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Abstract
We consider clustering as computation of a structure of

proximity relationships within a data set in a feature space
or its subspaces. We propose a data structure to represent
such relationships, and show that, despite unavoidable ar-
bitrariness in the clustering algorithms, constructive uses
of their results can be made by studying correlations be-
tween multiple proximity structures computed from the same
data. We describe a software tool that facilitates such ex-
plorations and example applications.

1 Introduction
In unsupervised learning many methods have been pro-

posed to find clusters in a data set [5][10][12], but there has
been little emphasis on systematic use of the resulting clus-
ters beyond the discovery of their existence and confirma-
tion of their validity. Methods for connecting a clustering
study to the analysis of other characteristics of the data are
relatively undeveloped. Motivated by several applications
in science and engineering, we explored ways to extend the
use of clustering that reveal new opportunities for pattern
recognition methodologies. In this paper we discuss some
of these uses and describe a software tool that facilitates
such explorations.

The study began with the observation that, in many real
world applications, objects under study can be described by
many features that are not necessarily measured on a sin-
gle scale. In addition to numerical features on incompara-
ble scales, objects may be described by ordinal or categori-
cal features. Most algorithms in statistical pattern recogni-
tion do not apply directly to measurement spaces of mixed
scales, and there are no easy ways to define and interpret a
global similarity measure that is a function of all such mea-
surements.

Nevertheless, natural metrics may exist for groups of re-
lated measurements. In the subspaces spanned by those
measurements, the traditional algorithms are applicable.
Thus the challenge is how to use clustering results from
those subspaces in a larger context of study involving all
the relevant measurements.

The necessity of such explorations is highlighted by the
following question asked recently by a practitioner, after
spending much effort on estimating a finite mixture model:
“Now that we have all these Gaussians, what should we do
with them?”

2 Clustering as Proximity Analysis
Clustering analysis is plagued with arbitrariness, in the

choice of the validation criterion, or in the number or shape
of clusters one is willing to accept or impose on the data. A
goal of our study is to make constructive uses of clustering
results despite such arbitrariness. Towards this we consider
a view of clustering that emphasizes its function of comput-
ing a proximity structure from the data.

This view is motivated by the fact that many clustering
methods depend on a similarity metric. Even in popular
probabilistic model-based methods that estimate mixtures
of Gaussian distributions, location of the mean of each com-
ponent distribution and the dispersion of the data around the
mean are of primary concern.

Therefore a starting point to relate clustering analysis to
other data characteristics is to consider clustering as a pro-
cedure to construct a data structure that highlights the prox-
imity relationship among the data points. From this per-
spective, clustering algorithms differ just by the particular
structure they compute using different metrics, models, or
different scales of resolution. We then investigate the com-
monalities of such structures and develop measures, algo-
rithms, and tools to relate alternative structures computed
from the same data.

We define a proximity structure
�

of a � -dimensional
data set �������
	 �����
��������������������� to be a pair

� �����
�! "� ,
where � is a set of subsets in � ,  is a weighted graph
�#�
�%$&� , and the weights of edges in $ are values of a func-
tion of proximity between two elements of � . We limit our
discussions to two types of structures as follows:

1. partitional structures, where � is a partition of � ,
i.e., � consists of nonintersecting subsets of � whose
union equals � , and  is a graph where the nodes are
elements of � ;



2. hierarchical structures, where  is a tree that splits the
root � into a set of leaves that partition � , and � is
the set of all the nodes in  between and including the
root and the leaves.

Note that the partitional subsets ' in � can be singletons
containing only one point in � . The length (weight) of an
edge in $ is the value of a proximity function ( that is a
notion of distance between two subsets, and may involve
scatter within the subsets. For singletons it is the distance
between two points.  need not be fully connected if ( is
undefined between certain elements of � .

An example of a partitional structure
�*) �+��� ) �! ) �

has � ) being the clusters computed from a k-means pro-
cedure using Euclidean distance, and  ) being a mini-
mum spanning tree connecting the centroids of those clus-
ters (see Figure 2). An example of a hierarchical struc-
ture

�", �-�#� , �! , � is the tree resulting from a complete-
linkage agglomerative procedure applied to elements of � )
in
�.)

, with  , representing the tree and � , containing all
the nodes in the tree. The edge lengths in  , are distances
between the centroids of parent subsets and those of their
children.

Naturally this view of clustering is helpful in cases where
meaningful metric exists only in certain subspaces, so that
in each subspace a different proximity structure can be con-
structed. In addition, for each numerical or ordinal feature,
there exists a trivial partitional structure where � is the set
of all singletons in � , and  is the linear ordering defined
by the value of the feature. If the range of values is divided
into regular intervals, points in each interval can be taken
as a cluster, and representative values of each interval can
be ordered to create a relationship graph. For a categorical
feature, a degenerate structure exists where � contains the
sets of points in each category and the edge set $ of  is
empty.

Subspaces defined in other ways can be converted to co-
ordinate subspaces if the feature space is augmented to in-
clude variables defined by specific projections and trans-
formations of the raw features. Functional dependences
can be represented in a similar way. External criteria for
cluster validation can be included by augmenting the fea-
ture space to include variables defining such a criterion. To
represent soft partitions computed by some algorithms, one
can first harden the cluster memberships and/or extend the
partitional structure to allow intersecting subsets. Finally,
while the ���
�! "� representation is motivated by clustering,
it can describe similar structures resulting from other pro-
cesses, such as classification and regression trees [1] where
the structure is related to that of a categorical feature or re-
sponse variable by construction.

3 Exploration in Proximity Correlations
Given our broad definition of proximity structures, it is

obvious that many such structures can be constructed from
an arbitrary data set. Our task is to study the relationships
among multiple structures computed from the same data.
In the literature this has been addressed as interpretation,
comparison [4], and combination [11] of a multiplicity of
clustering results. One approach defines a global similarity
metric as a simple function of the subspace metrics, and
uses it to obtain clusters in the full space. Such combination
functions need to be carefully justified. Methods have also
been proposed for measuring agreement of partitions [4] or
intersection of matched groups [5].

Nevertheless, it is realized that a summarizing measure
of agreement is less relevant than an investigation of what
is causing the disagreement [5]. Therefore we believe that
methods and tools for detailed analyses of the correlation of
different proximity structures are of critical importance.

Clusters compress the data for more efficient handling
and multi-resolution study. By introducing the relationship
graph  , the data can be ordered in a meaningful way by
methods of traversal in  . This is especially important for
multidimensional subspaces that do not have a unique natu-
ral ordering. A particular method of traversal selects paths
in  along which one can define measures to quantify char-
acteristics of a proximity correlation, and answer questions
such as the followings:
/ (Continuity) Do small changes in one subspace induce

small changes in another subspace?
/ (Monotonicity) Do changes in one subspace always

induce changes in the same direction in another sub-
space?

/ (Linearity) Do changes in one subspace always induce
changes by the same proportion in another subspace?

/ (Connectedness) How far can a cluster expand in one
subspace if its members are to stay in the same cluster
in another subspace?

/ (Intrinsic dimensionality) How many different direc-
tions of changes are significant in a particular sub-
space?

4 A Tool for Interactive Analysis
Many studies in clustering emphasize the importance of

visualization and interactive graphical analysis. As a first
step to obtain insights for a systematic study of proximity
correlations, we adopted this approach and constructed a
software tool, Mirage, to support such analyses (Figure 1).
Mirage is written in Java 1.3 with a heavy use of the Swing
library, and can be run on both Unix and Windows platforms
that have an implementation of the Java Virtual Machine.



Figure 1. A screen shot with a highlighted
subset in the four raw data displays. The sub-
set is selected in the histogram display and
broadcasted to other views.

Mirage contains displays of data points projected to one,
two, and multidimensional subspaces, as well as clusters in
such subspaces along with their relationship graphs. Most
importantly, connections between all the displays are main-
tained, in a way that subsets selected in one view can be
broadcasted and tracked in all other views. This is achieved
by an object-oriented organization of the data set and com-
mon interfaces to all the displays. The interface specifies
that every display supports manual selection of a cluster, au-
tomatic selection of each cluster in turn along a pre-defined
path in a relationship graph, broadcasting a selected cluster,
a way to highlight a broadcasted cluster, and a way to show
membership of every point in a set of partitional clusters.

4.1 Displays of raw data
We assume that a data set is a matrix where points are

represented by rows and the features are represented by
columns. Several views of the data sets are offered (Fig-
ure 1), and intuitive means to interact with the displays are
provided:

/ A table view of the data matrix, with a color tag at-
tached to each row that shows its membership in par-
titional clusters. Points can be selected by a mouse
dragged to cover the corresponding rows, and high-
lighted by changing the background color of the rows.

/ A histogram plot that can be reconfigured to show a
one-dimensional projection of the data set to any sin-
gle feature with frequencies in a choosable number of
bins. The bins form a partition structure that can be
traversed in simple left-right paths. Clusters (bins) can
be selected with a mouse drawing an interval. Broad-

casted selections or partitions are shown by highlight-
ing or coloring each bar in corresponding heights.

/ A scatter plot that displays a two-dimensional projec-
tion of the data, where the X and Y axes can be chosen
to be any of the feature dimensions. Regions in the
projection plane can be selected by drawing boxes or
irregular regions with a mouse. The selected points are
highlighted and can be tracked when the plot is recon-
figured to show a different pair of features, or broad-
casted to other plots.

/ A feature vector plot that is also known as a
plot of profiles[2], distribution maps[7], or parallel
coordinates[9]. This plot shows the projection of the
data to a multi-dimensional subspace by plotting the
value of every feature against the index of that feature
in the subspace. That is, a point projected to a sub-
space of 0 dimensions as �213�4���������%1�5.� is shown as a
polygonal line with nodes marked at �
6��!1�7�� for each
68��9;:<6=:>0�� . This plot is a natural display for
vectors such as a spectrum or a time series. Vectors of
measurements on incomparable scales need to be first
standardized so that each component has mean ? and
standard deviation 9 . Data can be selected and broad-
casted from this plot by drawing intervals in each fea-
ture dimension and composing unions or intersections
of such intervals. Highlights and partitions are shown
by coloring the lines. The plot can be reconfigured to
show vectors in different subspaces with the selections
preserved.

4.2 Displays of nontrivial proximity structures
/ A cluster can be shown in the context of the entire data

set by highlights in the plots. Members of a cluster can
also be shown in isolation in any of the four raw data
displays.

/ Partitional clusters are shown by colors in each display.

/ Hierarchical clusters are shown in a tree panel resem-
bling popular displays of file trees. Nodes can be se-
lectively expanded or closed to show more or less de-
tails. Clusters corresponding to selected nodes can be
broadcasted, and nodes can be tagged with colors to
show broadcasted selections or partitions.

/ Relationship graphs are shown in two dimensions us-
ing a spring-model layout algorithm that positions the
nodes to best preserve the edge lengths. Clusters rep-
resented by the nodes can be selected and broadcasted
to other plots, or painted in color according to broad-
casted selections or partitions (Figure 2).



Figure 2. A screen shot showing a set of par-
titional clusters linked by an MST, and a step
on a leaf-to-leaf path in the MST being broad-
casted to other views.

4.3 Exploration algorithms
With this infrastructure many exploration tools can be

implemented. Supported operations include manually se-
lecting a subset and tracking it in other views, automati-
cally stepping through each subset along a predefined path
and tracking the movement in other views, and manually
or automatically reconfiguring a specific plot to show other
subspaces and track the location of a selected subset. These
operations give visual answers to the questions posed in
Section 3. From these one can easily detect regularities or
anomalies in the data or in the correlations of structures.

Besides these basic operations, one can construct facili-
ties to define new subspaces and import new features or data
points, match a selected subset with comparison data such
as samples from a known distribution or points predicted by
a theoretical model, select or track the data in the context of
a background image such as a map or a photograph, com-
pare the data to a geometrical object projected to the same
subspace such as a regression line or a hyperplane, and ex-
ecute a command script containing a prespecified sequence
of operations. While some of these techniques have been
attempted before (e.g. slicing data by intervals in subspaces
as in the Trellis graphics system [3]), it is obvious that our
setup opens up many interesting new possibilities in data
analysis.

5 Applications
We have used Mirage and its predecessors to study ob-

servation or simulation data from many areas of science and
engineering. It has enabled perturbation studies of several
complex models of physics in computational photonics that
yielded new designs of optical fibers and identified practical

architectures of Raman amplifiers. It revealed relationships
between failure rates and usage patterns of a wireless sys-
tem, and served to monitor IP traffic in an MPLS-based net-
work management system. It helped in a diagnosis of prob-
lems in the data pipeline of an ongoing astronomical survey.
Other uses were found in traditional areas including biomet-
rics, image and speech processing, and document analysis.
In supervised learning, Mirage has been used to study the
geometry of various data sets to suggest classifiers, and to
relate data characteristics to classifier performance [6][8].

6 Conclusions
We investigated methods for using cluster analysis in

the context of other measurements and structures in a data
set. We proposed a representation of clustering results that
enables interesting analysis of the regularities and anoma-
lies in multiple proximity structures arising from different
choices of features, metrics, scale types, shape models, al-
gorithms, and resolution. The proposed analysis framework
is implemented in a software tool that has found many in-
teresting uses with data from observations and simulations
in several areas of science and engineering.
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