ADASS XIIT
ASP Conference Series, Vol. XXX, 2004
F. Ochsenbein, M. Allen and D. Egret eds.

VO Enabled Mirage and the IVOA Client Package

Samuel Carliles!, Tin Kam Ho?, William O’Mullane!

Abstract. Astronomers commonly analyze astronomical data by im-
posing different views on the data, frequently viewing it in image form
or as multi-dimensional plots. The ability to correlate the data in these
views in order to see manifestations of patterns across views would be a
powerful tool. The Mirage data visualization application offers this func-
tionality. In order to increase the value of this tool to astronomers, we
have added two features to Mirage, namely a module for viewing FITS im-
ages, and the ability to load VOTable data. During the process of adding
the VOTable functionality to Mirage, we also developed a separate Java
package, called the IVOA Client Package, which can be integrated easily
into any other Java application to provide the ability to load VOTable
data via Cone search queries submitted to any Cone services published
in a Registry, or by a direct SDSS CAS query. We describe briefly the
IVOA Client Package, the usage of VO Enabled Mirage, and the process
of writing a data view module which can be incorporated into Mirage.
We also briefly describe the process of programming a FITS viewer in
Java using JSky.

1. Introduction

We describe the IVOA Client Package, a Java package which offers high-
level VO functionality to any Java application. We then describe VO Enabled
Mirage, an extended version of Mirage® (Ho 2003), which offers easy retrieval
and analysis of VOTable data, and correlation with FITS image data. We
also describe the process of integrating a new data view module with Mirage,
using the example of the TwoDPictorialDisplayMode module, which allows
viewing of FITS images, and which includes some common astronomical image
manipulation functionality, using components from JSky* for some operations.

! Johns Hopkins University, Baltimore, Maryland

?Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey
*http://cm.bell-labs.com/who/tkh/mirage/index.html
*http://archive.eso.org/JSky/



2 Carliles, Ho & O’Mullane

2. The IVOA Client Package

The IVOA Client Package®, used by VO Enabled Mirage, can be integrated
easily into any Java application, enabling retrieval of VO data. VOTable® pars-
ing is based on SAVOT or optionally on JAVOT®. The IVOA Client Package is
composed of three main components: a search panel which provides a user in-
terface to VO Cone/SIAP and SDSS CAS searches, a common interface, called
ivoa.V0TWrap, for accessing VOTable data from SAVOT and JAVOT inter-
changeably without requiring different application code, and a Task Manager
which gives user control over indeterminate-length operations.

The VOTWrap implementation supports access to table data in VOTables.
Support for other features of VOTables may be implemented as needed. The mo-
tivation behind interchanging SAVOT and JAVOT is that they behave slightly
differently, and the optimal choice depends on the situation. SAVOT is a
very tolerant parser which will frequently parse non-compliant VOTables, but
it doesn’t propagate exceptions up to application code, so graceful exception-
handling with SAVOT is not possible. JAVOT does propagate exceptions to the
calling application, but it’s very strict about standards compliance. In partic-
ular, we discovered that JAVOT will not parse VOTable data if the VOTable
refers to its Schema definition and for some reason the definition is inaccessible
(for instance, due to server outage.) There does not appear to be any way to
relax this behavior.

The Task Manager has been designed to handle any kind of task that can
be programmed, with the currently implemented tasks tending to be of the
data-retrieval variety. The ivoa.Task class can be extended easily to provide
whatever functionality is necessary.

3. VO Enabled Mirage

VO Enabled Mirage? has all the features of “classic” Mirage including mul-
tiple data views and clustering algorithms, with the additional feature of being
able to load VOTable data and perform VO Cone/SIAP and SDSS CAS searches.
It also includes an astronomical imaging module which loads FITS images us-
ing JSky classes, and allows image manipulation operations common in many
astronomical imaging applications.

3.1. Using VO Enabled Mirage

Data files, including VOTable files, may be loaded into VO Enabled Mi-
rage from the Console — New Dataset menu item just as in classic Mirage.

Shttp://skyservice.pha. jhu.edu/develop/vo/ivoa/
®http://www.us-vo.org/V0Table/index.html
"http://simbad.u-strasbg.fr/public/cdsjava.gml
8http://www.us-vo.org/V0Table/JAVOT/

°http://skyservice.pha. jhu.edu/develop/vo/mirage/



VO Enabled Mirage and the IVOA Client Package 3

VOTables may also be loaded directly from Cone and SDSS CAS searches using
the Console — New Dataset from VO Source menu item. Once a dataset is
loaded, the astronomical imaging module can be opened by dragging the M51
icon (E) into any data view panel as in classic Mirage.

3.2. Adding VOTable Functionality

Mirage is implemented as a command interpreter with a programmatic in-
terface which can be called by user interface code. The user interface to classic
Mirage instantiates a different Mirage interpreter for each dataset. VO function-
ality was added to Mirage by extending the original user interface. Data loading
commands generated by the user interface are intercepted and converted from
VOTable to Mirage’s native data format if necessary. Then adding a menu op-
tion to invoke the IVOA Client search panel was possible using the normal Java
Swing API. The code for converting VOTable data to Mirage native data was
written using the VOTWrap SAVOT/JAVOT wrapper interface from the IVOA
Client Package which allows generic access to field information, some of which
must go at the beginning of Mirage’s file format. Then data is written out one
record per line with space-delimited fields.

3.3. Adding a Data View Module
The ActivePanel Interface

The mirage .MirageGraphics.ActivePanel interface can be implemented by
any module that one wishes to integrate with Mirage. This interface is still under
development, and the semantic intepretation of these methods is still not clearly
defined. The interpretation used to implement the TwoDPictorialDisplayMode
module is offered here. Implementing classes must provide concrete implemen-
tations of the methods listed below. The mirage.MirageData.Entry class en-
capsulates a row of data, and is used in many of these methods. Each Entry
also has a Color associated with it, which may be assigned by the user.

public Vector getSelected(): This should return a Vector containing
instances of Entry representing the rows currently selected.

public void clearSelected(): This tells the module to deselect any
currently selected Entrys.

public void transferDropTarget(DropTarget dropTarget): This
should invoke setDropTarget (dropTarget) on any Components in the
module so that the module can be overwritten by another module selected
by the user.

public void colorDataEntry(Vector entry): This tells the module to
color the display of Entrys in entry as appropriate for the view.

public void highlightDataEntry(Vector entry): This tells the mod-
ule to highlight the Entrys in entry as appropriate for the view.

public void clearColors(): This tells the module to show all Entrys
in the default Color for multi-color display.

public void clearHighlights(): This tells the module to show all
Entrys in the default Color for monochrome display.

public void changeToMonochrome(): This tells the module to show se-
lected Entrys in the monochrome highlighted Color.



4 Carliles, Ho & O’Mullane

public void changeToColor(): This tells the module to show selected
Entrys using their associated Colors.

public void alternateVariables(int mode, int row, int col,
int idxCell, int nCells): This method informs the module of its po-
sition within a matrix of similar modules. The module can alter its appear-
ance accordingly (e.g. select a different variable for display). For image
data the display dimensions are fixed, so in TwoDPictorialDisplayMode
it is implemented as a no-op.

To load a new module into Mirage, add a line reading
externalpanel classname <iconimage

to the Property.dat file that comes with Mirage, where classname is the fully
qualified name of the class for the module to be loaded, and %conimage is a
path sufficiently specific that the icon image file can be loaded as a resource at
runtime by the Java Virtual Machine.

The TwoDPictorialDisplayMode Data View Module

The TwoDPictorialDisplayMode in VO Enabled Mirage allows the user to
load FITS images, apply user-selected cut levels, apply colormaps, and adjust
brightness and contrast with SAO DS9-style controls. Also, being a Mirage
ActivePanel class, it responds to Mirage broadcast messages, and can itself
broadcast messages to other Mirage modules. Much of the implementation uses
classes and code from JSky, which provides an easy way to load FITS images
and use them within the Java Advanced Imaging API (JAI) framework, as
well as many image processing operations and support for WCS to image (and
reverse) coordinate transforms. Some problems were encountered using JSky.
Mapping from an arbitrary FITS image data type to a type associated with Java
RenderedImages isn’t entirely predictable. The implementation of certain image
processing functions had to be copied verbatim due to a very tight coupling
between the model classes and the view/controller classes.

The TwoDPictorialDisplayMode image processing classes are implemented
as a class hierarchy with each extension adding processing functionality to its
superclass. The intention was to encapsulate the image processing functionality
in the image itself to make it easy to integrate into any Java graphical com-
ponent. However, this design resulted in slow performance as well as difficult
maintenance and extensibility. We are currently redesigning it with the goal of
improving each of these aspects.

Acknowledgments. We would like to thank Allan Brighton for his ad-
vice on using JSky in the implementation of the TwoDPictorialDisplayMode
module.

References

Ho, T K. 2003, in APS Conf. Ser., Vol. 295, Astronomical Data Analysis Software
and Systems XII, ed. H. E. Payne, R. L. Jedrzejewski, & R. N. Hook (San
Francisco: ASP), [06-2]



