplines.) It is not hard to see that schemes which use the information on the
current values of ¢; may be stable (and moreover able to meet QoS requirements)
for nominal loads of well over 1 (or, 100%). In the sequel, the nominal load is
always as defined in (9).

In Sections 5 and 6 we formulate and prove analytic results regarding stabil-
ity. The main result Theorem 3 basically says that in a system with continuous
rate set (or a system where only one queue may be served in one scheduling
interval), the following simple Modified LWDF (M-LWDF) scheme makes the
system stable if it can be stable at all (with any scheduling rule):

In the scheduling interval starting ot time t, serve at the maximal possible
rate o single user j such that

W (t) -m YiWi(t)

a® o al)
where v; >0, i =1,... , N, is an arbitrary fized set of constants.

Remark. The assumption that “only one user may be served at a time” is
not very restrictive. For example, in the HDR proposal [3] this is a “built-in”
constraint.

The M-LWDF rule ensures system stability for any set of ;. The choice of
v;’s is a “degree of freedom” we can use to try to satisfy QoS (1) for different
users.

In what follows we always consider index rules of the form “Serve user j €
arg max; I;” where I; is some function. Therefore, we will label the rules by the
function ;. For example, the “y;W; /ci” rule is a shorthand for the M-LWDF
rule (10).

(10)

4.2 The M-LWDF and Alternative Notion of QoS

The M-LWDF scheduling scheme can be used to achieve QoS not only of the
form of a probabilistic delay bound (1), but also for other forms of QoS as well.
For example, in case of variable channel conditions, even the problem of
keeping the long-term throughput R; for each flow ¢ above the desired minimum
level r; is non-trivial. Namely, suppose the QoS requirements have the form

R, >r;. (11)

However, it is easy to observe that the problem (11) can be viewed as the
problem of achieving stability of a system in which the actual random flow 4 is



replaced by a virtual (token) flow of constant input rate r;. And, as mentioned
above, we prove in this paper that the M-LWDF discipline solves the latter
problem if it is feasible at all.

Thus, a practical scheme which will achieve QoS (11) (if it is feasible at all)
can be as follows. There is a token bucket associated with each flow 4, in which
tokens arrive at constant rate r;. (Token flow and token bucket are virtual of
course, implemented as counters in software.) In each scheduling interval, a
decision which flow to serve is made according to the M-LWDF rule (10), with
W;(t) however being not the actual delay of flow ¢, but the delay of a longest
waiting token in the token bucket i. (Note that since tokens arrive at a constant
rate, W;(t) is equal to [Number of tokens in the bucket 7] /r;.) After the service of
the (actual) queues in the scheduling interval is complete, the number of tokens
in each bucket is reduced by the actual amount of data served from each queue.
(Of course, reasonable adjustments need to be made for “special situations”,
like having too small amount of data in the actual queue which would be chosen
by M-LWDF according to the token bucket contents.)

Moreover, the greater the M-LWDF parameter ; (relatively to -y; for other
flows), the “tighter” the minimum rate assurance for flow i. This means that
the desired minimum rate is provided on a finer time scale, i.e., as the average
rate over shorter time intervals.

4.3 Simulation Parameters

For ease of comparison with the simulations in the previous section, we use a 20
ms scheduling interval in this section too; it should be clear however that the
absolute value of the scheduling interval we pick is not essential, and moreover
that the “variable ¢;” schemes we study are intended for shorter scheduling
intervals.

For the same reason, in the simulations of this section, we always consider the
discrete rate set adjustment of each scheduling rule. This means that when we
simulate an “I;”-rule, the rates in a scheduling interval starting at ¢ are assigned
recursively according to (6) and (7), with users being ordered by decreasing value
of I;, and ¢; being replaced by ¢;(t) for all 4.

We model the fading process by a Markov chain. For our simulations, we
used the simple three state Markov chain shown in Figure 2.

This model assumes that each mobile ¢ has some median fading level ¢; and
that ¢; is either ¢; or ¢; £ 3dB. The ¢; values were chosen to be the same as the
c¢; values listed in Figure 1.

To model the actual fading process more closely, we made the mobiles spend
the most time in the median fading level (¢; = ¢;), with

The traffic pattern of each user is the same as in previous sections except
for the mean packet length. (The mean packet length for the constant ¢; case
was taken to be 15500 bits corresponding to a nominal load of about 91%.)
For the varying c; case, the mean packet length was taken to be 16000 bits
corresponding to a nominal load of about 98%.



User Number | ¢;(W/bps)
0 2.508 x10~F
1 2.518 x10~9
2 2.518 x10~9
3 2.598 x10~6
4 2.771 x10~
5 2.924 x10~6
6 3.623 x10~6
7 4.142 x10°
8 4.307 x10~
9 4.533 x10~
10 5.229 x10~6
11 6.482 x10~6
12 6.635 <10~
13 7.257 x10~¢
14 7.395 x10~°
15 7.470 x10~°

Figure 1: The ¢; values

.01 -8

Figure 2: Markov Model for Fading



4.4 Performance of the M-LWDF Scheme

Consider the M-LWDF scheme, “y;W;/c;”. We will try different reasonable
choices of parameter ~;.

First consider the case 7v; = a;, where a; = —log(d;)/T;, as defined earlier.
Figures 11 and 12 show the results of simulating this scheme, in comparison to
the “a;W;”-rule (i.e., pure LWDF). We observe that, not surprisingly, this rule
favors mobiles with lower average ¢;. This is of course due to the fact that we
use the actual ¢; value, rather than the relative value of ¢; over ¢;.

We can expect an improvement if we replace the ¢; term in the denominator
by ¢;/¢;. The results of using this scheduling policy are shown in Figures 13 and
14. We see that delays for the closest user increase and delays for the furthest
user decrease. This brings the QoS of different users closer to each other, which
is what we are trying to achieve. Indeed, in our particular example, the furthest
user just meets its QoS (the probability of delay exceeding 7 sec is about 0.1) and
the QoS for the closest user is somewhat better than desired (the probability
of delay exceeding 3 sec is about 0.06). We believe that this version of the
M-LWDF, namely “a;c;W;/c;”, is a good scheduling rule which can be used
in practice with ¢ being a measured short-term average or median of ¢;(t).
However, we notice that (again, not surprisingly) the system is still biased in
favor of the users with lower average c;.

Figures 15 and 16 compare a;W;¢;/c; with the following “exponent” rule

/7/C X exp aiWi—W
i/Ci X X | >
\/(@W) +b

where aW = (1/N)Y ", a;W;, and b > 0 and v; > 0, i = 1,--- , N are fixed
constants. This rule is not a M-LWDF. Its idea is to keep the values of a;W;
close to each other (which is the main idea of LWDF), but only up to the

differences of the order of \/(aW). If some a;W; is greater than aWW by the

(12)

value of the order {/(aWW) or more, this user i will get some priority. If the

deviation of a;W; is of the order less than y/(aW), then the scheduling decision
depends mostly on the current channel conditions, i.e., the weights ¢;(¢). (Note
that the term —aW¥ in the numerator of the exponent can be dropped without
changing the rule. We put it there to make the above rationale behind the rule
clearer.)

Figures 15 and 16 show the performance of the rule with parameters v; = ¢;
and b = 2.5. We are quite surprised to notice that the new scheme reduces
delays for both the closest and the furthest user. The schemes of type (12) need
and deserve more study. This is a subject for future research.

10



5 Varying Channel Conditions: Stability Results
5.1 Formal Model

Without loss of generality, we assume that the scheduling decisions are made
at the boundaries of unit length time intervals, “time slots”, i.e., at times t =
0,1,2,.... By convention, by time slot ¢ we mean the interval [t,t + 1). We
also assume that traffic is measured in discrete units, “customers”. (Typically,
customer means one bit of data).

We assume that there is a finite set of (aggregate) channel states

M=1{1,...,M},

and the channel state is constant within each time slot. Associated with each
state m € M is a fixed vector of data rates (u*,...,uR), where all p™ are
strictly positive integers. The meaning of p* is as follows. If in a given time
slot ¢ the channel is in state m and all service (in this time slot) is allocated
to queue ¢, then p* type i customers are served from those already present at
time ¢ (or the entire queue ¢ content at ¢, whichever is less). Note that what we
call a “channel state” here is actually a collection of channel states of individual
users.

However, the service in any time slot may be split according to a (generally
speaking random) stochastic vector o = (o1,...,0n), 05 > 0,Vi, >, 03 = 1. If
in a given time slot ¢ the channel is in state m and a “split” vector ¢ is chosen,
then for each queue ¢, |o;uf] type i customers are served from those already
present at time ¢ (or the entire queue 7 content at ¢, whichever is less). Here
and below || denotes the integer part.

The random channel state process m is assumed to be an irreducible ! dis-
crete time Markov chain with the (finite) state space M. The (unique) station-
ary distribution of this Markov chain we denote by 7 = (#!,... ,7M).

Denote by A;(t) the number of type ¢ customers arrived in time slot ¢. To
avoid purely technical complications, let us assume that each input process A; is
an ergodic (discrete time) Markov chain, and the input processes are mutually
independent. (This condition can be relaxed as follows. The aggregate arrival
process A = {(A1(¢),... ,An(t)),t = 0,1,2,...} can be described by a finite
number of regenerative processes with finite mean regeneration cycles.) Let us
denote by A;, ¢ = 1,...,N, the mean arrival rate for flow i, i.e., the mean
number of type i customers arriving in one time slot.

n this paper we refer to ergodicity, aperiodicity and irreducibility of Markov chains. For
completeness, we define these concepts here. (See Feller [8].) Let pg;f) be the probability of
transitioning from state k to state j in n steps. A Markov chain is said to be,

o irreducible if every state is reachable from every other state with positive probability.

e aperiodic if for all k,j the greatest common divisor of the set {n : pg.) >0} is 1.

e ergodic if limy, ;o p,(cr;) = u;j, where u; is the reciprocal of the mean recurrence time of
state j.

11



The random process describing the behavior of the entire system is S =
(S(t), t=0,1,2,...), where

S(t) = {(Ull(t)J JUiQi(t)(t))’ i=1,...,N; m(t) }7

Q;(t) is the type i queue length at time ¢, and Uy (t) is the current delay of the
k-th type ¢ customer present in the system at time ¢. (Within each type, the
customers are numbered in the order of their arrivals.)

A mapping H which takes a system state S(¢) in a time slot into a fixed
probability distribution H (S(t)) on the set of stochastic vectors o, will be called
a scheduling rule, or a queueing discipline. So, if we denote by D;(t) the number
of type i customers served in the time slot ¢, then according to our conventions,
for each time t,

Qi(t+1) = Qi(t) — Di(t) + Ai(t), Vi,

where D;(t) = min{Q;(t), |o; (t),u;n(t)J} and o(t) is chosen randomly according
to the distribution H(S(t)).

Our assumptions imply that with any scheduling rule, S is a discrete time
countable Markov chain. To avoid trivial complications, we make an additional
(not very restrictive) technical assumption that we will only consider scheduling
rules H such that the Markov chain S is aperiodic and irreducible. By stability
of the Markov chain S (and stability of the system) we understand its ergodicity,
which (in case of aperiodicity and irreducibility) is equivalent to the existence
of a stationary distribution.

5.2 Necessary and Sufficient Stability Condition. Static
Service Split Rule

Suppose a stochastic matrix ¢ = (¢pmi,m € M,i = 1,...,N) is fixed, which

means that ¢p; > 0 for all m and 4, and }°, ¢mi = 1 for every m. Consider a

Static Service Split (SSS) scheduling rule, parameterized by the matrix ¢. When

the channel is in state m, the SSS rule chooses for service a (single) queue ¢ with
probability ¢,,;. Clearly, the vector v = (v1, ... ,un) = v(¢), where

— § m m
v; = ™ ¢mzuz )

gives the long term average service rates allocated to different flows. This ob-
servation makes the following necessary and sufficient stability condition very
intuitive.

Theorem 1 A scheduling rule H under which the system is stable exists if and
only if there exists a stochastic matriz ¢ such that

Proof. Sufficiency of condition (13) is obvious: the SSS rule with the matrix
¢ makes system stable. To prove necessity, consider a rule H under which system

12



is stable, i.e., Markov chain S is ergodic. Let us denote by ¥.,.;, m € M, i =
1,...,N, and ¥,,,0, m € M, the following stationary expected values:

VYmi = E[o;(¢)I{m(t) =m ZQk > 0}],

and

Ymo = EI{m(t) = m, ZQk

(Here I(-,-) denotes the indicator function.) Then the ergodicity of S implies:

Ymi >0 forallme M andi=0,1,...,N,

N
Z¢mz’ =qa™ forallme M ,
i=0

)‘zs Z ¢mz/~]’:na 7/:1; aNa
meM

If we set

N
(z)mz:lpmz/zlpmja 7::13'-'3N5 mEM,

j=1

we obtain for each ¢

N
A< YO Ymi)bmits < D w bt = vi($) -

meEM j=1 meM

In addition to Theorem 1 (which is quite standard), specifics of our model
allow us to characterize the structure of “good” SSS rules. We do that in
Theorem 2 below.

An SSS rule associated with a stochastic matrix ¢* we will call mazimal if
the vector v(¢*) is not dominated by v(¢) for any other stochastic matrix ¢.

(We say that vector v is dominated by vector v if U,(l) < Uz@) for all ¢, and

the strict inequality vgl) < uf’ holds for at least one .

Theorem 2 Consider a maximal SSS rule associated with a stochastic matrix
@*. Suppose in addition that all components of v* = v(¢*) are strictly positive.
Then there exists a set of strictly positive constants «;, © = 1,2,... ,N, such
that for any m and i,

¢r.; > 0 implies i € arg max Q. (14)
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The theorem says that basically a maximal SSS rule simply chooses for
service at any time t the queue ¢ for which «; u;”(t) is maximal. It does not say
what to do in case of a tie (although this can be said too), but if for example the
number M of channel states is large compared to the number of flows N (equal
to the number of constants «;), then it is natural to expect that typically ties
happen rarely, and therefore even an arbitrary tie breaking rule should result in
an SSS rule which is a good approximation of a maximal SSS rule.

Proof. Consider the following linear program:

max
subject to

M

YU bmi > Av} (15)

m=1
N
Y bmi=1,  0<$m <1, Vm,i (16)
=1

From the definition of v* we know that A = 1 and ¢ = ¢* solve this linear
program, with constraints (15) satisfied as equalities. Then, by Kuhn-Tucker
theorem (see for example [9]), there exists a set of non-negative Lagrange multi-
pliers ag, ay, ... ,ay such that A =1 and ¢ = ¢* also solve the following linear
program (with the same value of the maximum):

N M
Al?q?x} oA + Z ai( Z T U3 dmi — Avy) (17)
1 Pmi i=1 m=1
subject to
N
Z¢mi =1, 0<¢mi<1, Vm,i. (18)
i=1

It is easy to verify that all a; must be strictly positive, and oy = 1. Then
rewriting (17) as

N M N
ETSWETS RS SEE) pr
LPmi i=1 m=1 i=1

we see that the condition (14) must hold, because otherwise the maximum would
not be achieved by ¢ = ¢*.
|
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5.3 Modified LWDF Discipline. Main Result

The following natural question arises. Is there a scheduling rule which (unlike
SSS) does not use a priori information about input rates A; and the stationary
distribution 7 of the channel state, and yet ensures system stability as long
as the necessary and sufficient stability condition (13) is satisfied. Theorem 3
below shows that the answer is yes.

Let us call the value

Wi(t) = Un (¢)

(with W;(¢) = 0 if Q;(t) = 0 by convention) the delay of flow ¢ at time ¢.

Let a set of positive constants ~1,...,7n, and a positive constant 8 >
0 be fixed. Let us call Modified Largest-Weighted-Delay-First (M-LWDF) a
scheduling rule which chooses for service in time slot ¢ a single queue

i €i(S(t)) = argmaxy;u " (W (1)),

(The previous definition of M-LWDF in (10) is equivalent to the above definition
since the meaning of ,u;-"(t) is the inverse of ¢;(t).)

An analogous rule, which chooses a single queue
i € i(S(t)) = arg mjax'yjp;n(t)(Qj (t))".

we will call Modified Largest-Weighted-(Unfinished)-Work-First (M-LWWF).
(Formally speaking, we need a tie breaking rule which may be, for example,
i=max{j : j€i(S(E)})

Theorem 3 Let an arbitrary set of positive constants v1,... ,Yn, and 3 > 0 be
fized. Then either of the two scheduling rules, M-LWDF or M-LWWF, make the

system stable if it is feasible at all, i.e., if the necessary and sufficient stability
condition (13) is satisfied.

Remark 1. Our Theorems 1 and 3 are closely related to the results by
Kahale and Wright [10]. Although our “variable channel” setting may seem
quite different, the key idea of the proof of Theorem 3 - the use of a power law
Lyapunov function - is similar to the use of quadratic Lyapunov function in [10].
The technique we employ to prove Theorem 3, fluid limit, is different though. In
particular, use of this technique makes it very intuitive that M-LWDF stability
“follows” from the M-LWWTF stability. We note that [10] contains the proof of
the result analogous to M-LWWF stability, but only a statement of the result
analogous to M-LWDF stability. (For recent generalizations of the Kahale-
Wright results see [2]. The stability results in [2] are also for the M-LWWF-like
scheduling disciplines based on the queue lengths, not for the “delay based”
disciplines like M-LWDF'.)

Remark 2. Tt will be clear from the proof of Theorem 3 that it is actually
valid for a more general “mixed” M-LWDF/M-LWWF rule:

i €i(S(t)) = argmax ;" (Vi (1)),

where for each j, V; may be set to either W; or Q;.
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6 Proof of Theorem 3

To simplify notation, the proof will be for the case § = 1. (The M-LWDF
discipline with @ = 1 is the one we actually evaluate in our simulations in the
previous sections.) The generalization of the proof for arbitrary 8 > 0 is trivial:
the quadratic Lyapunov function in (45) needs to be replaced by the power law
function

N
1 144
L :—E Y ;
) 1+ 1%% ’

in the formulations of Lemmas 2 and 6, ¢;(t), g;(t), w;i(t), w;(t), need to be
replaced by ¢;(t)?, ¢;(t)?, wi(t)?, w;(t)?, respectively; corresponding minor
adjustments need to be made throughout the proofs.

6.1 Preliminaries

Let us define the norm of the state S(t) as follows:
N N
IS =" Qi)+ Wilt) -

Let S(™) denote a process S with an initial condition such that [|S(™(0)|| = n.
In the analysis to follow, all variables associated with a process S{™ will be
supplied with the upper index (n).

The following theorem is a corollary of a more general result of Malyshev
and Menshikov [11].

Theorem 4 Suppose there exist € > 0 and an integer T > 0 such that for any
sequence of processes S'™ n=1,2,..., we have

lim sup E[%HS(”)(nT)H] <1-e. (19)

n— oo

Then S is ergodic.

It was shown by Rybko and Stolyar [12] that an ergodicity condition of the
type (19) naturally leads to a fluid-limit approach to the stability problem of
queueing systems. This approach was further developed by Dai [5], Chen [4],
Stolyar [13], and Dai and Meyn [6]. As the form of (19) suggests, the approach
studies a fluid process s(t) obtained as a limit of the sequence of scaled processes
%S (") (nt),t > 0. At the heart of the approach in its standard form is a proof
that s(t) starting from any initial state with norm ||s(0)|| = 1 reaches 0 in finite
time T and stays there. It is sufficient however to show that for some € > 0,
[|s(T)]] € 1 —¢, which is what we are going to do in this paper (In most cases of
interest, including ours (with a little bit of extra work), a still weaker condition
is sufficient: it is enough to verify that inf;>¢ [|s(t)|| < 1, as shown in [13].) In
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our setting we need to define what the scaling LS (") (nt) means. In order for
this scaling to make sense, we will need an alternative definition of the process.
To this end, let us define the following random functions associated with

the process S(™(t). Let Fz-(") (t) be the total number of type-i customers that

arrived by time ¢ > 0, including the customers present at time 0; and ﬁ’i(n) (t)
be the number of type-i customers that were served by time ¢ > 0. Obviously,

ﬁ’i(") (0) = 0 for all 4. As in [12] and [13], we “encode” the initial state of

the system; in particular, we extend the definition of Fi(")(t) to the negative
interval ¢ € [—-n,0) by assuming that the customers present in the system in
its initial state S(™(0) arrived in the past at some of the time instants —(n —
1), —(n—2),...,0, according to their delays in the state S(0). By this convention
F{™(=n) = 0 for all i and n, and YV, F{™(0) = n. Also, denote by G\ ()
the total number of time slots before time ¢ (i.e., among the slots 0,1,... ,t—1),

when the channel was in state m; and by (;’5:3 (t) the number of time slots before
time ¢ when the channel state was m and the channel was allocated to serve
queue 7. Let us also denote

UMty =t-wM), t>0, i=12,...,N.

2

Then the following relations obviously hold:
QM =F" () - FM@), t>0, i=1,2,...,N, (20)

UMt <t t>0,

UM () =inf{s<t : F(s)>E™(@®)}, t>0. (21)

2

It is clear that the process SE") = (S(™(t),t > 0) is a projection of the
process X(® = (F() FM) g G Q) W) () where

F™ = ((F™@®), t>-n, i=1,2,...,N),
FO = (F™@), t>0, i=1,2,...,N),
G =(GM(), t>0, meM),

G =G t), t>0, meM,i=1,2,...,N),
QM =@"™@®), t>0, i=1,2,...,N),
v = W™, t>0, i=1,2,...,N),
wm =w™@), t>0, i=1,2,...,N).

In other words, a sample path of X () uniquely defines the sample path of S(®.
Let us also adopt the convention

Y(t) — Y(I_t_]), for Y = S(n)’ Fz(n), ﬁ;(ﬂ)’ ng)’ GAggz,QSR)’ Uz(n)’ Wz(n)

17



with t > —n for Y = Fl.(") and t > 0 for all other functions. This convention

allows us to view the above functions as continuous-time processes defined for

all t > 0 (or t > —n), but having constant values in each interval [¢,t + 1).
Now consider the scaled process z(™ = (™), f(n) g0 §(n) (1)) where

[ =", t>-1, i=12.N),

F = (0w, t>0, i=1,2,...,N),
g™ = (g!M(t), t>0, me M),

g(n) = (gggz)(t)a t207 m€M7 l:172’ ’N)7
¢ = @MW), t>0, i=1,2,...,N),
u™ = @), t>0, i=1,2,...,N),
w® = @), >0, i=1,2...,N),

and the scaling is defined as
1
) () = =2 (nt) .
(1) = =2 (nt)
From (20) we get:
(M) = p(M gy _ Fln) _
g ®=f"0)-f"F), t>0, i=1,2,...,N. (22)

The following lemma establishes convergence to a fluid process and is a
variant of Theorem 4.1 in [5].

Lemma 1 The following statements hold with probability 1. For any sequence
of processes X (™| there exists a subsequence X*) {k} C {n}, such that for
eachi, 1<i< N andm € M,

(), > =1) = (fi(t), ¢ > -1) (23)
(F91),t > 0) > (fi(H),t >0) woc. (24)
(F (), > 0) = (fi(t),t >0) w.oc. (25)
@), >0) > (q:(),t 2 0) woc. (26)
(00 (1), > 0) = (gm(t),t > 0) w.o.c. (27)
(@5 (t),t > 0) = (Gmi(t), t > 0)  w.oc. (28)
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(@ (t),¢ > 0) = (ui(t),t > 0) (29)

2

(@™ (1)t > 0) = (wit),t > 0) (30)

where the functions f; are non-negative non-decreasing right continuous with left

limits (RCLL) in [—1,00), the functions f;, fi, gm,dmi are non-negative non-

decreasing Lipschitz-continuous in [0, 00), functions g; are continuous in [0, 00),

functions u; are non-decreasing RCLL in [0,00), functions w; are non-negative

RCLL in [0,00), “=” signifies convergence at continuity points of the limit, and
)

“w.0.c.” means uniform convergence on compact sets, as k — oo. The limiting
set of functions

T = (f’f’g)g)q7uﬂw)

also satisfies the following properties:

N
S £i(0) <1, (31)
i=1
and for all i, 1<i< N andm € M,
fi(0) =0, (33)
fit) < fi®), t>0, (34)
gm(t) = 7™, >0, (35)
a(t) = fi(t) — fit), t>0, (36)
ngz = gm(t), (38)
for any interval [t1,t2] C [0, 00),
f( fz tl Z ,uz gmz t2 gmz(tl)) ) (39)
meM
if ¢i(t) > 0 for t € [t1,t2] C [0,00), then
filtz) = filtr) = Y p (Gmi(t2) = Gmi(tr)) (40)
meM
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u;i(t) =t —w;i(t), (41)

for any fized t; > 0 the conditions u;i(ty) > 0 and fi(ty) > f;(0) are equivalent
and if they hold, then in the interval [t;,00)

Aiwi(t) = qi(t), (42)

which in particular implies that w; and u; are Lipschitz continuous in [t1,00).

Proof. It follows from the strong law of large numbers that, with probability
1 for every i,

(@) - £(0), £ >0) - (\it, t>0) woc.

So, to prove (24), (31), and (32) it suffices to choose a subsequence {k} C {n}
such that for every 4, lim fz-(k)(O) exists, and denote the limit by f;(0). Since all
fi(k) and ugk) are non-decreasing, we can always choose a further subsequence
such that (23) and (29) hold. Then (30) follows from (29).

The properties (27) and (35) follow from the ergodicity of the channel state
process.

Also, for any fixed 0 < ¢; < to, for every i, m, and any n, we have (using
the notation u* = maxy,,; u'):

FP) = () < 3 W@ () — 35 (81) + 1/n) < w*(t2 =ty + 1/m) .
meM

From this inequality we deduce the existence of a subsequence (of the subse-
quence already chosen) such that the convergences (25) and (28) take place, and
(39) holds.

The relations (33), (34), (37), (38), and (41), follow from the corresponding
relations which trivially hold for the prelimit functions (with index (n)). The
convergence (26) and identity (36) trivially follow from identity (22).

Suppose, g;(t) > 0fort € [t1,t2] C [0,00). Let us fix § € (0, mingcpy, 4,] :(t))-
The Lipschitz continuity of ¢;(-), along with u.o.c. convergence of qgk) to g,
implies that (with probability 1) the sequence X (*) is such that for all sufficiently
large k, the following inequalities hold:

i ®) () > 6k > m
tE[Ltlrkl;lJl,?zk—‘rl] Q ( ) m’r%x Mz

The latter property implies that if the queue i was chosen for service anywhere
in the interval [|¢1k],t2k + 1] when the channel state was m, then exactly pl"
type ¢ customers were served. So, we must have

B9 (k) — M (ktr) — N u(G) (kto) — GU%) (kt1))| < 2max pf .
meM

Scaling the last inequality by k and taking the limit k — oo we get (40).
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The property (42) easily follows from the fact that in the interval [0, 00)

the scaled input flow function fi(k)(-) converges u.0.c. to the strictly increasing
linear function f;(0) + A;t. We leave details to the reader.
|

Since some of the component functions included in z, namely fi(-), fi(-),
9m(*), gmi(*), (), are Lipschitz in [0,00), they are absolutely continuous.
Therefore, at almost all points ¢ € [0,00) (with respect to Lebesgue measure),
the derivatives of all those functions exist. We will call such points regular.

6.2 Proof of Theorem 3 for the M-LWWF discipline

Lemma 2 Consider a system with the M-LWWEF discipline. With probability
1, a limiting set of functions x, as defined in Lemma 1, satisfies the following
additional property. If

ikt Gi(t) < max;piq;(t) (43)
for some regular point t > 0, for some i and m, then
Imi(t) =0. (44)

Proof. Let us pick a j at which the maximum in the inequality (43) is
attained. Similarly to the proof of property (40) (in Lemma 1), we can fix a
small positive d;1 > 0, such that for all sufficiently large k, we must have

Q¥ () < QW (€) .

max min
CE[(t—01)k,(t+01)k] CE[(t—61)k,(t+61)k]

(If t = 0 then the time interval should be [0,d:%].) This means that in the
interval [(t — 01)k + 1, (¢t + 61)k — 1], queue i can not be served in any time
slot when the channel is in state m, because it would contradict the M-LWWF
scheduling rule. Thus, for all sufficiently large & we must have:

3P+ 61/2) - g0t - 81/2) =0,
which implies §;(t + 61/2) — §i(t — 01/2) = 0 and we are done. |

Let us introduce a quadratic Lyapunov function

N
L) =53l (45)

for a vector ¥y = (y1,-.- ,yn)-

Lemma 3 Consider a system with the M-LWWF discipline. For any d1 > 0,
there exists 6o > 0 such that the following holds. With probability 1, a limiting
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set of functions x, as defined in Lemma 1, satisfies the following additional
properties:
L(q(t)),t > 0, is an absolutely continuous function,

N
1
L) < 5 (46)
1
and at any regular point t,

L(q(t)) > 81 implies %L(q(t)) < -6 . (47)

Proof. For any regular ¢ > 0 such that L(g(t)) > 0, the derivative of L(g(t))
can be written as follows:

d N X
ZLa®) = Z%qi(t)(&- - fi(t) = (48)
N A
= Z Yiqi (1) (i — vi(@)) + K (¢, q(t)) — K(o(t),q(t)) (49)

where for a stochastic M x N matrix £ and a non-negative N-dimensional vector
y we use the notation

K&y =D v 3w mittd = 7™ Y emivitt"¥i
i m m %

G (1) = Gras(8) /7™
and we used the fact (following from the property (40)) that

Fi8) =" i a(t) if ai(t) > 0 .

Let us choose d3 > 0 such that L(y) > §; implies max;y; > d3. Then the first
sum in (49) is bounded as follows:

N
Z%qi(t)()\i —vi(¢)) < —(mz.in i )03 miin(vi(¢) - X)) = =02

It remains to show that

K(¢(t),q(t)) > K(¢,q(t)) - (50)

It is easy to see that for any non-negative vector y, a stochastic matrix £ maxi-
mizes K (&,y) if and only if the following condition holds for every ¢ and m: If

Yipi'yi < max; vjpu7'y;, then
Emi=0. (51)
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But, the property (44) shows that the property (51) is satisfied for y = ¢(¢) and
& = ¢(t). This proves (50) and the lemma. |

Lemma 4 Consider o system with the M-LWWEF discipline. For any 6 > 0,
there exists T > 0 such that with probability 1, a limiting set of functions xz, as
defined in Lemma 1, satisfies the following additional property:

L{qt)) <6, t=>T. (52)

Proof follows from Lemma 3.

Proof of Theorem 3 for M-LWWPF. According to Lemmas 1- 4, for any
fixed €; > 0 we can always choose a large enough integer T' > 0 such that for
any sequence of processes X (™ there exists a subsequence X®) {k} C {n}
such that with probability 1 the convergence to a limiting set of functions z
takes place, and moreover

Z (T) < e,
implying (7T is large!) Z
fiT) = £4(T) = a(T) > £:(0), Vi, (53)
implying
wi(T) = ¢:(T)/ \i, Vi, (54)

implying (recall €; is small)
> @)+ wiT) < (1+1/(min\;))eg =1—e< L.
. . 2
K3 2
Therefore, with probability 1,
1
limsup = ||S™(nT)|| <1-¢, (55)
n—oo T

which along with the uniform integrability of the sequence *[|S ) (nT)||, n =
1,2,..., verifies condition (19), and therefore proves stability. |

The following supplemental statement about the M-LWWF discipline will
play an important role in the stability proof for the M-LWDF discipline.

Consider a generalized system with a given discipline H. The generalization
is to assume that some time slots are unavailable for service of any queue. In
each available for service time slot, the scheduling rule is H. In a generalized
system let el (t) denote the number of available for service time slots (by time
t) when the channel is in state m.
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Lemma 5 Let positive constants Ko and Ky be fired. Consider a sequence
(indezed by k) of sample paths X (") of the generalized system with M-LWWF,
such that all properties described in Lemmas 1 and 2 hold with the following
modifications:

property (31) is replaced by

N
> £:(0) < Ko < oo, (56)

property (35) is replaced by
Gm(t) = 7™t — hpp(t), t>0, (57)
where each function h,, is non-decreasing Lipschitz continuous, hy,(0) = 0, and

m

Then the function L(q(t)) has the upper bound C < oo which depends only on
Ky and K;:

L{g(t) <C, t>0. (58)

Proof. We will use the notation L(t) = L(q(t)). Let us choose § > 0 small
enough, so that the condition ) h! (t) < ¢ is satisfied at a regular point ¢.
This implies g/,(t) > 7™ — § for each m, which guarantees that (d/dt)L(t) < 0.
(The existence of such a ¢ is easily obtained using the argument and estimates
used in the proof of Lemma 3.)

Let us denote by A the Lebesgue measure, and by L the o-algebra of
Lebesgue measurable subsets of [0, 00). Consider a subset

B={te[0,00) : tis regular,Zh’m(t) >4} .

Clearly, B € £ and
A(B) < K1/d .

Define the measure v on £ as follows:
v(A)=A(ANB).

Notice that v([0,00)) = A(B).
Let us also make a simple observation:

L'(t) = Z%qiqé(t) < (max );) Z%’%‘ < (max ;) Z%‘(l +q;)

implying the existence of positive ¢; and ¢z such that

I'(t) < e1 + e L(2) . (59)
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So, we see that the derivative L'(t) is bounded above as in (59) at regular
points t € B, and is negative at regular points ¢ € [0,00)\B. We can write

LO<IO+ [ L) =10+ [ Kol <

[0,6]nB

< L(0) + ew([0, ]) + 2 / L(y)u(dy) < L(0) + e ([0, 00)) + e / L(y)v(dy)

Applying Gronwall’s inequality ([7], p. 498), we get

L(t) < [L(0) + e1v([0, 00))] exp{eav([0, 00)) }
and finally
E(t) < [KO + ClKl/(S] exp{czKl/d}, t>0,

which proves the Lemma. [ |

6.3 Proof of Theorem 3 for the M-LWDF discipline

The following lemma describes the key property of the M-LWDF discipline which
is analogous to the M-LWWF property described in Lemma 2.

Lemma 6 Consider a system with the M-LWDEF discipline. With probability
1, a limiting set of functions x, as defined in Lemma 1, satisfies the following
additional property. If in some interval [t1,t2], 0 < t1 < t2 < 00, for some fixed
m, and fized i and j,

tlsﬁggtz Vit (t) < tl%rgfﬁ Tiks s (t) ’ (60)
then
Gmi(t2) — Gmi(t1) = 0. (61)

Proof is analogous to the proof of Lemma 2. (The only additional difficulty
is the fact that the functions w;(-) may not be continuous.) Let us fix positive
constants a and 4 such that

sup yipfwi(t) <a—6<a+d< inf ypultw;i(t) . (62)
t <t<to ty <t<ts

Then for all ¢ € [t1,t2] we have
ui(t) >t — (a—0)/(viw;")

and
u;(t) <t—(a+0)/(vu;") -
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(k)

Since for each 4, u;(-) and all u;

gence lim ugk) (t) = u;(t) for every ¢t where u; is continuous, we see that for all

sufficiently large k, for all ¢ € [t1, 2],

() are non-decreasing, and we have conver-

uf (1) > t — of (i)
and ®
uj () <t—a/(yui') -

From the latter two inequalities we see that

yipw (1) < a <yl w @), te ft,t).

K3

Just as in the proof of Lemma 2, we observe that the latter property implies
that for all large k&,

it = 1/k) = )t + 1/k) = 0,

because in the unscaled system with index k, queue i may not be served in
any time slot in the interval [kt; + 1, kta — 1] when the channel is in state m.
(Otherwise, we would get a violation of the M-LWDF scheduling rule.) Taking
the limit £ — oo completes the proof. [ |

Lemma 7 Consider a system with the M-LWDF discipline. There exists Ty >
0 such that with probability 1, a limiting set of functions x, as defined in
Lemma 1, satisfies the following additional property:

A~

fi(Tw) > fi(0), i=1,... ,N .
Proof. Let us fix an arbitrary es > 0. So we have
fi(e2) = fi(0) + Nie2 > fi(0), Vi,
and
Y aile) <1+ Ne =K .
i i
We will show the existence of Ty such that
fiTn) > files), i=1,...,N. (63)

The proof of (63) is by induction.
Induction Base. There exists T1 > O such that for at least one i,

fi(T1) > fi(e2).
Let us set T1 = €5 + C with
NK,

H m
min, ; 1

Cy =
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If for at least one i, there exists t € [ez,T1] such that ¢;(t) = fi(t) — fi(t) =0
then we are done. If not, we observe that for at least one ¢

> @mi(T1) = Gmile2)) > Co/N .

m

Then, since for that i, ¢;(t) > 0, t € [e2, T1], from (40) we get:

f( fz 62 Zp‘z Gmi Tl gmz(fz))

> (min ") D (Gmi(T1) = Gmi(e2)) >

m

> (min p7")Cy /N = K1 > gi(e2) -

This means

A~

fi(T) > file2) + aile2) = filea)

which proves the induction base.
Induction Step. Suppose there exists Ty > 0, 1 < 1 < N, such that for at
least one subset Ny C {1,...,N} of cardinality I, we have

Fi(T) > fie2) (64)

for all j € N;. Then there exists Tyy1 > Ty such that (64) holds for all j within
at least one subset Nyy1 of cardinality [ + 1.

We will prove the induction step for I = 1. (The generalization for the
arbitrary [ is straightforward.) So, we need to prove the existence of To > T}
such that for at least two different ¢ and %, (64) holds (with j = i, k), with Ty
being the constants from the induction base statement.

Let us fix ¢ for which

fi®) > fi(e), t>T0,

according to the induction base.
Suppose

Fo(T1) < frles), for all k # i. (65)
We can observe that
qi(Ty) <14+ NT = Ko

and

> (frles) = fu(Th)) < Ky
ki

where K is already defined above.
Now, let us view the scaled system after time T} (i.e., each unscaled system
with index n is considered after time nT}) as a generalized system with the

27



single input flow of type i, and with time slots allocated to any other flow being
unavailable to flow i. Since the simple linear relation A;w;(t) = g;(t) holds for
flow ¢ for all t > T1, the generalized system with the M-LWDF discipline satisfies
all the properties of the generalized system with the M-LWWF discipline with
each ; replaced by 7v;/A;. Let C be the constant defined in Lemma 5, which
depends only on the constants Ky and K; defined above in this proof (and of
course on the set of system parameters A;, Vj, uf*, Vj,m, and the stationary
distribution 7™, ¥m). Note that L(q(t)) = (1/2)(vi/\)g2(t) < C (recall, we
are considering a generalized system with flow ¢ only) implies

2C'\;
Yi

qi(t) <1+ =0 .

Let us choose Ty > Ty large enough so that for all j # ¢ and all m € M we
have

Vit C1/ X < v (Ty — €2) (66)
Finally, let us choose T» > Ty large enough so that
/\i(TQ — TQI) >(C .

We claim that for at least one k£ # ¢ we must have

fe(T2) > fr(e2) - (67)

Suppose not, i.e., for all k # i, fr(T2) < fi(e2). Then, by Lemma 5, L(¢(t)) < C
for t € [T1,T>], and therefore

qi(t) <(Ci, te [T17T2] . (68)
Our choice of Tj in (66) guarantees that for at least one j # ¢ and all m,

su it w; (b)) < inf T ws(t) .
Téggnmuz i(t) L o, ik i (t)

This (according to Lemma 6) implies that for all m,
gmi(T2) = gmi(T3) =0,

and therefore

A~

Fi(Te) = fi(T3) = 0,
implying in turn that
6i(T2) = ¢:i(Ty) + Xi(T> = T) > Ch,

which is a contradiction to (68). This proves our claim (67). Our choice of T
depended on ¢ but since there is only a finite number of possible values of i, we
can choose T» so that (67) holds for some k # i no matter what 4 is.
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Thus we proved the existence of T5 such that we have (67) for some k # 1,
assuming condition (65). But the opposite of the condition (65) implies (67) for
some k # i trivially. The proof of the induction step is complete. |

Proof of Theorem 3 for M-LWDF. We proved the existence of Ty > 0
such that for any sequence of processes X (™), there exists a subsequence X (¥,
{k} C {n} such that with probability 1 the convergence to a limiting set of
functions z takes place, and moreover x is such that the strict linear relation

exists for all <. The latter fact, along with Lemma 6, means that, with probabil-
ity 1 in the interval [Thy, 00) the set x also satisfies all the properties described
in Lemmas 2-4 if only in their formulations we replace 7; by 7;/\;, replace (46)

by condition
N

1
L(g(Tn)) < 2 > w1+ NTIn)?
1
and move the time origin to Ty. Therefore, for any €; > 0 there exists T' > Ty
such that, with probability 1, x satisfies the condition

Z%’(T) <e .

The rest is exactly as in the proof of the Theorem for M-LWWF. The only
difference is that we get (54) directly from the property (42) and Lemma 7, and
not from (53). |

7 Conclusions
The main conclusions of this work are as follows.

e In case of constant channel conditions, a simple adjustment of the
LWDF scheduling discipline provides good Quality of Service for the users
even when there are additional “discrete rate set” and “discrete time”
scheduling constraints. Very naturally, the condition for this is that the
scheduling interval length is small compared to a typical packet transmis-
sion time.

¢ In case of variable channel conditions, we have shown that the M-
LWDF rule is optimal in the sense that it can handle all the offered traffic if
this is feasible at all. Moreover, with the appropriate choice of parameters,
which we specify in the paper, the M-LWDF provides very good Quality
of Service. The M-LWDF rule can also be used to satisfy different QoS
requirements, namely, the desired minimum long-term throughput for each
user.
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An important subject of future research is finding good scheduling rules
which are less dependent on the “proper” parameter setting. The “exponent”
rule we considered in this paper is a step in this direction.
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Delay distribution for closest user (Load = 91%)
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Figure 3: LWDF: Discrete Vs. Continuous Rate Set

32



Probability

Delay distribution for furthest user (Load = 91%)
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Figure 4: LWDF: Discrete Vs. Continuous Rate Set
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Figure 5: LWDF: Discrete Vs. Continuous Time Scheduling
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Delay distribution for furthest user (Load = 91%)
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Delay distribution for furthest user (Load = 91%)
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Figure 8: LWDF: Discrete Vs. Continuous Time Scheduling
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Delay distribution for closest user (Load = 91%)
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Figure 9: LWDF: Discrete Vs. Continuous Time Scheduling
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Delay distribution for furthest user (Load = 91%)
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Figure 10: LWDF: Discrete Vs. Continuous Time Scheduling
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Probability

Delay distribution for closest user (Load = 98%)
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Figure 11: Time Varying Channels: M-LWDF Vs LWDF
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Delay distribution for furthest user (Load = 98%)
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Figure 12: Time Varying Channels: M-LWDF Vs LWDF
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Probability

Delay distribution for closest user (Load = 98%)
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Figure 13: Time Varying Channels: M-LWDF with Different Parameter Settings
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Delay distribution for furthest user (Load = 98%)
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Figure 14: Time Varying Channels: M-LWDF with Different Parameter Settings
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Probability

Delay distribution for closest user (Load = 98%)
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Figure 15: Time Varying Channels: M-LWDF Vs. “Exponent Rule”
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Delay distribution for furthest user (Load = 98%)
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Figure 16: Time Varying Channels: M-LWDEF Vs. “Exponent Rule”
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