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Abstract Lubachevsky [5] introduced anew paral-

lelsirnulatio ntechnique intended for systems with lim-

ited interactions between their many components or

sites. Each site has a local simulation time, and the

states of the sites are updated asynchronously. This

asynchronous updating appears to allow the simulation

to achieve a high degree of parallelism, with very low

overhead in processor synchronization. The key issue

for this asynchronous updating technique is: how fast

do the local times make progress in the large system

limit? We show that in a simple K-random interac-

tion model the local times progress at a rate l/(K + 1).

More importantly, we find that the asymptotic distri-

bution of local times is described by a traveling wave

solution with exponentially decaying tails. In terms of

the parallel simulation, though the interactions are lo-

cal, a very high degree of globals ynchronization results,

and this synchronization is succinctly described by the

traveling wave solution. Moreover, we report on exper-

iments that suggest that the traveling wave solution is

universal; i.e., it holds in realistic scenarios (out of reach

of our analysis) where interactions among sites are not

random.

1 Introduction

Simulation is the most widely used and reliable tool for

understanding the behavior of systems with many in-

teracting compo~ents. Even if the interactions between

the components are fairly simple and local in nature,

and the states of the components are piecewise constant
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(as opposed to varying continuously), the dynamics of

such systems are often beyond the reach of our cur-

rent analytical techniques. Examples of such systems

include large computer networks and certain models of

interacting particles. In [5], Lubachevsky introduced

an asynchronous updating technique for simulating such

systems on large parallel machines.

A simplified version of the simulation technique can

be described as follows. Consider a system with IV com-

ponents, or sites. Each site has its own local simulation

time, which describes the simulation time up to which

the current state of the site is valid. These local times

are a function of the real time t,and we denote the local

time of site i at real time t by Zi (t).The state of each

site is governed by a transition rule. The exact nature

of the transition rule does not concern us here, but the

nature of the dependencies introduced by these transi-

tion rules is of crucial importance. We can denote by

Di (t) the set of sites whose states are relevant to the

updating of site i at real time t.

The simulation method associates each site with a

processor. The processor attempts to update the state

of the site at random times, modeled here as a Poisson

process. The rate of attempted updates per unit time

is p, which in this paper we set to be one. If an update

attempt fails, then the site waits for the next randomly

arriving update attempt. Site i can be updated at time

t if and only if xi(t) < Xj (t) for all j c D,(t). See

Figure 1. The systems to which this method is applied

are such that the state of each site, once updated, is

guaranteed to remain unchanged for a period of time

that can be computed at the time of updating. In ap-

plications, this period arises from the detailed model of

the lags being simulated; examples include Ising mod-

els [5], Markovian networks of queues [8], and dynamic

channel assignment schemes in wireless cellular systems

[3]. After updating site i, the local time q(t) can be in-

cremented by the length of this static period, since the

current site state will be valid at least until then. The

length of the static period is a property of the system

being simulated. We will assume that this period is an
iid random variable governed by the probability den-

91



‘t!i‘IxiL
time t time t

Figure 1: Example: Suppose that at time t, an update

attempt at site i is dependent on sites Dz (t) = {i – 1, i +

1}. Site z can update if its local time ties or lags the

local times of sites Di(t), as depicted on the left hand

side. Otherwise, as depicted on the right hand side, site

i cannot update.

sity r(z), where we assume, without loss of generality,

that the mean of this distribution is one: ~~m zr(z)dz.

Define R(z) = J’m r(u)du. Although our results are ap-

plicable to a wider class of distributions, we will focus

our attention on the case where r(z) = e–’.

The key question about this simulation approach is,

in the limit N + co, do the local times z~ (t) make suffi-

cient progress. More specifically, this can be reduced to

two separate questions. First, in the large system limit,

do the local times progress at a nonzero speed so that

limt+m ~ > (j holds for all i? second, if a nonzero av_

erage speed is achieved, is the asymptotic distribution

of local times reasonably tight? A tight distribution

means that the system as a whole has made simulation

progress. It is not hard to imagine the formation of long

chains of dependencies, resulting in very few of the sites

succeeding in update attempts, and in an asymptotic

rate of progress that tends to O as N increases.

Sites in computer networks and in interacting par-

ticle systems often have local interactions, in the sense

that a bounded subset of the sites is involved in each

update. Our main result, presented in Section 2 but

proven in Section 4, is that when each site interacts with

K randomly chosen neighbors, the local times progress

at a speed of & for any r(z). More importantly,

the distribution of local times converges to a traveling

wave solution with exponentially decaying tails. In Sec-
tion 3, we present results drawn from extensive experi-

ments treating more realistic interaction patterns, such

as those arising in regular lattices. These experiments

show that 0(1/K) growth in local times and traveling

wave solutions are universal. In every case we consider

that has bounded dependency sets Di (t), all initial con-

ditions with a bounded distribution of initial times ap-

pear to converge to a traveling wave solution. In each

case the trailing edge of this asymptotic traveling wave

is exponentially tight, while the leadhg edge depends

on the form of r(z). We feel these results reveal the

key structure of the asynchronous updating simulation

technique, and demonstrates its scalability y to large sys-

tems.

As this technique requires no rollbacks to correct

temporary inconsistencies that arise during execution,

it is known as a conservative technique. Work on the ef-

ficiency of conservative techniques relevant to our model

includes [2] and [6]. A great deal of work has also been

done on the efficiency of rollback techniques, such as

Time Warp [4]. A recent survey of the state of the art

in parallel and distributed simulation can be found in

[7].

2 K-Random Interaction Model

The K-random interaction model chooses, for each up-

date attempt, K sites at random to comprise the set

D;(t). This set is rechosen for each update attempt,

even if a previous update attempt has failed. We find

it convenient, as a matter of convention, to assume that

there is an additional ordering relationship that applies

between two sites with identical local times, so that only

one site prevents the other from updating. That is, if at

any given time site i prevents site j from updating, then

site j does not prevent site i from updating. However,

the additional notation needed to describe this addi-

tional ordering relation is cumbersome, and is largely

irrelevant to our treatment here, so we omit it. This

additional ordering is superfluous when all sites have

distinct local times. When the initial condition has the

no-equal-local-times property, then with probability 1

this no-equal-local-times property continues to hold for

all t.

Considering the limiting case of an infinite number

of sites, we can define a function ~(z, t) to be the pro-

portion of sites with local time less than or equal to z

at time t.This function ~ (., t) completely describes the

state of the system at any time t.

Remark The formal limit transition to the case of
an infinite number of sites is done in [I]. Namely, it

is proven that a sequence of processes with increasing

number of sites converges to a deterministic process de-

scribed by equation (1) we introduce below.

The first question is: what is the average rate of

progress of the simulation? That is, how fast does the

average local time increase with real time. Recall that



the average step size – the average increase in local times

for a successful update - has been set to unity. The

probability y pi (t) that a given site i with local time xi will

be able to successfully update at time t (if an attempt to

update ismade)is given by (l–~(zz(t), t))~. Let p(t)

be the average over all sites of the pi (t). This quantity

is then given by:

/
p(t) = ‘(1 - f(z, t))~df(z, t) = &

o

The average rate of progress, for any distribution

j(., t) and any function r(z) with unit mean, is exactly

&. One can motivate this result by considering a

model where the sites are grouped into cliques of K + 1

members and each site depends only on the other K

sites in the clique. This is equivalent to an ensemble of

fully interacting systems, each with K + 1 sites. The

average rate of progress in such systems is exactly &.

However, as we observed before, knowing the aver-

age rate of progress is not sufficient to conclude that

this simulation technique is viable. At the end of the

simulation we want to have essentially all sites to have

made the same linear rate of progress. To ensure this,

we must ask the second question: is the distribution

of local times should be relatively tight? We therefore

need to study the evolution of the distribution ?(z, t)

in more detail. If we assume ~(., t) is differentiable

(a condition we relax in Section 4) we can write the

following evolution equation (with the notation that

j’(u, z) = g(u, t)):

f’(x,o)

FT7T
0.0 0.5 1.0 1.5 2.0

f’(x,l)

o 2 4 6 8 10

f’(x,2)

K1
o 5 10 15

f’(x,3)

o 5 10 15

af
#M = – /

z(1- f(u, t))~y(tt, t)l?(z - T-J)(AJ(1)
—Ca

One can look for traveling wave solutions of this

equation: ~(z, t) = +(z – vt) for some wave velocity

v. Clearly, from the result about the average rate of

progress, we must have v = &. For the case r(z) =

e‘%, a family of traveling wave solutions is given by

#a(z) = 1 – (1 + e~(’-aj) %. These solutions have

exponentially decreasing densities for large positive and

negative divergences from the mean local time. If the

system tends towards this solution then we are assured

that the distribution of local times is sufficiently tight.

The bulk of this paper is devoted to proving that a

wide class of initial conditions all converge to the same

traveling wave solution.

Because of its length, we delay the proof until Sec-
tion 4. We first discuss the behavior of this scheme in

more realistic scenarios.

Figure 2: Rapid convergence to the traveling wave so-

lution (K = 2). j’(z, t)= ~ (z,t) is plotted along the

vertical axis and z on the horizontal axis.

3 Experimental Results

In this Section, we begin with experimental results on

the convergence of system to the traveling wave solution,

and then explore more realistic models outside the reach

of our ana,iysis where the update dependencies adhere to

a regular graph structure. The experiments show that

the qualitative properties revealed by the analysis of the

K-random model are universal.

Figure 2 illustrates the rapid convergence of the sys-
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Figure 3: On the left hand side is a plot of the traveling

wave #(z). On the right hand side is a snapshot of

the local time density ~’ (s, t) taken from a 10,000 site

Monte Carlo simulation. K = 2.

tern ~’(z, t) to the traveling wave solution q$’(z – t/(K +

1)). At time t = O (upper left plot), we assume the local

time density $’ (z, O) is bimodal in [0, 2]. However, by

time t = 4, the density has already become unimodal,

with a steep trailing edge and a leading edge that is

beginning to look exponential. This trend continues so

that we reach at time t = 12 a density f’ (z, 12) that is

indistinguishable from the traveling wave solution.

Figure 3 compares the traveling wave solution to

the empirical density of local times drawn from a Monte

Carlo simulation of the 10,000 site K-random neighbor

model, after 1 million update attempts. The correspon-

dence, illustrating the convergence of the finite model,

to the infinite one described by (1) is apparent.

Figure 4 compares empirical densities of local times

for the 10,000 site K-random model, with the static

period either exponentially distributed (r(z) = e-z, left

plot) or uniformly distributed on [0,2] (r(z) = 1/2 for

z c [0, 2], right plot). In both cases, we obtain traveling

waves moving at the same rate. The Figure illustrates

the rule that the more concentrated the distribution of

the static period the sharper the wave obtained.

Last, we consider models where an event update at-

tempts adhere to a graph structure. That is, the set

of sites Di (t) relevant to an update attempt at site

i are simply the neighbors of site i in a fixed graph.

Figure 5 depicts results for three graphs, all having

q
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Figure 4: Local times taken from snapshots of the local

time density ~’ (s, t)taken from 10,000 site Monte Carlo

simulations, with K = 2. The data on the left hand side

is for r(z) = ezp(–z); the data on the right hand side

is for r(z) = 1/2 for z E [0, 2]<

about 10,000 sites: a toroidally connected 2 dimensional

mesh; a toroidally connected 3 dimensional mesh; and

a butterfly graph, chosen for its logarithmic diameter,

but fixed degree (number of neighbors of a given site)

K = 4. The Figure illustrates that the empirical den-

sities strongly resemble the traveling wave solutions for

K-random models with K chosen as the degree of the

graph. To first order the key determinant of behavior

is the graph degree; in particular, the butterfly and the

2d mesh behave similarly. This is supported by the es-

timates of local time growth rates reported in Table 1.

This is good news because the complete graph on N

sites admits no parallelism (the local time growth rate

is l/N), and the butterfly is typical of graphs that ap-

proach the connectivity of the complete graph as quickly

as possible subject to having fixed degree.

Our data suggest that the qualitative properties of

the K-random model are universal:

e

e

The rate of growth of local time for a regular graph

models of degree K is 0(1/K).

For large systems the densities of local times con-

verge to a traveling wave solution.
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ld mesh 2d mesh 3d mesh butterfly

K= 2 K= 4 K= 6 K= 4

4 Convergence to

Wave Solution

We now return to the assertion

the Traveling

made in Section 2 that

0.21 0.094 0.058 0.085

essentially all initial conditions converge to a traveling

wave solution. We first introduce some notation and

then state this assertion more precisely, before present-

ing the proof.

Table 1: Estimated local time growth rates.

4.1 Notation

2d mesh K=4 traveling wave solution

For a probability distribution described by ~(z, t), we

define m(~(., t)) to be the mean value of the distribution

at time t:

rn(f(.,t))= /m Ulf(z,t)
-w

Similarly, define the inverse function

~-’(~, t) = inf{zl~(z, t) > y}

for O<y <l.

We denote the L1 norm of a function g by Ilgll:

810121416162022 -20246 8 10

3d mesh K=6 traveling wave solution

L
We will use the following notation to identify the posi-

tive and negative components of a function:

9+ = ma(g, O), g- = – min(g, O)

We will also use a step function 6(’J (z) given by:

6810121416

butterfly

-202468

K=4 traveling wave solution
Also, we set v = ~, q(y) = (I – ~)~.

4.2 Statement of Results

As we described in Section 1, the function f (x, t) de-

scribes the fraction of sites that have local times less

than z at real time t. The dynamics of the simulation

process is described by the following equation:

6 8 10 12 14 16 18 -20246810

(2)

where:

I

f(z,t)

h(z, t) = – dy q(y)l?(z - f-’(y, t)) (3)
o

Figure 5: Impact of graph structure.
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Note that solutions to (1) are also solutions to this 2) Any traveling wave solution ~(z, t) = 4(z – vt)

equation; the above formulation has the advantage that defines a family of traveling wave solutions

we need not assume differentiability of the distribution

~(, t). We will find it convenient to rewrite (3) as: J(”)(z,t) = ;(s - a,t) = #(z - a - Vt)

/

f(x,t)

/

f(z,t)

h(z, t) = – d~ q(y)+ dy q(y)
3) Since functions f(z + vt, t) and @(z) are nonde-

0 0 creasing, and @(z) is continuous, the point-wise conver-

“1

x gence (6) actually follows from the L1-norm convergence
r(f – f-l(y, t))d~ (4) (7).

f-’(Y,t)

/

1

/

1 We present the proof of this result in several phases.
=—— dy q(y)6(f-’(y>t)) (z) + dy q(y) We first present an informal overview of the approach,

o 0

“/

w followed by some preliminary results, and then we

dz T@)df “(v’~)+z) (x) (5) present the detailed proof.
o

We restrict ourselves to the set of acceptable initial

conditions ~ (z, O) , which have the following properties:

(a) ~(zj O) is nondecreasing right continuous;

(b) ~(-cm, O) = O, j(co, O) = 1;

(c) j(z, O) has “integrable tails”:

/

o
j(z, o)ck <co ,

J
‘(l – f(z, O))dz < m

-CcJ o

(d) f(z, O) has zero mean:

Wl(f(., o)) = o

4.3 Overview of Proof

4.3.1 Decreasing L1 Distance

We will view a function ~(z, t) as a function ~(., t)of

time t taking values in the set of nondecreasing right-

continuous functions of z. The basic idea of the proof

of Theorem 1 is to show that the L1-distance between

any two solutions -fI (., t) and ~2(., t) to equation (2),

Ilfl (“, t) – f2 (, t) II, can only decrease in time. More pre-
cisely, we will show, that the derivative

:Ilfl(”,t) - f2(”, t)[l <0

as long as fl > f2 on a set of nonzero measure, and
Theorem 1 If there exists a traveling wave solution fl < fz on a set of nonzero measure. To show that we

f(z, t) = O(Z - ‘vt)
use the following argument. The function h(., t ) defined

in (4) is the derivative of f (., t) in L1-space. (We will

of equation (2) obeying initial conditions (a) - (d), then
prove this later — equation (2) does not immediately

it is unique, the function ~(x) is continuous, and any
imply this.) Formula (4) can be rewritten as follows:

other so~tion f (x, t) of equation (2) satisfying (a) - (d)

converges to that traveling wave solution as t -+ m, both

pointwise ‘(x)=ldy q(y)lmdz ‘(z)[-o(f-’(y))(x)+o(f-’)+z)(x)])]

f(x +7Jt, t) + f(x +Vt, t) = ~(z), Vz c R (6)
Consider any two solutions .fl (., -t) and f2 (., t) to equa-

tion (2). We can write

and in the sense of LI -distance
A

11.f(~+Vt,t) - q$(z)ll + o (7) :( fl(-, ~) – f2(”,0) = s(”) ,

where
Remarks:

1) As we mentioned in Section 2, for the case r(z) =

‘Z, the traveling wave solution obeying (a) - (d) does
‘(x) = Idy ~(y)lmdz ‘(z)”’(”’z)(z) ~

~xist and is given by @(z – vt)with 4(s) = 1 – (1 + J%%)(.) = [_@l)(.) + (@z)(.)] + [@l+4(.) - @2+z)( .)] ,

e~(z-”)) % and Q chosen so that m(~) = O. a~ = fl:l(y), i = 1,2.
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(We will also denote, S[y’z) = [–h(w) + h(~z)], ~~z) =
[~(a,+z) _ ~(az+z) ].) Aswesee, thederivative softhe
difference ~1 – f2 is a weighted sum of “primitive deriva-

tives” s(~~z) defined for ally c (0,1) andz E (O, oo).

The form of function s@~z) isillustrated in Figurel.

For the case where

:(h(”>t) - f2(”, t)) = 0(.)

let us denote

F: E $Il(fl(”, t) - f2(”, ~))+ll

Let us find theexpression for~~~v,z). For example,

consider the case al = \l–l(y) < a2 = ~2–l(y), illus-

trated in Figure 1. Wesee, that

Indeed, by definition al = fl–l (y), so function fl – fz is

(Y!%) =positive everywhere in the segment [al, a2], and S1

– 1 in that segment.

We also see that

‘~j%.) (~,’) = (U2 – al) – ‘(U,Z)
.

where U(Y, z) is the length of the interval within [al .+

z, a2 + z] where fl – f2 is negative. Therefore,

~,~,,z) = F~V z, + F~u ., = –U(V, z)
St ‘ Sv ‘

It is verified similarly that F~;W,=) = –u(y, z).

Considering the three different cases, al < a2, al =

a2, and al > a2, we get the following result:

F~~%,=)= F~;v,z) = –z@, Z)

where nonnegative function u (y, z) is defined as follows.

Denote c1 = min(al, az), cz = max(al, az). (Recall,

that ai = fl:l(y)). If al = a2, then u(y, z) = O. If

al # a2, then

u(y, z) = {Measure of the set of those points in the

segment [cl + z, cz + z] in which fl – fz

has the sign opposite to the sign of fl – f2

in the segment [cl, C2]}.

Since the derivative s is a weighted sum of primi-

tive derivatives s(~’z), it is natural to expect that the

derivative

:Il(fl - fz)+ll = F:

should be equal to the integral

-ldy’(y)lm
dz T(Z). I@,z) <0

We will show (Theorem 2), that actually the following

result holds:

%dt (fl – fz)+[l ~ –
lldyq(~)lmd’’(z)~(yz)

<0 (8)

:Il(fl - f2)+ll = :Il(fl - f2)-11 (9)

Then, obviously,

:Ilfl - f211 = :Il(fl - f2)+lI + :Il(fl - f2)-11

< -211dy~(y)lmdzr(z)~(yz)~”

Therefore, IIfl – f2II, the L1-distance between two solu-

tions, has a strictly negative derivative as long as both
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sets (of argument x) where fl – fZ is strictly positive

and strictly negative have nonzero measures.

This, in turn, implies that iftwosolutions ~l(,t)

and ~Z(., t) have equal “mean value”

Tn(fl(,t)) = Tr@?(.,t))

then II~1 – j2 II has a strictly negative derivative

as they do not coincide.

4.3.2 Convergence to a traveling wave

as long

In the rest of the proof of Theorem 1 we consider the

L1-distance between an arbitrary solution ~(., t)with

mean value

m(f(., t))= wt

and the traveling wave solution ~(x, t) = ~(z – vt)hav-

ing equal mean value

Tn(f(., t)) = ‘m!

In other words, we assume ~(., t)= fI(z,t)and ~(., t)=

f2(., t) ad use the properties (8) and (9) of 11~1- j,ll.
We consider the “time shifted” version of ~(z, t):

j(z,t)= f(z + Vt,t)

This is the function ~(,, t)continually shifted to the left

with speed u to keep its mean value constant:

m(f(z + Vt, t)) = o, Vt

A similar shift applied to the traveling wave ~(z, t)

makes the traveling wave time invariant

f(z + Vt, t) = @(z)

Thus, the problem is to prove that

?(., t) + @(z)

We prove the following sequence of statements.

(i) The family of functions ~(., t), t z O, viewed as

probability distribution functions on the real axis,

is relatively compact.

This is true, because otherwise jl~(., t)– @(.)IIcan

be arbitrarily large, which is impossible.

This, in turn, implies, that the family of functions

{~(., t), t > O} has limiting functions as t -+ CO.
Then we consider an arbitrary limiting function

~(.). It suffices to prove that ~(.) = +(.). First,

we show (Lemma 8), that

(ii)

(iii)

Any limiting function ~(.) must have a form

@taJ(z)= ~(z - a), i.e., a shifted version of @(.).

This is true, because otherwise we could find a

“shifted version” +(a) such that the difference ~(.) –

~(a) (.) is positive and negative on sets of nonzero

measure. But, the function ~(., t) gets infinitely

close to ~(.) infinitely often. This would mean, that

the derivative

-@”,t) - f$a)(”)ll< q <0

is separated from zero by a negative constant q

on a set of time instants t having infinite mea-

sure. This is impossible, because it would imply

llf(”, ~) – ?@(”)l + –co.

The last observation is (Lemma 9):

Any limiting function ~(.) is exactly equal to ~(z).

This is proved by a contradiction. If, for example,

~(.) = +(’)(.) for some a <0, then

j~~ 11(~(., t)– #(.))+ll~ Ial

and therefore

J~iI 11(~(.,t) – +(.))-ll ~ Ial

Moreover, it is easy to see that

j~~ 11(~(.,t)– ~(c)(.))-II> Ial

for arbitrarily large c >0. But this is impossible,

because we can always make 11(~(., O) – @c) ())- II

arbitrarily small by choosing a sufficiently large c >

0.

4.4 Preliminary Results

4.4.1 Properties of Solutions to (2)

Lemma 1 (a) For any x and t ~ O, h(x, t) ~ O . If in

(b)

(c)

(d)

(e)

addition f(z, t) >0, then h(z, t) <0 .

lh(~, t)l S &y

For any fixed x, f (x, t) is absolutely continuous on

t.

If f(xl, to) < f(z2, to), Z1 < X2, tO > 0, then

f(x~, t) < f(x~, t) for all t ~ to.

If f(z, O) >0, then f(z, t) >0, V t ~ O.
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(f)

(9)

(h)

(j)

l“j(zl, O) = f(zz, O) >0, Z1 < Z2, then h(zl, O) <

h(Q., o) .

For any t > 0, the function f (z, t) is strictly

increasing in the interval X* < x < m, where

Z. = –co if$(~, O) >0, Vz, and

z. = Sup{x I f(z, o) = o}

otherwise.

For any t >0, the inverse function f‘1 (y, t), y E

(O, l), is continuous and nondecreasing.

For any fized z; the function f (z, t) – f (z–, t) is

strictly decreasing in t unless ~(z, t) = f (z–, t).
Therefore the set of points x where f (x, t) is not

continuous remains unchanged in time.

Notice, that (j) immediately implies the continuity

of the function ~(z) defining a traveling wave solution

@(z - ‘vt).

Proof. Throughout the proof we use the following rep-

resentation of the derivative h(z) in (4):

h(z) = –hi(z) + hr(z)

where

/

f(z)

hi(x) = dy q(y)
o

Obviously, both hl (x) and h,(z) are non-decreasing on

z, and hz(x) 2 hr(z).

(a) As mentioned above, ht(z) ~ hr(z). If f (z) >0,
then hi(z) > hr(x).

(c) Follows from (b).

(d) Denote: Af = f(z2) - f(q). Then

:(Af) = h(z2) - h(xl)

= -(h1(z2) - hl(xl)) + (hr(z2) - hr(xl))

2 –(h(o) – hz(xl))

We see that

-$(Af) ~ -Af + o(Af)

which implies that Af cannot attain O in finite time.

(e) Follows from (d).

(f) In this case hl(xl) = ht(z2) and h,(zl) < h,(z2).

(g) FO11OWSfrom (d), (e), and (f).

(h) Follows from (g).

(j) It is verified directly, that if f (z-, t) < f (~,t),
then lim,$o h(z – c, t) < h(z, t). This implies the state-

ment (j).

Lemma 2 For any t >0, Ilh(., t)l{ = v. For any t 20
and r ~ O,

f (X,t + 7) < f (z, t), Vx

and

llf(”, ~+~) -f(”, oll =/w [f(%t) –f(x, t+ T)]dz = v7-
—m

Proof. Directly from the expression (4) we get:

-l/h(., t)ll = /m h(z, t)d~
—co

J

1

= dy q(y)
o

“1
m d.z r(,z){f-l(y) - (f-l(y) + z)}

o

= -Jldyq(yr’dzr(z)z=-”
Using Lemma l(c) we can write

J

co

_m[f (X)t) - f(z, t + T)]dz

//

t+r

=— dx d~ h(x, f)
—co t
t+r

= -1” /
d~ m h(x, ~) dz = VT

-w

Lemma 3

f(., t + At) - f(., t) = h(., t)At + o(At) (10)

where the left and right sides of (1 O) are understood as

L1 -valued functions of At .
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Proof. According to Lemma 1(a) and Lemma 2, for

any t, h(., t) is non-positive function of z having norm

v. Again, according to Lemma la) and Lemma 2, the

same properties has the function

iAt(., t) s [f(., t + At) – f(., t)]/At

for any At. By definition of h we have convergence

everywhere:

This convergence everywhere along with the above prop-
. ,.

erties of h and hAt easily imply the convergence hAt +

hin L1.

4.4.2 Additional Preliminary Results

Consider two functions

g = {g(z), x G R} c Ll and s = {s(z), z c R} E L1

Denote:

dsllg+ll _ ~im 11(9+ SAt + O(A~))+l\ - Ik+ll (11)

dt – AtJO At

and, similarly,

The following Lemma 4 shows that the derivatives in

(11) and (12) are well defined and gives an explicit ex-

pression for them.

Lemma 4 Let g,s E LI. Then

m=
dt J

dx S(Z)[~{S > O} . ~{g ~ O}
R

+1{s < O}l{g > o}]

and, respectively,

4119-11

/
— = – dx S(Z)[~{S < ()}~{g ~ O}

dt R
+1{s > 0}1{9 < o}]

Proof. First, we notice that for any two functions

g,u ELl,

II(9 + ~)+11 - 119+11s MI

Thus,

tt(g+ s~t + O(fW)+ll = [i(g+ SAt)+ll + o(At)

and therefore

~im I(9 + sAt + 4At))+ll - lb+ll

At$O At

= ]im 11(9+‘At)+ll - 119+11
AtJO At

J
= ~tmo ; [(g + sAt)+ – g+] dx

Denote: AgAt = (g+ sAt)+ – g+. Then, breaking down

the real axis into non-intersecting subsets according to

the sign of g(z) and s(z) we can easily verify the follow-

ing set of equalities:

/
AgAtdz = O, VAt

$=0

J
LgAtd~ = (

/
s(x)dz)At, VAt

s>o,g~o S>o,g>o

I
LgAtdx = o(At)

s>o,g<o

/
gA~dx = O, VAt

S<o,g<o

/
LgAtds = (

/
s(z)dz)At + o(At)

S<o,g>o s>o,g~o

This completes the proof.

Lemma 5 Let g,s c Ll, and s. % s, n ~ co. Then

L119+ll ~ ds119+ll
dt dt

and, respectively,

Lnllrll ~ dsl19-11
dt dt

Proof. The direct limiting transition in the explicit

expressions for the derivatives given by Lemma 4 proves

this lemma.

Lemma 6 Let g, S1, S2 E Ll, and

%119+11 = 4, h-l
dt dt

421/9+11 = 42119-11
dt dt

Then

d;l -d.,+., lb+ll = G+s, g II

dt

and

L+S2119+II < L lb+ll + & lk+ll

dt – dt dt
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Proof. Easily proven using the explicit expressions of

Lemma 4.

We are now prepared to present the detailed proof.

This will be done in two steps, We first discuss the

decrease in L1-distance between two solutions, and then

establish the convergence to the traveling wave solution.

Proof. Follows directly from the expression for the

derivative given in Lemma 4, ❑

Obviously, U(Y, z) a O for any y and z. As we as-

sumed, statements (g) and (h) of Lemma 1 hold for all

t >0 including t = O. Therefore, &__l (y), i = 1,2, are

continuous nondecreasing functions. This and Lemma 7

imply that u(y, z) is a continuous function of (y, z).

4.5 Decreasing L1 Distance

Theorem 2
Consider two solutions jl (z, t) and /Z (z, t)to the equa-

tion (2). Corresponding derivative functions we will

denote hl (z, t) and h2(z, t). We are interested in the

asymptotic of ~1 and j2 when t+ co.Therefore, with-

out loss of generality, we can assume that statements (g)

and (h) of Lemma 1 hold for all t including t = O.

Denote

g(z, t) = fl(z, t) – f2(z, t)

s(z, t) E hl(z, t) – hz(x, t)

Let us fix t = O. Denote

@ = fL119+(”)o)ll

dt
, F; = ‘Ullg-(”, O)ll

dt

According to Lemmas 3 and 4,

@ = 4119+(”, 0)11 = W+(”>O)II
dt dt

From the formula (4) we get

‘(z)=ld~’(~)imdz’(z)s(y’z)(z)
where

‘(w) =

[
.@;’(d) + @(f;’(l/))

1

[
+ 8(L-1(Y)+4 _ (j)(&-l(Y)+a

1 7

for O<y<l, z~O.

Proof. For every n = 1,2,3,..,, let us define a func-

tion Sm as follows. Denote,

yi = ~, i=0,1,,..,2n

Zj =

~

X, j=0,1,2, . . ..22n–l

Z22. E RI

{

s(W ,Zj) > ifi~l
O_ij =

‘( Y1!ZJ)
? ifi =()

and, fori=O,l, . . ..21 .j=j= 0,1, ...,221,1,

Clij S 9(Yi)(Yi+l – Yi) (~;+r(z)dz) .

Let
2“-1 22”-1

It is easy to verify, that

Lemma 5 implies that

It follows from Lemma 6 and Lemma 7 that

which means, particularly, that
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From Lemma 6 we get

where all F;, are nonpositive. So,

where Un (y, z) =

Continuity of the function U(Y, ..) implies that

un(y, z) + ‘u(y, z)

for all O < y <1 and O ~ z < co. Therefore, applying

Fatou’s lemma to the right-hand side of (14) we get

Iim sup FL ~ –
l~(y)dyimr(z)dzu(yz) ’15)

Convergence (13) and inequality (15) prove the theorem.
❑

4.6 Convergence to a Traveling Wave

Theorem 2 provides a key to the proof of our main re-

sult, Theorem 1. Indeed, it shows that as long as two

solutions to (2) with the same “mean value” rn(~(., t)),

do not coincide, the L1-distance between them is strictly

decreasing. This, by the way, implies the uniqueness of

the traveling wave solution (with fixed “mean value” at

time O).

Let us apply Theorem 2 to the functions

Both functions are solutions to (2) with zero “mean

value” at time O:

m(”f(., o)) = rn(f(., t)) = o (16)

Function ~(x, t) is a solution f(z, t) being shifted to the

left with speed v to keep its mean value equal to O.

We have to prove that for any x c R

7(Z,t) + #(z), t + cm

Observe that ~(x, t) is a family of nondecreasing func-

tions. We have

due to the “integrable tails” condition and the fact

(Theorem 2) that 11~(-,t) - ~(.)11 is a nonincreasing

function. This implies that if each function ~(z, t) is

considered as a distribution function (in the probabilis-

tic sense), then the family ~(., t) is relatively compact.

This, in turn, implies that for any infinitely increasing

sequence of time instants

tl<tz<,..<tn<...

there is a subsequence tnk,k = 1,2,. . . . such that

where ~(z) is a nondecreasing right continuous function,

~(–~) = O, t(m = 1, and the convergence takes place

in any point x where ~(c) is continuous.

Lemma 8 Any limiting function ~(x) is a shifted func-

tion ~(x), i.e., there exist a constant a such that

f(z) = @(o)(z) s O(Z - a) (17)

Proof. Suppose, (17) is not true. Then we can always

find a constant a such that j(z) – ~(”) (x) is positive for

some x and negative for others. To be more definite,

suppose there exist xl < X2 such that

and ~ is continuous in points xl and X2. This means,

that there exist e >0 and 6>0 such that the Lebesgue

measure of time instants such that

j-(q ,q > (/@ (q) + E (18)

and

f(xz – d, t)< ~(”)(X2 -J) – 6 (19)

is infinite. But it easily follows from Theorem 2 that if

at time tboth (18) and (19) are true, then the derivative

F~ is separated from O by a negative constant:
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This would mean that

IIi(”, t) - c$a)(t)ll J -co

which is, of course, impossible. ❑

Lemma 9 Any limiting function ~(x) coincides with

#(z).’ f(x) = @(x) = $@)($) .

Proof. Suppose, it’s not true. Then there exists a

limiting function

where, for example, a <0. This easily implies, that

Therefore,

lim 11(1(.,t) - #(z))-ll a Ial (20)

because m(~(., t)) = rn(+(.)) s O. From the fact that

j(z) is a limiting function and inequality (20), we see

that for any e >0, there exists a sufficiently big t >0

such that

/

1

(f-’(Y, ~)- #-’(Y))+dy 2 Ial>0 (21)
1-6

This means that for any b >0,

m,0- db)(”))-ll2 M (22)

But inequality (22) is impossible, because we always can

find a sufficiently big b >0 such that

11(7(.,0) - db)(”))-ll < Ial

The statement (6) of Theorem 1 haa been proven.

Suppose, (6) is true, but (7) is false. It may happen

only if statement (21) is true for some positive number

la]. But this is impossible as it is shown in the proof of

Lemma 9.

Theorem 1 has been proven.
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