
Interactive Tools for Pattern Discovery

Tin Kam Ho
Bell Labs, Lucent Technologies

700 Mountain Ave., 2C425, Murray Hill, NJ 07974, USA
tkh@research.bell-labs.com

Abstract
Real-world pattern recognition problems contain rich

context that must be taken into account in solution develop-
ment. Beyond the core classification tasks, there are several
common challenges including the need to correlate non-
comparable groups of variables while preserving data prox-
imity relationships within each group, visualization of data
geometry, rapid trial of many methodological alternatives,
and integration with existing infrastructure. We explore the
effective methods and tools to meet with these challenges.
We describe a graphical software, Mirage, as an experiment
to address such concerns.

1. Introduction
In the process of searching for patterns in applica-

tion data, we often run into many challenges beyond
the core classification tasks. These include many is-
sues in data preparation, formulation of the classification
problems, and interpretation of the results. In this pa-
per we describe our efforts in designing a software tool
that assists in several stages throughout the develop-
ment of complete solutions. We first present two cases
leading to the tool’s early development.

Design of optical fibers
Our explorations began with a rather atypical problem

in pattern recognition involving the design of optical fibers.
Properties of a cylindrical optical fiber depend primarily on
its refractive index profile that specifies the change of the re-
fractive index as a function of radius. Detailed mathematical
models exist on the physics of waveguides that can predict
the transmission properties of fibers with a given refractive
index profile. Traditional designers of optical fibers draft a
profile that they believe, by experience or by computation
using these models, will produce the desired transmission
properties. The profile is translated into precise specifica-
tions of the chemical mixture to be deposited to form each
layer of the preform (by the MCVD, or modified chemi-
cal vapor deposition process[4]), which is then drawn into a
fiber. There are several problems with such a trial-and-error
based design process: the process is slow and expensive,

the chance of success relies heavily on the designer’s expe-
rience, which often means that improvements are incremen-
tal and it is difficult to obtain breakthrough innovations that
are far away from prior experience.

A new design strategy is to use massive-scale virtual ex-
periments to systematically search a space of design pa-
rameters. This can minimize the need for expensive sam-
ple manufacturing, and more importantly, it enables explo-
rations of unfamiliar corners of the design space. How-
ever, while the models of physics give accurate prediction
of properties for each alternative, the challenge of design
is in the inverse problem: i.e., given specific demands on
the fiber properties, which designs can best achieve such
objectives? The models of physics are not directly invert-
ible. A mathematical optimization procedure embedding
the forward model can produce good candidate designs cor-
responding to different local optima. Yet there are still thou-
sands of possibilities, representing different tradeoffs on the
desired properties. Some profiles appear similar but straddle
large discrepancies in the resulting properties, others appear
dramatically different yet end up mapped to small neighbor-
hoods in the property space.

Hence there is a clustering problem, i.e., a need to un-
derstand the similarities of the choices, in each of the rel-
evant spaces: the space of design parameters, the space of
profile shapes, and the space of resulting transmission prop-
erties. Moreover, there is a need to understand how clusters
in each space relate to those in another. Each space has its
own unique scale: while profile shapes can be compared us-
ing a standard norm, they are not directly comparable to the
transmission properties which consist of several subgroups
with different units.

Stars or galaxies
An astronomical survey on deep sky objects [7] returned

images of millions of very faint objects. The primary scien-
tific goal requires careful characterization of the distribution
of observed shape distortions of far away galaxies. But be-
fore that, those galaxies need to be distinguished from the
foreground stars which could be at similar apparent bright-
ness. The discrimination task depends on tiny differences in
color and shape.



However, a difficulty remains: the survey is to an un-
preceded depth, meaning that most objects have never been
observed before and nobody knows their true classification.
How does one build confidence in the result of the clas-
sifier? There is some prior knowledge one can count on,
such as the expected count of objects of each type in each
bin of magnitude, or the luminosity function. But how can
one use this knowledge in the development of the classi-
fier? Here we are again concerned with several perspectives
on the same data: the characterization of the objects in the
color space, in the shape parameters, and in the brightness
statistics.

2. Challenges for an Analysis Tool
The above two cases highlighted several issues that are

peripheral but critically important to classification, includ-
ing the existence of noncomparable groups of variables, the
need to relate clusters arising from different perspectives,
and validation of results with side evidences. We see such
issues occurring in many other application contexts, includ-
ing other simulation studies for understanding optical net-
works, performance diagnosis for wireless communication
systems, and analysis of biomedical data. Generalization of
these experiences pointed to several crucial needs of a pat-
tern discovery tool:

Separate treatment of noncomparable groups of
variables

Many application problems contain several groups of
variables that are not necessarily comparable on the same
scale. For astronomical objects these can be images, spec-
tra, light curves, surface temperature, orbital period, and ve-
locity. Similarly, a database of people may include portraits,
audio clips, finger prints, as well as age, height, weight, ed-
ucation records, etc. Proximity between the objects in the
original, natural scale of each group has important mean-
ing and need to be preserved, but at the same time we need
to examine the correlation between different groups of at-
tributes. Thus artificially combining all variables into the
same feature space with a standardized scale may not be the
best treatment. Classification needs to be applied to each
relevant subspace, even if it means that many variables will
be treated singly in its own scale.

Versatile visualization utilities allowing many per-
spectives

It is well known that visualization can be a great aid
in the early stages of pattern discovery, to help “sanitary
checking” in data preparation, verify correctness of pre-
processing steps, clean up undesirable artifacts, and choose
relevant samples. Visualization also enables an initial ex-
ploration to spot explicit patterns, select potentially useful
features, try different normalization schemes, and suggest

choices of classifiers, clustering algorithms, or trend mod-
els.

Understandably it is difficult for a single visualization
method to satisfy all these needs. Ideally, data visualiza-
tion should allow large flexibility in the choice of perspec-
tives, ranging from basic statistical graphics such as his-
tograms and scatter plots, to more sophisticated views of
high dimensional spaces, multimedia signals, maps, and
auxiliary data structures like graphs and trees. Many in-
novative data views have been produced in visualization
research. However, most visualization systems are imple-
mented as a toolkit, i.e., a loose collection of a library of
plotting modules. Better uses of these can be made if there
is a connecting architecture where data relationship can be
easily tracked between modules.

Mechanism for rapid and convenient feedback
It often happens that classification tasks in an application

can be set up in different ways, by defining the classes dif-
ferently, choosing different features, and applying different
feature transformations. Coupling this with many choices of
methods available for each task and different parameter op-
tions within each method, there can be a huge number of al-
ternative results that need to be examined. An example is
in text categorization. The definitions of categories can be
very broad or very narrow, with direct influence on classifi-
cation accuracy. The tradeoff between specificity and accu-
racy can be manipulated to serve different needs depending
on the purpose of the application system.

Thus there is a need for an application developer to
quickly apply different alternatives and examine their re-
sults for highest validity and easiest interpretation. While
a specific processing pipeline can always be constructed
using general-purpose languages and scripting facilities to
semi-automatically try out the alternatives and display the
results, this need is common enough among many pattern
recognition practices that a generic, reusable tool will be
most desirable.

Support for data access, collaborative development,
and continuous growth

A good data analysis tool should provide linkage to ex-
isting data management infrastructure with minimum effort,
support easy sharing of exploration procedures and results
among a collaborative team, and enable continuous growth
by addition of new visualization or analysis tools.

Having been exposed to such common problems from
highly diverse application backgrounds, we set out to study
how to construct a tool that would satisfy these needs and
can become a key utility in the process of developing pat-
tern recognition solutions. Our efforts resulted in an imple-
mentation called Mirage that has been in public circulation



for over a year [1] [2][3]. We describe below the key fea-
tures in Mirage that are motivated by the identified needs.

3. Tracking Data Correlation with Mirage
Mirage is a Java-based tool that is organized around a

command interpreter which receives action commands from
textual input or a graphical user interface. The action com-
mands are for loading data, incremental import of new en-
tries and new attributes, simple attribute manipulation, and
activating several embedded classification routines. While
the tool can be run in the background as a scripting facil-
ity for the supported activities, the most important function-
alities are on data visualization provided through a graphi-
cal display.

The display presents a stack of canvas pages each of
which can be subdivided arbitrarily, via horizontal or ver-
tical splits, into rectangular cells (Figure 1). Each cell can
be loaded with any particular data view module via sim-
ple drag-and-drop operations. Each view module shows the
data in a specific way, which can be a table, a simple his-
togram on one attribute, an x-y scatter plot of two numer-
ical attributes, a tree of clusters, or position markings of
each data object on top of an image or map background.
Each module provides its own control commands to ma-
nipulate the specific method of data presentation. In addi-
tion, all view modules implement the same Java Interface
ActivePanel containing the following commands:

getSelected() clearSelected()
highlightDataEntry() colorDataEntry()
clearHighlights() clearColors()
changeToMonochrome() changeToColor()

Simple as they are, these several commands provide the
essential “brushing” links between all data views. Coordi-
nated sequences of selection and highlighting can be de-
fined with a module and broadcast to other views via these
commands. Coupled with the flexibility of data views, the
interface becomes a very powerful tool for studying correla-
tions. Several example packages of operations provided by
Mirage are as follows:

� The histogram view module supports a bin walking ac-
tion, which selects each consecutive bin in turn and
broadcasts the selection to all other views that are visi-
ble. A histogram is essentially a trivial cluster structure
on a single attribute, and traversal of this structure al-
lows tracking of correlation between that particular at-
tribute and others.

� A graph view module includes a layout tool that can
project a cluster tree computed in arbitrary dimensions
onto 2D. The graph provides a skeletal summary of
the data distribution in the relevant feature space in the
form of a set of discrete principal curves. A broadcast
walk along each curve enables tracking how that par-
ticular trend relates to other attributes (Figure 2).

Figure 1. A Mirage screenshot, showing sev-
eral linked views. A subset of data is se-
lected in a cluster graph and broadcast to
other views.

� A tree view module includes standard depth-first or
breadth-first traversals of a cluster tree. When broad-
cast to other views, they show the effect of adopting
cuts at different levels of a cluster hierarchy.

� Distinct coloring of each piece of a pie chart for one la-
bel variable, when broadcast to other views, shows in-
stantly the effects of class definition according to that
label. Degree of separation of those classes in the con-
cerned attribute spaces can be examined. Dynamic im-
porting of a new class label allows classes to be rede-
fined and their effects rapidly checked.

� High dimensional vectors can be shown in parallel co-
ordinates. A cycling feature with broadcasting enables
users to examine each vector individually, and at the
same time its location in the context of other variables.
This is particularly useful for sparse data sets where in-
dividual samples are very expensive to obtain and war-
rants detailed investigation.

Any user can supply a new module implementing the
same interface and include it into Mirage with an entry in a
customization file to specify its name and icon. With such
a simple interface, we encourage users to develop new data
views that can support their unique visualization needs yet
at the same time can be easily linked to other generic tools.
The utility of the interface has been demonstrated by two
contributed custom views, one for displaying astronomical
images featuring sophisticated image processing commands
[3], another for visualizing computer networks featuring an
intelligent graph layout algorithm.

The unifying theme for the data exploration operations
in Mirage is the analysis of correlations of data proximity



Figure 2. A walk following a principal curve in
one space may or may not synchronize with a
uni-directional walk in another space depending
on correlation between the two spaces.

in different projection subspaces [2]. We observe that many
data mining and pattern discovery tasks are covered under
this theme. A graphical tool implementing this theme en-
ables a highly intuitive understanding of core tasks in pat-
tern recognition, which benefits both the solution develop-
ers and the domain experts. It also allows domain experts to
participate in the process easily, often with immediate feed-
back on their opinions in feature selection, class definition,
and proposal of trend models.

4. Supporting Facilities

Mirage is written with strong commitment to modularity
and extensibility. The Mirage tool can be invoked as a sin-
gle Java class by a wrapper utility that provides access to
existing databases [3], or implements dynamic data updat-
ing via messages [6]. Handles are available to the wrapper to
pass commands into the Mirage interpreter for data loading
and refreshing, including adding columns or rows to the ex-
isting data matrix, or replacing it entirely while preserving
the choices of views. Columns added can show newly ob-
served or computed attributes, including classification deci-
sions or predictions from external algorithms. Rows added
can be additional samples from the same source, which can
be used to check the correctness of a conjecture or predic-
tion. Continuous adding and removing rows turns the soft-
ware into a monitoring tool.

In addition, Mirage has a slot for plugging in an “Ac-
tion” panel, which can be used to encapsulate user-defined
exploration operations on top of existing primitives. Either
the wrapper handle or the Action panel can be used to em-
bed Mirage into a more sophisticated decision support plat-
form.

Finally, data analysis is seldom an individual effort. To
enable easy repetition and sharing of exploration commands
and results in a research team, Mirage provides text-driven
commands and scripting facilities. Scripts can be passed
around for replay, allowing users to reproduce colleagues’
explorations. They can also be systematically constructed
by simple programs to make animations.

5. Conclusions

We described a graphical data analysis software, Mirage,
that supports many tasks in knowledge discovery under a
unifying theme. We are in continuous experimentation on
ways to improve it towards a rich tool for development of
pattern recognition solutions in various degrees of automa-
tion.

A convenient visualization tool like Mirage can provide
better insight into the data geometry, and to provide domain
experts easy access to the analysis process. Mirage has been
included as a key tool in the Virtual Observatory [3]. In our
own environment Mirage has enabled discovery of unex-
pected clusters and outliers in several communication engi-
neering data sets, e.g., the effects of design parameters on
signal power evolution in an optical line system. The advan-
tages of the tool are especially obvious for data sets involv-
ing spatial distribution of objects on an image or a map.

Early applications of Mirage confirmed the effectiveness
of many of our designs, and suggested improvements in sev-
eral ways. Programmable layouts, software state saving and
restoration, detailed logging of operations performed, and
more automated explorations are among the most desired.
We are also investigating better ways to cooperate with ex-
ternal analysis code while maintaining a simple and mod-
ular core architecture, and methods to allow more flexible
joins among multiple data sets [5]. Finally, viewing data in
high dimensional spaces is by itself a difficult challenge. We
hope that by providing an open, easy interface with many
support structures, we can encourage experiments of other
innovative data visualization and exploration methods.

Acknowledgements
The project has benefited from collaborations with
Lawrence Cowsar, J. Anthony Tyson, David Wittman, Alex
Szalay, Samuel Carliles, and Wil O’Mullane. Their in-
sights to the application problems and suggestions of fea-
tures are gratefully acknowledged.

References

[1] http://www.cs.bell-labs.com/who/tkh/mirage.
[2] T.K. Ho, Exploratory Analysis of Point Proximity in Subspaces,

Proc. of the 16th ICPR, Quebec City, Canada, Aug 11-15, 2002.
[3] S. Carliles, T.K. Ho, W. O’Mullane, VO Enabled Mirage and the

IVOA Client Package, Proc. of Astro. Data Analysis Software & Sys-
tems XIII, Strasbourg, France, Oct 12-15, 2003.

[4] S.R. Nagel, Fiber Materials and Fabrication Methods, Optical Fiber
Telecommunications II, S.E. Miller, I.P. Kaminow (eds.), Academic
Press, San Diego, CA, 1988.

[5] C. North, B. Schneidermann Snap-Together Visualization: A User
Interface for Coordinating Visualizations via Relational Schemata,
Proc. Advanced Visual Interfaces 2000, May 2000.

[6] M. Thottan, K. Swanson, M. Cantone, T.K. Ho, J. Ren, S. Paul, SE-
QUIN: An MPLS Network Monitoring System, Bell Labs Tech. J.,
8, 1, 2003, 95-111.

[7] J.A. Tyson, I. Dell’Antonio, D. Wittman, The Deep Lens Survey,
http://dls.bell-labs.com.


