
The Construction and Application

of Wavelets in Numerical Analysis

Wim Sweldens

May 18, 1995



i

The Construction and Application

of Wavelets in Numerical Analysis

Abstract

Wavelets are a new family of basis functions that can be used to approximate
general functions. They combine powerful properties such as (bi)orthogonality,
compact support, localization in time and frequency, and fast algorithms.

This thesis investigates the use of wavelets in numerical analysis problems. In
the �rst part we construct two basic tools, quadrature formulae and asymptotic
error expansions. The former provides an easy way to calculate the wavelet coef-
�cients, while the latter allows a simple comparison of di�erent wavelet families.

In the second part, we construct and study wavelets adapted to a weighted
inner product. We show how one can use those wavelets for the rapid solution of
ordinary di�erential equations.

Finally, we study smooth local trigonometric functions, which can be seen as the
Fourier transform of wavelets. We generalize their construction to the biorthogonal
case, and show how to use them in data compression algorithms. This is illustrated
with examples concerning image compression.

Keywords. wavelet, multiresolution analysis, quadrature formula, error expan-
sion, weighted inner product, ordinary di�erential equations, local trigonometric
functions, compression.

AMS subject classi�cation. 41A30, 42A10, 42C05, 65B05, 65D32, 65L60.
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1 Inleiding

1.1 Vertaling van \wavelet"

Aan het eind van de jaren '80 kwam de onderzoeksgroep rond Jean Morlet, een
Frans olie-ingenieur, op het idee om verschuivingen en schaalwijzigingen van �e�en
welbepaalde functie te gebruiken voor de analyse van seismische gegevens. Uit
de wiskundige analyse volgde dat de integraal van deze functie nul moet zijn en
dat deze functie naar nul moet convergeren als het argument naar oneindig gaat.
M.a.w. deze functie moet een beetje \schommelen" en dan geleidelijk uitsterven;
het is een soort \lokaal golfje". Zij doopten functies met deze eigenschappen in
het Frans \ondelettes". Logisch, \onde" betekent golf en \-ette" is een su�x dat
verkleining aangeeft. Denk bijvoorbeeld maar aan \maisonette", \casquette" en
\cassette". Nochtans is het in het Frans niet de regel om via een su�x verklein-
woorden te vormen. \Ondelette" was dan ook een neologisme in het Frans.

Een vertaling in het Engels was snel gevonden: \wavelet". In het Engels wordt
het su�x \-let" bij gelegenheid gebruikt om verkleining aan te geven, denk maar
aan \starlet", \circlet", \piglet" en \booklet". Ook hier geldt dit niet in het
algemeen. In tegenstelling tot het Frans was \wavelet" geen neologisme in het
Engels. Het bestond reeds in de betekenis van \little wave". Daarenboven werd
het reeds gebruikt in de theoretische fysica, maar in een totaal andere betekenis
dan de \wavelets" van dit doctoraat. Dit leidde aanvankelijk tot een Babylonische
spraakverwarring.

In de handleiding van de K.U.Leuven voor het schrijven van een doctoraat
staat: \Engelstalige termen zullen in het Nederlands vertaald worden". We moeten
dus een vertaling voor \wavelet" vinden. Uiteraard willen we consistent blijven
met andere werken. Er zijn echter nog geen nederlandstalige artikels of boeken
over \wavelets" verschenen. Er bestaan wel enkele andere bronnen.

Op de cursus \Wavelets" (sic) die in 1991 door het Centrum voor Wiskunde en
Informatica in Amsterdam werd georganiseerd, lieten alle sprekers (met inbegrip
van de auteur) \wavelet" onvertaald. Tom Koornwinder bracht wel de discussie
op gang door een wedstrijd uit te schrijven voor een vertaling. Enkele inzendingen
waren: golein, golvelet, kabbel, piefje, resolutiegolfje, rimpel, schaalgolfje, wer-
vel, zoempje. Hijzelf stelde \golet" voor [118]. Een winnaar werd echter nooit
bekendgemaakt.

In het doctoraat van Pierre Verlinden (K.U.Leuven 1993, [186]), wordt \golfje"
gebruikt. Men kan echter argumenteren dat \golfje" niet zo geschikt is gezien het
\-je" su�x in het Nederlands de regel is voor het vormen van een verkleinwoord.
Als we \golfje" als vertaling nemen, hoe kunnen we dan nog onderscheid maken
tussen \golfje" in de betekenis van \wavelet" en \golfje" als verkleinwoord van
\golf"?

In de cursus die Prof. Bultheel aan de K.U.Leuven doceert, in het college van
Prof. Koornwinder aan de Vrije Universiteit van Amsterdam en in de ingenieurs-
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thesis van Geert Uytterhoeven (K.U.Leuven 1994, [184]), wordt \wavelet" niet
vertaald.

Uit navraag blijkt dat in andere talen (Italiaans, Zweeds, Spaans, Portugees,
Grieks, Pools, Chinees, enz.) \wavelet" meestal niet vertaald wordt. Prof. Wei-
Chang Shann van de National Central University in Taiwan stelde \ling po" als een
mogelijke vertaling in het Chinees voor, maar de kans dat dit algemeen aanvaard
wordt in China is klein.

Het voorschrift uit de handleiding voor doctoraten leidt blijkbaar tot een waar
probleem. Uit de voorbeelden van de CWI-cursus blijkt dat de Nederlandse taal
zeker rijk genoeg is om een geschikte vertaling te vinden. Maar wie moet zoiets
beslissen? Spijtig genoeg beschikken we niet over een equivalent van de \Acad�emie
Fran�caise". Wij kunnen niet eens een consensus (konsensus?) bereiken over een
consistente (konsistente?) spelling. Wie geeft de auteur van een doctoraat in deze
kwestie het recht om de knoop door te hakken? Het lijkt een dilemma.

Na lang wikken en wegen heb ik besloten om \wavelet" in deze samenvatting
niet te vertalen, voornamelijk om verwarring te vermijden. De zoektocht naar een
taalkundig correcte, algemeen aanvaarde vertaling is hiermee natuurlijk niet ten
einde.

Om de discussie af te ronden, citeren we E. Berode uit zijn stukje \Ongewenste
vreemdelingen" verschenen in De Standaard van 7 april 1994:

\Dit is de moraal van het verhaal. E�en: het is chauvenistische nonsens om

alle Engelse woorden als ongewenste vreemdelingen in de ban te doen. Buiten-

landse zuurstof is goed voor het Nederlandse bloed: een computer is een computer

en daarmee basta. Twee: het is kosmopolitische grootheidswaanzin om Engelse

woorden kritiekloos en ongenuanceerd te gebruiken. : : : Gebruik toch je moers

taal, denk ik dan. : : : Drie: het is asociale egotripperij om je lezers om de oren te

slaan met moeilijke Engelse termen, als er eenvoudige Nederlandse woorden voor-

handen zijn. : : : Samengevat: Engelse woorden zijn geen smetten, maar maken

deel uit van onze woordenschat. Wie ze evenwel te pas en te onpas gebruikt, lijdt

aan de Engelse ziekte. Whisky is lekker, maar ik drink hem met mate en serveer

hem niet, als mijn gasten hem niet lusten."

1.2 Numerieke analyse en discrete benaderingen

In de numerieke analyse tracht men problemen uit de klassieke analyse benaderend
op te lossen met behulp van computers. Het oorspronkelijk probleem is meestal
geformuleerd via functies van een continue veranderlijke. In een eerste stap for-
muleert men een benaderend probleem via een eindig aantal discrete parameters.
Vervolgens lost men dit discrete probleem, eventueel weer benaderend, op met een
computer. Typische voorbeelden zijn het berekenen van integralen, het oplossen
van integraal- en di�erentiaalvergelijkingen en taken uit de signaalverwerking.

Uiteraard stijgt de nauwkeurigheid, maar ook het rekenwerk, met het aantal
discrete parameters. Daarom zijn benaderingmethodes die met een relatief klein
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aantal parameters toch een hoge nauwkeurigheid bereiken, erg belangrijk. Bena-
deringen met deze eigenschap noemen we e�ci�ent.

E�ci�ente benaderingen hebben belangrijke toepassingen. Indien men gegevens
nauwkeurig kan benaderen met een een klein aantal parameters, bespaart men op-
slagruimte, verhoogt men transmissiesnelheid en kan men wiskundige bewerkingen
snel uitvoeren. Dit is van cruciaal belang in re�ele-tijd toepassingen.

1.3 Wat zijn wavelets?

Een voor de hand liggende discretisatie bekomt men door een functie te evalueren
op een regelmatig rooster, hierbij veronderstellend dat de functie continu is. Dit is
meestal niet erg e�ci�ent. Andere klassieke methodes gebruiken veeltermen, splines
of trigonometrische functies. Wavelets vormen een alternatief dat een aantal inte-
ressante eigenschappen combineert. De voornaamste zijn:

1. (bi)orthogonaliteit,

2. multiresolutie,

3. lokaliteit in tijd en frequentie,

4. snelle transformatie-algoritmes.

Als een gevolg hiervan kan men de co�e�ci�enten van een waveletbenadering snel
berekenen en zijn, voor een grote groep van functies, slechts een klein aantal
co�e�ci�enten nodig om een nauwkeurige benadering te bekomen.

Het centraal idee van de wavelettheorie bestaat erin basisfuncties te genereren
met behulp van verschuivingen en schaalwijzigingen van �e�en welbepaalde func-
tie, de moederwavelet  (x). Oorspronkelijk werkte men met de genormaliseerde
functies

1p
a
 

 
x� b
a

!
;

waar de schaal- en verschuivingsparameter a en b willekeurige re�ele waarden aanne-
men (a > 0). Er bestaan echter verscheidene varianten van waveletbenaderingen,
afhankelijk van welke waarden men a en b laat aannemen. Wij zullen bijna altijd
werken met een dyadische keuze. We stellen dan een functie f voor als

f =
X
j;l

j;l  j;l; (0.1)

waarbij
 j;l(x) =

p
2j  (2jx� l):

Er bestaan verschillende voorbeelden van wavelets die een basis voor L2, de ruimte
der kwadratisch integreerbare functies, vormen. Voor iedere functie f 2 L2 bestaan
dan unieke co�e�ci�enten j;l waarvoor (0.1) geldig is. Voor een groot aantal functies
zijn de meeste co�e�ci�enten verwaarloosbaar klein. Door deze gelijk aan nul te
stellen, bekomt men een e�ci�ente benadering.
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1.4 Kort overzicht van het doctoraat

Het onderwerp van dit doctoraat is de toepassing van wavelets in de numerieke
analyse. Waar de klassieke wavelets blijken te kort te schieten, construeren we
nieuwe families. De tekst is als volgt ingedeeld. Na een inleidend hoofdstuk, wor-
den de beginselen van wavelets en multiresolutieanalyse uitgelegd in Hoofdstuk 2.
De overige hoofdstukken bevatten originele bijdragen.

Een eerste probleem dat opduikt bij het gebruik van wavelets in numerieke ana-
lyse is het nauwkeurig berekenen van de waveletco�e�ci�enten. Theoretisch is een
co�e�ci�ent gede�nieerd als de integraal van de functie vermenigvuldigd met een du-
ale wavelet. In praktijk, zeker wanneer men van f slechts een discrete benadering
heeft, kan men deze integralen niet exact berekenen. Met kwadratuurformules
is het mogelijk benaderingen van deze integralen te berekenen. In Hoofdstuk 3
worden verscheidene kwadratuurformules, speciaal aangepast voor waveletbenade-
ringen, opgesteld. In combinatie met de snelle wavelettransformatie kan men dan
de waveletco�e�ci�enten snel en nauwkeurig berekenen.

Het is uiteraard van groot belang het gedrag van de fout van de waveletbena-
dering te begrijpen. In Hoofdstuk 4 wordt een asymptotische foutenontwikkeling
voor de waveletbenadering afgeleid. Hiermee kan men het gedrag van de wave-
letbenadering voorspellen, algoritmes voor convergentieversnelling opstellen en de
benaderingseigenschappen van verschillende wavelets eenvoudig vergelijken.

De klassieke wavelets zijn aangepast aan het inwendig product van de L2-
ruimte. In vele toepassingen komt men echter meer algemene inwendige producten
tegen. In Hoofdstuk 5 worden zogenaamde gewogen wavelets opgesteld. Dit zijn
wavelets die aangepast zijn aan een gewogen inwendig product. Hun eigenschappen
worden nauwkeurig onderzocht in verschillende stellingen. Hieruit blijkt dat ze alle
interessante eigenschappen van de klassieke wavelets overnemen.

Een belangrijke toepassing van gewogen wavelets is het numeriek oplossen van
gewone di�erentiaalvergelijkingen met randvoorwaarden. Dit bestuderen we in
Hoofdstuk 6. Het belangrijkste resultaat is de constructie van wavelets die alge-
mene di�erentiaaloperatoren diagonaliseren. Hiermee kan een algoritme voor het
oplossen van gewone di�erentiaalvergelijkingen, dat sneller is dan de tot nog toe
gekende methodes, afgeleid worden.

In vele toepassingen is het interessant om niet rechtstreeks met de wavelets
te werken, maar wel met hun Fouriergetransformeerde. Deze functies noemt men
lokale trigonometrische functies. In Hoofdstuk 7 stellen we veralgemeningen van
lokale trigonometrische functies voor, en bestuderen we hun toepassing in gege-
venscompressie. We tonen aan dat met deze veralgemening de ongewenste blok-
patronen, een typisch probleem in beeldcompressie, bijna volledig verdwijnen.

Tenslotte bevat Hoofdstuk 8 een besluit en een aantal idee�en voor toekom-
stig onderzoek. We stellen twee nieuwe concepten voor: tijd-frequentie-bases en
tweede-generatie-wavelets.

Deze samenvatting volgt de indeling in hoofdstukken van het doctoraat.
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2 Wavelets en multiresolutieanalyse

2.1 Inleiding

Beschouw een deelruimte V0 � L2 en veronderstel dat deze ruimte de volgende
eigenschappen heeft:

1. f(x) 2 V0 , f(x� 1) 2 V0,

2. f(x) 2 V0 ) f(x=2) 2 V0.

\Verschuiven" en \uitrekken" zijn inwendige bewerkingen. Veronderstel ook dat er
een schaalfunctie ' met compacte drager bestaat zodat de verzameling f'(x� l) j
l 2 Zg een basis voor V0 vormt. Beschouw de reeks van deelruimtes Vj (j 2 Z)
gede�nieerd d.m.v. de eigenschap dat

f(x) 2 Vj , f(2jx) 2 V0: (0.2)

Hieruit volgt automatisch dat deze ruimtes genesteld zijn, Vj � Vj+1. De verza-
meling f'j;l j l 2 Zg, met

'j;l =
p
2j'(2j � x);

is een basis voor Vj . De resolutie van de ruimte Vj, d.i. het aantal basisfuncties per
lengte-eenheid, is gelijk aan 2j. Deze ruimtes vormen een multiresolutieanalyse
indien

1.
[
j

Vj dicht is in L2,

2.
\
j

Vj = f0g.

Beschouw deze ruimtes als benaderingsruimtes voor een algemene functie f 2
L2. Men kan begrijpen dat naarmate j toeneemt de nauwkeurigheid van de bena-
dering stijgt. In de limiet voor j !1 is het mogelijk de originele functie f terug
te bekomen.

Neem twee opeenvolgende benaderingen van f , bijvoorbeeld deze in V0 en de
meer nauwkeurigere in V1. Het verschil tussen deze twee, m.a.w. het \detail" nodig
om van resolutie 0 naar resolutie 1 te gaan, ligt in een ruimte die een complement
vormt van V0 in V1. Deze ruimte noteren we alsW0. Dus V0�W0 = V1. De ruimte
Wj wordt analoog gede�nieerd als Vj in (0.2),

f(x) 2 Wj , f(2jx) 2 W0; (0.3)

zodat

Vj = Vj�1 �Wj�1:
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Hieruit volgt dat

L2 =
M
j

Wj: (0.4)

Deze splitsing van L2 de�nieert automatisch projectieoperatoren Pj en Qj van L2

naar respectievelijk Vj en Wj. De projectieoperator Qj is gelijk aan Pj � Pj�1.
Voor een functie f 2 L2 geldt dat

lim
j!1
Pj f = f;

en

f =
X
j

Qjf:

Een wavelet is een functie  , zodanig dat de verzameling f (x� l) j l 2 Zg een
basis voor W0 vormt. Uit (0.3) en (0.4) volgt dat de verzameling f j;l j j; l 2 Zg
een basis vormt voor L2, zodanig dat (0.1) geldig is.

2.2 Biorthogonaliteit

In een multiresolutieanalyse wordt iedere waveletco�e�ci�ent j;l in de voorstelling

(0.1) gegeven als het inwendig product van f met een duale wavelet e j;l,
j;l = h f; e j;l i :

Ook de duale wavelets zijn de verschuivingen en schaalwijzigingen van �e�en functie.
De duale wavelet e j;l is als het ware het \zusje" van de wavelet  j;l. De wavelets
en duale wavelets zijn biorthogonaal,

h j;l; e j0;l0 i = �j�j0 �l�l0 voor j; j 0; l; l0 2 Z:

Er bestaan ook duale schaalfuncties e'j;l. Deze zijn biorthogonaal met de schaal-
functies, maar uiteraard enkel binnen �e�en niveau,

h'j;l; e'j;l0 i = �l�l0 voor l; l0 2 Z:

De projectieoperatoren kunnen nu geschreven worden als

Pj f =
X
l

h f; e'j;l i'j;l; (0.5)

en

Qj f =
X
l

h f; e j;l i j;l: (0.6)

Wanneer de duale functies en de basisfuncties samenvallen, is de basis orthonor-
maal.
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Een belangrijke eigenschap van een multiresolutieanalyse, is het aantal nulmo-
menten (N) van de duale wavelet,Z +1

�1

xp e (x) dx = 0 voor 0 6 p < N:

Het feit dat de duale wavelet N nulmomenten heeft, is equivalent met het feit dat
iedere veelterm met graad kleiner dan N kan geschreven worden als een lineaire
combinatie van de schaalfuncties 'j;l met l 2 Z. Er is ook een direct verband met
de convergentiesnelheid van de waveletbenadering in de zin dat

kf � Pjfk = O(hN ) met h = 2�j:

2.3 De snelle wavelettransformatie

Veronderstel dat men de co�e�ci�enten �n;l van een functie f 2 Vn kent,

f =
X
l

�n;l 'n;l:

Vermits Vn = Vn�1 �Wn�1, kan deze functie ook voorgesteld worden m.b.v. de
schaalfunctiebasis van Vn�1 en de waveletbasis van Wn�1,

f =
X
l

�n�1;l 'n�1;l +
X
l

n�1;l  n�1;l:

Het verband tussen de co�e�ci�enten �n;l enerzijds en �n�1;l en n�1;l anderzijds
wordt gegeven door eenvoudige lineaire relaties. Deze kunnen gezien worden als
convoluties met vaste, eindige �lters.

Door het recursief toepassen van deze relaties kan men een algoritme opstel-
len voor de transformatie tussen de schaalfunctieco�e�ci�enten �n;l en de wave-
letco�e�ci�enten j;l met j < n. Dit algoritme heeft lineaire complexiteit en wordt
het snelle wavelettransformatie-algoritme genoemd.

2.4 Toepassingen

Aangezien waveletbenaderingen e�ci�ent zijn, is �e�en van de belangrijke toepas-
singen gegevenscompressie. Een typisch voorbeeld is beeldcompressie. Een 8-bit
grijswaardenbeeld met 512 � 512 pixels neemt een kwart Mbyte schijfruimte in
beslag. Bij digitale video gebruikt men typisch 25 beelden per seconde. De be-
nodigde opslagruimte kan dus snel voor practische problemen zorgen. Met behulp
van wavelets is het mogelijk stilstaande beelden met een factor 20 tot 30 te com-
primeren zonder essentieel verlies van kwaliteit. In het geval van video zijn nog
hogere compressiefactoren mogelijk.

Een andere toepassing is het numeriek oplossen van integraalvergelijkingen.
Een nadeel van de klassieke methodes is dat deze meestal leiden tot het inverteren
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van een grote, volle matrix. Vermits de meeste integraaloperatoren zachtverlo-
pende kernen hebben met enkel singulariteiten op de diagonaal, is het mogelijk
deze met wavelets e�ci�ent te discretiseren. De matrix is dan bij benadering ijl en
kan dus snel ge��nverteerd worden.

Andere toepassingen van wavelets werden reeds gevonden in de statistiek, quan-
tumfysica, medische beeldverwerking, spraakherkenning, ruisverwijdering, stro-
mingsmechanica, optica, etc.

3 Kwadratuurformules

3.1 Basisidee

Beschouw de projectie van een functie f in de ruimte Vj (0.5). Zoals we reeds
aangaven wordt de co�e�ci�ent van een basisfunctie in de voorstelling van f gegeven
door het inwendig product van f met de bijhorende duale functie. Het inwendig
product van twee functies is gede�nieerd als de integraal van hun product over de
re�ele as. In praktijk kan deze integraal bijna nooit analytisch berekend worden.
Meestal is er immers geen expliciete uitdrukking voor de schaalfunctie en kent men
van f enkel een benadering. We gebruiken daarom numerieke methodes.

Een kwadratuurformule benadert een integraal als een gewogen som van func-
tie-evaluaties: Z +1

�1

e'(x) f(x) dx � rX
k=1

wk f(xk):

De gewichten wk en abscissen xk worden bepaald door te eisen dat de kwa-
dratuurformule het exacte resultaat geeft voor veeltermen tot een bepaalde graad.
Deze graad noemt men de nauwkeurigheidsgraad (q). In Hoofdstuk 3 worden
verscheidene algoritmes voor het opstellen van kwadratuurformules voor wave-
letco�e�ci�enten voorgesteld en vergeleken.

3.2 Constructie

We beschouwen enkel het niveau j = 0, vermits de andere niveaus eenvoudig ge-
vonden kunnen worden met een schaalwijziging, zie (0.2). We hebben dus formules
nodig voor het berekenen van de co�e�ci�enten

�0;l =
Z +1

�1

e'(x� l) f(x) dx:
Een eerste belangrijke observatie is dat de abscissen equidistant dienen gekozen te
worden om de volgende redenen:

1. In toepassingen is de functie f vaak enkel gekend via evaluaties op een re-
gelmatig rooster.
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2. Als de abscissen equidistant zijn, kunnen kwadratuurformules voor naburige
co�e�ci�enten abscissen delen en zijn er dus minder functie-evaluaties nodig.

De enige vrijheidsgraad die nog overblijft in de keuze van de abscissen is een
verschuiving � . We kiezen dus de abscissen als xk = k � � met k geheel. Vermits
we nu r+1 onbekenden hebben (r abscissen en de verschuiving), kunnen we hopen
op een nauwkeurigheidsgraad q = r. Dit is echter niet gegarandeerd vermits het
verband niet lineair is.

We construeren een algoritme voor het berekenen van de verschuiving en de ge-
wichten. De verschuiving � kan gevonden worden als het nulpunt van een veelterm
�(�). Het criterium voor het bestaan van een kwadratuurformule met nauwkeu-
righeidsgraad r is dan dat �(�) een nulpunt moet hebben zodanig dat de abscissen
tot de drager van e' behoren. We tonen aan dat de meeste schaalfuncties hieraan
voldoen.

Deze constructie is gebaseerd op �e�entermen. De conditie blijkt echter zeer
slecht te zijn. Daarom stellen we een gewijzigde constructie voor die steunt op
Chebyshev veeltermen en tonen we aan dat deze wel goed geconditioneerd is.

We bestuderen ook de eigenschappen van de fout. Indien �0n;l de benadering is
berekend met de kwadratuurformule, geldt dat

j�n;l � �0n;lj = O(hq+1) met h = 2�n:

Hieruit volgt dat indien de kwadratuurformule de benaderingseigenschappen van
de wavelets niet wil verknoeien, q groter dan of gelijk aan N � 1 moet zijn. Bena-
deringen  0j;l voor de waveletco�e�ci�enten van de grovere niveaus (j < n), kunnen
nu gevonden worden door de snelle wavelettransformatie toe te passen op de �0n;l.
Met deze methode neemt de nauwkeurigheid niet af op de grovere niveaus, m.a.w.

jj;l �  0j;lj = O(hq+1) met h = 2�n en j < n:

3.3 Bijzondere gevallen

We besteden aandacht aan twee bijzondere gevallen.

E�enpuntsformules: Een �e�enpuntsformule is een kwadratuurformule met r = 1.
E�enpuntsformules zijn interessant omdat ze triviaal te berekenen zijn. Normaal
hebben ze slechts een nauwkeurigheidsgraad q = 1. We bewijzen echter dat in het
geval van orthogonale schaalfuncties de nauwkeurigheidsgraad gelijk is aan 2. Men
kan een �e�enpuntsformule dus gebruiken voor wavelets met drie of minder nulmo-
menten. We besteden ook aandacht aan speciale wavelets, zogenaamde coiets,
waarvoor de nauwkeurigheidsgraad van een �e�enpuntsformule nog hoger is.
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Trapeziumregel: De trapeziumregel wordt normaal gezien weinig gebruikt aan-
gezien hij slechts een nauwkeurigheidsgraad q = 1 heeft. We tonen echter aan dat
voor het berekenen van inwendige producten met schaalfuncties, de trapeziumre-
gel een nauwkeurigheidsgraad q = N � 1 heeft. Hier is N � 1 weer de hoogste
graad van veeltermen die als een lineaire combinatie van de schaalfunctie en zijn
verschuivingen kunnen geschreven worden. Dit is dus een tweede situatie, naast
het geval van periodische functies, waar de trapeziumregel een hoge nauwkeurig-
heidsgraad kan hebben. De trapeziumregel is vooral nuttig in gevallen waar de
lengte van de drager van de schaalfunctie vergelijkbaar is met N , bijvoorbeeld
voor cardinale B-splines.

3.4 Alternatieven

We bestuderen ook een aantal mogelijke alternatieven. In het geval van interpo-
latie, tracht men de co�e�ci�enten �0;l te vinden zodatX

l

�0;l '(xk � l) = f(xk);

met opnieuw

xk = k � �:
We tonen aan dat in het algemeen een interpolatieschema niet lokaal is, m.a.w.
een co�e�ci�ent �0;l hangt af van alle functie-evaluaties f(xk) met k 2 Z. We
beschouwen echter het bijzonder geval van een interpolerende schaalfunctie, d.i.
een schaalfunctie die voldoet aan

'(xk) = �k;

zodanig dat de co�e�ci�enten gelijk zijn aan de functie-evaluaties. We tonen aan
dat sommige Daubechies-schaalfuncties bijna interpolerend zijn indien � gelijk is
aan hun eerste moment. We tonen ook aan hoe het mogelijk is interpolerende
schaalfuncties te construeren.

Tenslotte bestuderen we enkele methodes uit de signaalverwerking en hun ver-
band met kwadratuurformules en interpolatieschemas.

4 Foutenontwikkelingen

4.1 Constructie

Voor iedere benaderingsmethode is het belangrijk om het gedrag van de fout te
kennen. In Hoofdstuk 4 construeren we een puntsgewijze foutenontwikkeling voor
de waveletbenadering van zachtverlopende functies. We bewijzen dat indien f 2
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CM+1, de foutenontwikkeling eruit ziet als

f(x)�Pnf(x) =
MX
p=N

hp f (p)(x)

p!
�p�N (2

nx) +O(hM+1) met h = 2�n: (0.7)

Zoals we reeds zagen is N het aantal nulmomenten van de duale wavelet. De
functies �p(x) zijn periodische functies met periode 1. Ze zijn onafhankelijk van
n en we noemen ze monowavelets. Ze kunnen eenvoudig geconstrueerd worden
uitgaand van de wavelet. Aan de hand van de Fourierreeks bestuderen we hun
eigenschappen in detail. In het geval van splinewavelets tonen we een verband aan
tussen de monowavelets en Euler en Bernoulli veeltermen. We bespreken nu de
verschillende toepassingen van de foutenontwikkeling.

4.2 Interpolatie

Indien de fout in een punt x gelijk is aan nul, interpoleert de benadering de oor-
spronkelijke functie: f(x) = Pn(x). We bewijzen dat de monowavelet �0(x) ten-
minste twee nulpunten heeft in het interval [0; 1). Bijgevolg heeft de eerste term
van de foutenontwikkeling tenminste 2n+1 nulpunten per lengte-eenheid. Hieruit
volgt dat, voor voldoend kleine h, de waveletbenadering op niveau n de originele
functie interpoleert in tenminste 2n+1 punten per lengte-eenheid. Dit aantal is het
dubbel van de resolutie. We illustreren dit met verscheidene voorbeelden.

4.3 Extrapolatie

Indien men over informatie over de fout beschikt, kan men altijd proberen deze
te gebruiken om de nauwkeurigheid van de benadering te verbeteren. Een fouten-
ontwikkeling van de vorm (0.7) kan gebruikt worden in zogenaamde extrapolatie-
algoritmes. Hierin probeert men aan de hand van een reeks opeenvolgende be-
naderingen verschillende componenten van de fout te schatten en vervolgens te
elimineren. Op die manier bekomt men convergentieversnelling. Een multiresolu-
tieanalyse levert automatisch een reeks opeenvolgende benaderingen. Wij stellen
een convergentieversnellingsalgoritme voor dat gebruikt maakt van Richardson
extrapolatie. We geven een voorbeeld met 9 niveaus, waar met extrapolatie de
nauwkeurigheid van 5 naar 13 cijfers stijgt.

4.4 Vergelijking van wavelets

De foutenontwikkeling (0.7) kan ook gebruikt worden om verschillende waveletbe-
naderingen met elkaar te vergelijken.

Een eerste mogelijkheid bestaat erin multiresolutieanalyses met dezelfde waarde
voor N te vergelijken. We weten dan dat de convergentiesnelheid altijd O(hN ) is.
Nochtans kan de constante voor deze factor sterk verschillen. Met behulp van
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de foutenontwikkeling kunnen we deze constante eenvoudig berekenen. Het blijkt
dat de splinewavelets altijd de kleinste constante hebben. Daarenboven gedraagt
de verhouding tussen de constante voor de Daubechies-wavelets en de splinewave-
lets zich als 2N . Om een bepaalde nauwkeurigheid te halen hebben Daubechies-
wavelets dus over het algemeen �e�en extra niveau (en dus dubbel zoveel werk) nodig
in vergelijking met splinewavelets. We illustreren dit met verschillende voorbeel-
den.

Een tweede vergelijking betreft multiresolutieanalyses met dezelfde Vj ruimtes,
maar verschillende Wj ruimtes. Inderdaad, eens de Vj ruimtes vastliggen, zijn er
nog verschillende mogelijkheden voor de complementaire Wj ruimtes. E�en moge-
lijkheid bestaat erin de Wj ruimtes als orthogonale complementen te kiezen. In
dit geval zijn de projectieoperatoren Pj en Qj orthogonaal en geven ze optimale
benaderingen in de L2 norm.

We bewijzen echter dat de eerste fN termen van de foutenontwikkeling enkel
afhangen van de Vj ruimtes en dus onafhankelijk zijn van de manier waarop de Wj

ruimtes worden gekozen (fN is het aantal nulmomenten van de wavelet). Voor het
bewijs is een nauwkeurige analyse van alle afhankelijkheden in een multiresolutiea-
nalyse nodig. Tenslotte tonen we aan hoe door een verschuiving de nauwkeurigheid
van de eerste term sterk verhoogd kan worden.

5 De constructie van gewogen wavelets

De wavelets die we tot nu toe beschouwden, zijn aangepast aan het klassiek in-
wendig product van L2. De constructie van deze wavelets steunt volledig op de
Fouriertransformatie. Aangezien verschuiving en schaalwijziging in het frequen-
tiedomein algebra��sche operaties worden, noemen we deze wavelets algebra��sche
wavelets.

In Hoofdstuk 5 construeren we zogenaamde gewogen wavelets. Deze zijn bior-
thogonaal met betrekking tot een gewogen inwendig product van de vorm:

h f; g iw =
Z +1

�1

w(x) f(x) g(x) dx:

De gewichtsfunctie w is integreerbaar en

0 < w(x) <1:

De veralgemening van algebra��sche naar gewogen wavelets kan gezien worden als
een equivalent voor de veralgemening van Legendre veeltermen naar bijvoorbeeld
Chebyshev of Jacobi veeltermen.

Een essentieel verschil met de algebra��sche wavelets is dat de gewogen wavelets
niet langer de verschuivingen of schaalwijzigingen van �e�en functie kunnen zijn.
Bijgevolg kan de Fouriertransformatie niet meer gebruikt worden in de constructie.
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5.1 Constructie

Wij gaan uit van het zogenaamde Donoho-gemiddeld-interpolatieschema. Dit is
een alternatieve constructie van algebra��sche schaalfuncties en wavelets die niet
op de Fouriertransformatie steunt. We tonen aan hoe het Donoho-schema kan
veralgemeend worden voor de constructie van gewogen wavelets.

Het Donoho-schema is essentieel een subdivisieschema. We kiezen eerst de
duale schaalfuncties gelijk aan de indicatorfuncties op de dyadische intervallen:e'j;l = �[2�jl;2�j(l+1)). Veronderstel nu dat we de functie 'i;k willen construeren.
Deze moet biorthogonaal zijn met de duale schaalfuncties met betrekking tot het
gewogen inwendig product. Vertrek van een rij f�i;lgl, met �i;l = �l�k. E�en stap
van het subdivisieschema vervangt nu de rij f�j;lgl door f�j+1;lgl als volgt:

1. Construeer een veelterm P met graad N = 2D + 1 zodat

hP; e'j;m+l iw = �j;m+l voor �D 6 l 6 D:

2. Bereken twee co�e�ci�enten op het volgend niveau als

�j+1;2m = hP; e'j+1;2m iw en �j+1;2m+1 = hP; e'j+1;2m+1 iw :

We tonen aan dat men met deze �j;l een rij van functies kan construeren die
gelijkmatig naar 'i;k convergeert als j naar oneindig gaat. Een belangrijk resultaat
is dat, zelfs indien de gewichtsfunctie discontinu��teiten vertoont, de schaalfuncties
zachtverlopend zijn. De gewogen wavelets kunnen nu geconstrueerd worden als
eindige lineaire combinaties van de schaalfuncties.

5.2 Eigenschappen

De belangrijkste eigenschappen van de gewogen wavelets en schaalfuncties zijn:

1. Zij hebben een compacte drager.

2. Zij zijn biorthogonaal,

h'j;l; e'j;l0 iw = �l�l0 voor l; l0 2 Z;
en

h j;l; e j0;l0 iw = �j�j0 �l�l0 voor j; j 0; l; l0 2 Z:
3. De wavelets hebben �e�en gewogen nulmoment en de duale waveletsN gewogen

nulmomenten. Veeltermen met graad kleiner dan N kunnen geschreven wor-
den als lineaire combinaties van de schaalfuncties 'j;l met l 2 Z. De gewogen
waveletbenadering van zachtverlopende functies convergeert als hN .

Uit deze eigenschappen volgt een snel (lineair) wavelettransformatie-algoritme voor
de gewogen waveletco�e�ci�enten. Het belangrijkst verschil met het algebra��sch
geval is dat de �lters nu voor iedere co�e�ci�ent verschillen.
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6 Wavelets en di�erentiaalvergelijkingen

6.1 Basisidee

In Hoofdstuk 6 onderzoeken we de toepasbaarheid van wavelets in het numeriek
oplossen van gewone di�erentiaalvergelijkingen met randvoorwaarden. Beschouw
de vergelijking

Lu(x) = f(x) met x 2 (0; 1)

en met Dirichlet of Neumann randvoorwaarden voor x = 0; 1. De methodes die
tot nu toe gebruikt worden, kunnen opgesplitst worden in twee grote groepen:

1. Indien L constante co�e�ci�enten heeft, worden meestal spectrale methodes
gebruikt. De reden is dat de trigonometrische functies eigenfuncties zijn en
dus de operator diagonaliseren. Met behulp van de snelle Fouriertransfor-
matie kan men een algoritme aeiden met complexiteit M logM , waarbij M
het aantal discrete parameters is.

2. Indien de operator veranderlijke co�e�ci�enten heeft, gebruikt men eindige
elementen of eindige di�erenties om het probleem te discretiseren. Dit leidt
tot een lineair stelsel met een ijle matrix dat meestal iteratief opgelost wordt.

We veronderstellen dat L een lineaire, zelftoegevoegde di�erentiaaloperator is
die we splitsen als

L = V� V:
Beschouw het operator-inwendig-product gegeven door

hh f; g ii = h Lf; g i :
In de Galerkin-methode neemt men twee eindigdimensionale ruimtes S and S�,

en bekomt men een benaderende oplossing �u 2 S door te eisen dat

8v 2 S� : hh �u; v ii = h f; v i :
Dit leidt tot een lineair stelsel van vergelijkingen. De matrix van dit stelsel noemt
men de stijfheidsmatrix. Haar elementen zijn de operator-inwendige-producten
van de basisfuncties van S en S�.

Veronderstel nu dat de functies f	j;kg en f	�
j;kg, voor een bepaald bereik van

indices, een basis vormen voor respectievelijk S and S�. De elementen van de
stijfheidsmatrix worden gegeven door

hh	j;k;	
�

j0;k0 ii = h L	j;k;	
�

j0;k0 i = h V 	j;k;V 	�

j0;k0 i :
We nemen nu

	j;k = V�1  j;k en 	�

j;k = V�1 e j;k ;
waarbij  j;k en e j;k biorthogonale wavelets zijn. Bijgevolg is de stijfheidsmatrix
diagonaal en kan zij triviaal ge��nverteerd worden. We noemen 	j;k en 	�

j;k opera-

torwavelets en  j;k en e j;k originele wavelets. De operatorwavelets diagonaliseren
de operator, hoewel ze geen eigenfuncties zijn.
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6.2 Algoritme

De vraag is nu of de operatorwavelets een multiresolutieanalyse genereren en of er
een snel transformatie-algoritme bestaat. Dit is niet meteen duidelijk.

In het geval van harmonische of polyharmonische operatoren vindt men de ope-
ratorwavelets als de onbepaalde integraal van de originele wavelets. De originele
wavelets en de operatorwavelets zijn dan algebra��sche wavelets. De operatorschaal-
functie kan geconstrueerd worden als de convolutie van de oorspronkelijke schaal-
functie met een indicatorfunctie. Uit deze constructie volgt automatisch een snel
transformatie-algoritme. Het oplossingsschema voor de di�erentiaalvergelijking is
dan:

1. bereken de wavelettransformatie van het rechterlid,

2. deel iedere co�e�ci�ent door het overeenkomstig element van de diagonale stijf-
heidsmatrix,

3. bereken de inverse wavelettransformatie.

Dit is een lineair algoritme. De randvoorwaarden kunnen op een eenvoudige manier
in rekening gebracht worden.

Voor andere operatoren zoals de Helmholtz operator en meer algemene ope-
ratoren met veranderlijke co�e�ci�enten kan men niet meer gebruik maken van al-
gebra��sche wavelets. In de plaats daarvan dient men voor de originele wavelets
gewogen wavelets te gebruiken. We beschouwen een operator

L = �Dp(x)D;

met p positief. De constructie is gebaseerd op de volgende observatie:

hh f; g ii = h�DpDf; g i
= h pD f;D g i
= h pD f; pD g iw ;

waar het gewicht gelijk is aan

w = 1=p:

Beschouw biorthogonale, gewogen wavelets  j;k en e j;k. De�nieer de operatorwa-
velets als

	j;k = D�1  j;k=p;

en analoog voor de duale wavelets. Hieruit volgt opnieuw dat de operatorwavelets
de operator diagonaliseren. We tonen aan dat zij een compacte drager hebben en
dat er weer een eenvoudig lineair algoritme bestaat. Dit algoritme steunt op de
snelle wavelettransformatie voor gewogen wavelets.
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6.3 Besluit

We merken op dat voor operatoren met constante co�e�ci�enten, de waveletmethode
sneller is dan de bestaande methodes. De verbetering is echter beperkt (O(M) in
plaats van O(M logM)). Het belangrijkste resultaat is echter dat voor variable
co�e�ci�enten nu een niet-iteratief lineair algoritme bestaat. Dit was voordien niet
mogelijk.

7 Locale trigonometrische functies

Indien men de Fouriertransformatie van wavelets neemt, bekomt men lokale trigo-
nometrische functies. De constructie van orthogonale wavelets door Yves Meyer
bestond erin om eerst lokale trigonometrische functies te de�nieren en vervolgens
de wavelets te vinden d.m.v. de inverse Fouriertransformatie. In sommige toepas-
singen is het interessant om rechtstreeks met de lokale trigonometrische functies
te werken.

7.1 Basisidee

De Fouriertransformatie geeft een voorstelling van functies met behulp van bouw-
blokken die slechts �e�en frequentie bevatten, maar geen lokaliteit hebben in het
tijdsdomein. Men kan een basis met betere lokaliteit bekomen door de re�ele as op
te splitsen in intervallen en in ieder interval een Fourierreeks te gebruiken. Op die
manier bekomt men een orthogonale basis met tijd en frequentie lokaliteit.

Deze eenvoudige aanpak heeft echter verscheidene nadelen:

1. Fourierreeksen hebben enkel snelle convergentie voor zachtverlopende pe-
riodische functies. De beperking van een zachtverlopende functie tot een
interval is niet noodzakelijk periodisch. Bijgevolg gaan de co�e�ci�enten niet
snel naar nul.

2. Een benadering met deze functies vertoont discontinu��teiten aan de rand van
ieder interval. Dit veroorzaakt ongewenste blokpatronen bij beeldcompressie.

3. Correlatie tussen de verschillende intervallen kan niet uitgebuit worden.

Coifman en Meyer vonden een oplossing voor de eerste twee problemen. Zij
de�nieerden zogenaamde vouwoperatoren die een zachtverlopende functie trans-
formeren in een functie die de even rechterafgeleiden gelijk aan nul heeft in het
linkse eindpunt van het interval, en oneven linkerafgeleiden nul heeft in het rechtse
eindpunt. Deze functies kunnen e�ci�ent voorgesteld worden als een combinatie
van sinusfuncties met kwart golengte op ieder interval. Door hierop de inverse
vouwoperator toe te passen bekomt men zachtverlopende lokale trigonometrische
functies.
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In Hoofdstuk 7 introduceren we een nieuwe notatie en beschrijving van hun
werk. Dit laat ons toe de constructie te veralgemenen naar het biorthogonaal
geval. Hiermee kunnen een aantal nadelen van hun methode vermeden worden.

7.2 Biorthogonale bases

Beschouw een verdeling van de re�ele as in intervallen met lengte 1. De basis van
Coifman en Meyer bestaat dan uit functies van de vorm bl sl;k waarbij

sl;k =
p
2 sin

2k + 1

2
� (x� l);

en bl een zachtverlopende functie is waarvan de drager tot [l�1=2; l+3=2] behoort.
Indien X

l

b2l (x) = 1;

vormen deze functies met l; k 2 Z een orthonormale basis voor L2. We kunnen
dus iedere functie f 2 L2 schrijven als

f =
X
l;k

cl;k bl sl;k:

De co�e�ci�enten worden gegeven als

cl;k = h f; bl sl;k i = hFf; sl;k i :
Hierin is F een vouwoperator die op het interval [l; l + 1] gelijk is aan

F = (1�Ml +Ml+1) bl;

waar Ml de reectieoperator rond l is. De vouwoperator is eenvoudig te im-
plementeren en laat ons toe de co�e�ci�enten via een snelle sinustransformatie te
berekenen.

Het nadeel van deze basis is dat er geen resolutie van de constante meer is. Dit
betekent dat de constante enkel kan voorgesteld worden met een oneindig aantal
basisfuncties voor ieder interval. Het feit dat een eenvoudige functie zoals een
constante niet tot de basis behoort, vormt een serieuze belemmering in allerlei
toepassingen.

Dit probleem kan opgelost worden m.b.v. de veralgemening naar een biortho-
gonale basis. De basisfuncties worden nu gegeven door bl tl;k waarbij

t2l;k =
p
2 sin(k + 1)� (x� 2l) met k > 0;

t2l+1;k =
p
2 cosk� (x� 2l � 1) met k > 1;

en
t2l+1;0 = 1:
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Deze basis is stabiel indien er constanten A en B bestaan zodat

0 < A <
X
l

b2l < B <1:

We tonen aan dat het mogelijk is functies bl te vinden zodanig dat de basis nu wel
een resolutie van de constante heeft, ofX

l

bl tl;0 = 1:

Ook de duale functies kunnen eenvoudig geconstrueerd worden.
We bespreken ook een variant, die gebaseerd is op een vouwoperator met gelijke

pariteit links en rechts. Deze heeft als nadeel dat de functies geen basis voor L2

meer vormen, maar als voordeel dat men zachtverlopende functies nauwkeuriger
kan benaderen. We bewijzen dat met deze basis zelfs een resolutie van lineaire
functies mogelijk is.

7.3 Toepassingen

De belangrijkste toepassing die we beschouwen is gegevenscompressie. We vergelij-
ken de verschillende lokale trigometrische bases in allerlei gevallen. Het blijkt dat
de basis met gelijke pariteit meestal beter is wanneer men de L2 norm gebruikt ter
vergelijking. In het geval van beeldcompressie blijkt echter dat de biorthogonale
basis visueel het beste resultaat geeft. De typische blokpatronen verdwijnen bijna
volledig.

8 Besluit en toekomstig onderzoek

In Hoofdstuk 8 formuleren we een besluit, dat aanleiding geeft tot de de�nitie van
een tijd-frequentie-basis, en stellen we enkele idee�en voor toekomstig onderzoek
voor, die aanleiding geven tot de de�nitie van tweede-generatie-wavelets.

8.1 Tijd-frequentie-bases

Beschouw de volgende twee voorstellingen van een algemene functie f :

f(t) =
Z +1

�1

f(s) �(t � s) ds;

en

f(t) =
1

2�

Z +1

�1

bf(!) ei!t d!:
In het eerste geval zijn de bouwblokken extreem lokaal in het tijdsdomein, maar
helemaal niet lokaal in het frequentiedomein; in het andere geval is het net an-
dersom. Een tijd-frequentie-basis levert een compromis tussen deze twee extremen.
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We beschouwen daarom een voorstelling

f =
X
�

c�  �; (0.8)

waarbij � een algemene, aftelbare index is. We noemen de verzameling f �g een
tijd-frequentie-basis indien:

1. De functies '� een stabiele basis vormen. Hiermee bedoelen we dat voor een
functie f behorend tot een algemene functieruimte, unieke co�e�ci�enten c�
bestaan zodat de uitdrukking (0.8) convergeert.

2. Er uitdrukkingen bestaan voor de co�ordinaatfunctionalen.

3. De basisfuncties lokaal zijn in tijd en in frequentie. Ze moeten snel naar nul
gaan buiten hun centrum of, indien mogelijk, een compacte drager hebben.

4. Het mogelijk is de bij deze basis horende transformatie eenvoudig op een
computer te implementeren.

Typische voorbeelden van tijd-frequentie-bases zijn algebra��sche wavelets en lokale
trigonometrische functies. Deze twee noemen we eerste-generatie-wavelets.

8.2 Nadelen van de eerste-generatie-wavelets

1. De eerste-generatie-wavelets vormen een basis voor functies gede�nieerd op
de volledige Euclidische ruimte Rn. In vele toepassingen, zoals segmenta-
tie en de oplossing van di�erentiaalvergelijkingen, heeft men echter wavelets
nodig die gede�nieerd zijn op vrij willekeurige deelverzamelingen van de Eu-
clidische ruimte. Vaak heeft men ook wavelets nodig die gede�nieerd zijn op
curves en oppervlakken.

2. Eerste-generatie-wavelets vormen een basis voor L2 met het klassiek inwen-
dig product. Vaak heeft men echter wavelets nodig aangepast aan meer alge-
mene inwendige producten. Voorbeelden zijn gewogen inwendige producten
of operator-inwendige-producten.

3. Eerste-generatie-wavelets zijn niet invariant zijn onder eenvoudige meetkun-
dige operaties zoals verschuiving, schaalwijziging en draaiing. Dit is nodig
in toepassingen zoals de analyse en compressie van digitale video en in au-
tomatische doelherkenning.
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8.3 Tweede-generatie-wavelets

We kunnen nu eenvoudigweg tweede-generatie-wavelets de�nieren als iedere tijd-
frequentie-basis die een (gedeeltelijke) oplossing biedt voor �e�en van deze problemen.
Voorbeelden zijn de gewogen wavelets van Hoofdstuk 5, de operatorwavelets van
Hoofdstuk 6 en wavelets op een interval. Het toekomstig onderzoek omvat de
verdere ontwikkeling van tweede-generatie-wavelets.
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Chapter 1

Introduction

\The beginner : : : should not be discouraged if : : : he �nds that he

does not have the prerequisites for reading the prerequisites."

|Paul Halmos, borrowed from [146].

Understanding the material in this thesis requires some elementary knowledge
of Fourier analysis, linear algebra, and functional analysis. In this chapter, we
quickly review these preliminaries and set more notation. Secondly, we give a brief
history of the evolution of wavelet theory. Finally, we outline the thesis and situate
its contribution.

1.1 Preliminaries

1.1.1 General

We use the standard notation N, Z, R, and C for the sets of naturals, integers,
reals, and complex numbers, respectively. We typically use the symbols j, k, l, m,
and n to denote integers. We often use conditions like 0 < k 6 4 and symbols like
k under a summation sign. In these cases k 2 Z is always understood.

We only consider vector spaces whose scalar �eld is C. We use the symbol k�k
for the norm in a metric space. To avoid confusion we sometimes add the symbol
of the space as a subscript. A Banach space is a complete normed space and a
Hilbert space is a Banach space whose norm is induced by an inner product. Two
subspaces A and B of a space S form a direct sum decomposition of that space
provided every element of S can be written uniquely as a sum of an element of A
and an element of B. We then use the notation S = A� B.

1.1.2 Functions and Function Spaces

We mostly work with functions de�ned on R that take values in C. On the real
line we use only the Lebesgue measure, see [154, 155]. A real-valued function is

1
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measurable whenever its domain is measurable and when the sets

fx j f(x) < Ag

are measurable for all A 2 R. A property is said to hold almost everywhere, or
a.e., if the set of points where it fails has measure zero. A countable set is a typical
example of a set with measure zero. As commonly done, we often omit the term
a.e. if we feel no confusion is possible. For example, we sometimes use the word
bounded when, strictly speaking, we should use essentially bounded.

We denote a function both by simply f and by f(x) when we want to emphasize
its dependency on x. Note that in the latter case, f(x) does not stand for the value
of the function at the point x. We usually avoid confusion by using phrases like
\the function f(x)".

A measurable function f belongs to the Lebesgue space Lp(R), 1 6 p <1, if

kfkp =
�Z +1

�1

jf(x)jp dx
�1=p

< 1;

and to L1(R) if
kfk1 = ess sup

x2R

jf(x)j < 1:

Each Lebesgue space is a Banach space. Their elements are actually equivalence
classes of functions that coincide almost everywhere. Therefore, equalities in these
spaces should be seen as equalities between the equivalence classes.

The space L2(R) is a Hilbert space where the inner product of two functions
f and g is de�ned as

h f; g i =
Z +1

�1

f(x) g(x) dx:

Two functions are orthogonal if their inner product is zero. We also use Lebesgue
spaces of functions de�ned on subsets of the real line. In that case we just replace
R by the symbol for the subset. Whenever it is clear that we are working on the
real line, we use the notation Lp.

A sequence is a function de�ned on the integers and is denoted by ftkg, again
without explicitly indicating the range of k. A sequence ftkg with tk 2 C belongs
to the Hilbert spaces of square summable sequences, `2(Z) or `2 for short, ifX

k

jtkj2 < 1:

A countable subset ffkg of a Hilbert space is a Riesz basis if every element f
of the space can be written uniquely as f =

P
k ck fk, and if positive constants A

and B exist such that

A kfk2 6
X
k

jckj2 6 B kfk2:
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A Riesz basis is an orthogonal basis if the fk are mutually orthogonal. In this case
A = B = 1.

A function f is H�older continuous of order � (0 < � 6 1) at a point x if

jf(x) � f(x+ h)j = O(h�):

A function f satis�es a Lipschitz condition of order � (0 < � 6 1) in a set S if

sup
x;y2S; jx�yj<h

jf(x) � f(y)j = O(h�):

We then say it belongs to the space Lip�(S). Higher order H�older and Lipschitz
regularity can be de�ned in a straightforward way by using higher order di�erences
of f .

The space Ck is the space of k times continuously di�erentiable functions. Here
we use derivatives in the classic sense. We also de�ne the homogeneous Sobolev
space,

Hk;p(R) = ff j Dk f 2 Lpg;
where we use derivatives in a distributional sense. Here a seminorm is de�ned as

jf jk;p = kf (k)kp:

The space Dk is de�ned as the space of bounded functions that decay faster
than an inverse polynomial,

Dk = ff j jf(x)j 6 C (1 + jxj)�(k+1+�) ; for some � > 0g:

The T -periodization of a function f 2 D0 is a periodic function with period T that
is de�ned as X

l

f(x+ T l):

The support of a function is given by

supp f = clos fx j f(x) 6= 0g:

Here closS stands for the closure of the set S. The indicator function �S(x) of a
set S is de�ned as

�S(x) =

8<: 1 if x 2 S
0 if x 62 S:

We say that a function w is an L-spline if

L�Lw = 0 and w 2 C2m�2;

where L� is the adjoint of L, a linear di�erential operator of order m. This de�ni-
tion leads to the classic piecewise polynomial splines of order 2m in case L = Dm.
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1.1.3 Operators

We only consider operators that are continuous linear maps from a Hilbert space
S to itself. The norm of an operator T is then de�ned as

kTk = sup
kfkS=1

kT fkS:

The operator T � is the adjoint of an operator T if

hT f; g i = h f; T � g i ;

for all f; g 2 S. The kernel of an operator is given by

ker T = fx 2 S j T x = 0g;

and its range by
rangeT = fTx j x 2 Sg:

An operator is invertible if its kernel is equal to f0g and if a bounded operator G
exists so that GF = FG = 1. The condition number of an operator is de�ned as
� = kTk � kT�1k. An operator is selfadjoint in case T � = T and unitary in case
T � = T�1.

An operator is a projection whenever T 2 = T . The range and kernel of a
projection operator form a direct sum decomposition of the space. A projection
operator is orthogonal when its range is orthogonal to its kernel. A projection
operator is orthogonal if and only if it is selfadjoint.

1.1.4 Fourier Analysis

The Fourier transform of a function f 2 L2 is de�ned as

bf(!) =
Z +1

�1

f(x) e�i!x dx:

The inverse Fourier transform is given by

f(x) =
1

2�

Z +1

�1

bf(!) ei!x d!:
The Fourier transform is a unitary transform up to a constant factor, or, more
precisely, p

2� kfk2 = k bfk2:
We use the Poisson summation formula in the following two forms:X

l

f(x� l) =
X
k

bf(2k�) ei2k�x;
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and X
l

h f; g(� � l) i e�i!l =
X
k

bf(! + k2�) bg(! + k2�):

The Fourier series of a function f 2 L2([0; 1]) is given by

f(x) =
X
k

ck e
i2�xk with ck =

Z 1

0
f(x) e�i2�xk dx:

The discrete Fourier transform of a sequence fakg is given by

a(!) =
X
k

ak e
�i!k:

The Zak transform of a function f(x) 2 L2(R) is de�ned as [104, 200]

(Zf)(x; !) =
X
l

e�i!l f(x+ l) for x; ! 2 R;

and satis�es
(Zf)(x; !) =

X
k

bf(! + 2�k) ei(!+2�k)x:

1.2 A brief history of wavelets

In this section we give an overview of the development of wavelets. We do so by
pointing out the important milestones.

The basic idea of the theory is to represent general functions in terms of simpler,
�xed building blocks at di�erent scales and positions. This has been found to be
a useful approach in several di�erent areas. For example, in signal processing we
have techniques such as subband coding, quadrature mirror �lters, and pyramid
schemes, while in mathematical physics similar ideas are studied as part of the
theory of Coherent States. Wavelet theory presents a synthesis of these di�erent
approaches.

In abstract mathematics, it has been known for some time that techniques
based on Fourier series and Fourier transforms are not quite adequate for many
problems. So-called Littlewood-Paley techniques are often e�ective substitutes.
These techniques were developed in the 30's to help understand problems such as
the summability of Fourier series and the boundary behavior of analytic functions.
In the 50's and 60's, they developed into powerful tools for studying solutions of
di�erential and integral equations. People realized that they �t into Calder�on-

Zygmund theory, an area of harmonic analysis.
One of the standard approaches in Calder�on-Zygmund theory is to break up

a complicated phenomenon into many simple pieces and study each of the pieces
separately. In the 70's, atomic decompositions, which are sums of simple functions,
were widely used in Hardy space theory [50]. One method used to establish that
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a general function f has such a decomposition is to start with the \Calder�on
formula". This states that a general function f satis�es

f(x) =
Z +1

0

Z +1

�1

( t � f)(y) e t(x� y) dy dt
t

;

where  t(x) = t�1 (x=t), likewise for e t(x), and where  and e are appropriate
�xed functions. As we shall see in Chapter 2, this representation is an example
of a continuous wavelet transform. In the early 80's, Str�omberg discovered the
�rst orthogonal wavelet [169]. This was done in the context of trying to further
understand Sobolev and Hardy spaces, as well as other spaces used to measure
the size and smoothness of functions. In 1976, a discrete version of the Calder�on
formula (something that we presently would call a discrete wavelet transform) was
used by Bj�orn Jawerth for similar purposes in his thesis [105]. Long before this,
there were motivating results by Haar [99], Franklin [86], Ciesielski [40], Peetre
[146], and others.

Independent from these developments in harmonic analysis, Alex Grossmann,
Jean Morlet, and their coworkers studied the wavelet transform in its continuous
form [96, 97, 98]. The theory of \frames" provided a suitable general framework
for their investigations [67].

In the early to mid 80's, one realized, with some excitement, that the Littlewood-
Paley representations had discrete analogs and could give a uni�ed view of many
of the results in harmonic analysis. This was done independently by Yves Meyer
and his collaborators as well as by Mike Frazier and Bj�orn Jawerth in their work
on the '-transform [87, 88, 89]. One also started to understand that these tech-
niques could be e�ective substitutes for Fourier series in numerical applications.
The emphasis then shifted more towards the representations themselves and the
building blocks involved. As a result the name of the theory changed. Yves Meyer
and Jean Morlet suggested the word \wavelet" for the building blocks and what
earlier had been referred to as Littlewood-Paley theory, now started to be called
wavelet theory.

Pierre-Gilles Lemari�e and Yves Meyer [126], independent of Str�omberg, con-
structed orthogonal wavelet expansions. With the notion of multiresolution anal-
ysis, introduced by St�ephane Mallat and Yves Meyer, a systematic framework for
understanding these orthogonal expansions was developed [134, 135, 136]. Soon,
Ingrid Daubechies [63] gave a construction of compactly supported wavelets with
arbitrarily high, but �xed, regularity. This takes us up to a fairly recent time in
the history of wavelet theory. Several other people have made substantial con-
tributions to the �eld over the past few years. Their work and the appropriate
references will be discussed in Chapter 2.
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1.3 Outline of the thesis

As one can see from the history, the solution of di�erential and integral equations
was one of the motivations for the development of wavelet theory from the onset.
Over the last few years substantial progress was made concerning the numerical
treatment of these problems. However, we are far from the ultimate goal, still
needed is the development of fast, accurate numerical solvers for a wide range of
linear and nonlinear di�erential and integral equations. This thesis can be seen as
one step towards this goal. It is organized into eight chapters whose interrelation
is represented in Figure 1.1.

In Chapter 2 we describe the notions from wavelets and multiresolution analy-
sis that are needed to understand the remainder of the thesis. It mostly addresses
developments since the de�nition of multiresolution analysis by Mallat and Meyer
(approximately 1985). It discusses several independent contributions such as semi-
orthogonal and biorthogonal wavelets in a uni�ed setting.

Chapters 3 and 4 address two typical problems that appear when implementing
wavelet approximations on a computer. The �rst one involves the calculation of
the wavelet coe�cients. Theoretically, these are de�ned as inner products with
dual functions. In practice, however, these inner products cannot be calculated
exactly and one needs to approximate them numerically. In Chapter 3, we present
a solution based on quadrature formulae. We compare it with other possibilities
such as interpolation and �ltering. The second problem concerns the behavior
of the error of a wavelet approximation. The main result of Chapter 4 is an
asymptotical expansion for the error in case of smooth functions. This leads to
the de�nition of a new family of functions, which we refer to as \monowavelets".
The expansion is useful for practical purposes such as convergence acceleration
and interpolation. This is illustrated with numerical examples. Moreover, the
expansion also serves as a simple tool for comparing the approximation properties
of di�erent wavelets.

In the following two chapters, we study how the de�nition of multiresolution
analysis can be generalized. In Chapter 5, we abandon the classic inner product
and construct wavelets that are adapted to a weighted inner product. By only
assuming a mild condition on the weight, we show that these wavelets can be com-
pactly supported and smooth. Their construction also can easily be implemented
on a computer. Until now it was an open problem whether such wavelets exist.
They can be seen as a part of a new development, which we call \second generation
wavelets". The whole idea of the second generation wavelets is to generalize the
classic de�nition of wavelets without giving up on their powerful properties.

In Chapter 6, the weighted wavelets are used to solve boundary value ordinary
di�erential equations. It is shown that, starting from the weighted wavelets, one
can automatically construct a basis that diagonalizes a general di�erential oper-
ator. As a result, the numerical solution becomes trivial. A linear, non-iterative
algorithm is presented and numerical results are given.



8 CHAPTER 1. INTRODUCTION

One can read Chapters 5 and 6 immediately after Chapter 2. However, it is
recommended to read Chapters 3 and 4 �rst.

Chapter 7 can be read immediately after Chapter 2. It concerns the construc-
tion of wavelets on the Fourier transform side, or so-called local trigonometric
functions. We present two generalizations of the original construction of Coifman
and Meyer and study their properties. One of the applications here is reducing
artifacts in image compression.

At the end of each chapter, a discussion of possible future research is included
and new ideas related to the material in the chapter are discussed. Chapter 8
draws a �nal conclusion and discusses new directions of research that opened up
as a result of the work done in this thesis.
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\And so I think I have omitted nothing

that is necessary to an understanding of curved lines."

|Ren�e Descartes, La G�eom�etrie (1637).



Chapter 2

Multiresolution Analysis

and Wavelets

\There is only one thing you should do. Go into yourself. Find

out the reason that commands you to write; see whether it has

spread its roots into the very depths of your heart; confess to

yourself whether you would have to die if you were forbidden to

write. This most of all: ask yourself in the most silent hour of

your night: must I write? Dig into yourself for a deep answer.

And if this answer rings with a strong, simple \I must," then

build your life in accordance with this necessity; your whole life,

even into its humblest and most indi�erent hour, must become

a sign and witness to this impulse."
|Rainer Maria Rilke, Letters to a young poet (1903{1908).

2.1 Introduction

In this chapter, we present wavelets and multiresolution analysis. The material
represents the core of the wavelet theory that is needed to understand and situ-
ate the following chapters. Its main contribution is that it treats several recent
developments in a uni�ed setting.

The chapter is organized as follows. We �rst introduce the \continuous wave-
let transform". This discussion is mainly included for comparison with the mul-
tiresolution analysis wavelets. Next, we give the de�nitions of \multiresolution
analysis" and \scaling function" (Section 2.3), derive some basic properties and
illustrate these with some examples. In this section, we also give the basic de�ni-
tion of \wavelet". Wavelets are then studied in more detail in the next sections.
Section 2.4 discusses orthogonal wavelets, while Section 2.5 treats biorthogonal
wavelets, a generalization of the orthogonal ones, and semiorthogonal wavelets,
a compromise between the previous two. In the following section, we study the
connection between wavelets and polynomials, and show how this relates to the ap-

11
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proximation properties of wavelet expansions. In Section 2.7 we show how a \fast
wavelet transform" can be derived from the multiresolution analysis properties.

At this point, i.e. after the study of the basic properties of multiresolution
analysis, we are ready to single out some desirable properties of wavelets. This
is done in Section 2.8. We also give several examples of wavelet families, such
as Daubechies' and spline wavelets, and compare their properties. The next three
sections focus on more recent developments such as wavelets on an interval, wavelet
packets, and multidimensional wavelets. These sections can be read independently.
Finally, in the last section (Section 2.12) we consider the basic ideas associated with
two important applications: data compression and analysis of linear operators.

2.2 The continuous wavelet transform

A wavelet expansion typically uses translations and dilations of one �xed function,
the wavelet  2 L2(R). In the case of the continuous wavelet transform, the trans-
lation and dilation parameters vary continuously. In other words, the transform
makes use of the functions

 a;b(x) =
1q
jaj

 

 
x� b
a

!
with a; b 2 R; a 6= 0:

These functions are normalized to have a constant L2 norm. The continuous

wavelet transform of a function f 2 L2(R) is now de�ned by

W(a; b) = h f;  a;b i : (2.1)

Using Parseval's identity, we can write this as

2�W(a; b) = h bf ; b a;b i (2.2)

where b a;b(!) =
aq
jaj

e�i!b b (a!):
We assume now that the wavelet  and its Fourier transform b are functions

with �nite centers �x and �! and �nite radii �x and �!. These quantities are de�ned
as

�x =
1

k k2
Z +1

�1

x j (x)j2 dx;

�2
x =

1

k k2
Z +1

�1

(x� �x)2 j (x)j2 dx;

and similarly for �! and �!. The variable x usually represents either time or space;
we choose the �rst and refer to x as time. From (2.1) and (2.2), we see that the
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continuous wavelet transform at (a; b) picks up information about f , mostly from
the time interval [b + a�x � a�x; b + a�x + a�x] and from the frequency interval
[(�!��!)=a; (�!+�!)=a]. These two intervals determine a time-frequency window .
Its width, height and position are governed by a and b. Its area is constant and
equal to 4�x�!. The Heisenberg uncertainty principle now says that this area
has to be bigger than 2. These time-frequency windows are also called Heisenberg

boxes.
Suppose that the wavelet  satis�es the admissibility condition

C =
Z +1

�1

j b (!)j2
!

d! < 1:

Then, the continuous wavelet transform W(a; b) is invertible on its range, and an
inverse transform is given by the relation

f(x) =
1

C 

Z +1

�1

Z +1

�1

W(a; b) a;b(x)
da db

a2
: (2.3)

From the admissibility condition, we see that b (0) has to be 0, and, in particular,
 has to oscillate. This, together with the decay property, has given  the name
wavelet or \small wave" (French: ondelette).

In applications, it is of interest to �nd inverse transforms that do not make
use of W(a; b) over the whole range of a and b. Transforms exist that only use
positive values of a or even only discrete values for a. Furthermore, using the
theory of frames, it is possible to study the case where only discrete values for a
and b are used. See [101] for an excellent overview. The common choice is to use
a dyadic grid, i.e. to let a = 2�j and b=a = l with j; l 2 Z [64, 89]. In general,
the fewer values of a and b one wants to use, the more restrictive the condition on
the wavelet becomes. The continuous wavelet transform allows us to use a very
general wavelet. At the other extreme, we shall see that much more restrictive
conditions hold for a wavelet used in multiresolution analysis. This allows us, on
the other hand, to obtain powerful results such as the construction of orthogonal
bases.

The transform that only uses the dyadic values of a and b was originally called
the discrete wavelet transform. Presently, however, this term is ambiguous, since
it is also used to denote the transform from the sequence of scaling function coef-
�cients of a function to its wavelet coe�cients (see Section 2.7).

The continuous wavelet transform is used in singularity detection and charac-
terization [87, 131]. A typical result in this direction is that if a function f is
H�older continuous of order �, (0 < � < 1), then the continuous wavelet transform
has an asymptotic behavior like

W(a; b) = O(a�+1=2) for a! 0:

The converse is true as well. The advantage of this characterization compared to
the Fourier transform, is that it does not only provide information about the kind of
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singularity, but also about its location in time. A corresponding characterization
of H�older continuous functions of higher order (� > 1) exists; the number of
vanishing moments of the wavelet then has to be bigger than �, i.e.Z +1

�1

 (x)xp dx = 0 for 0 6 p 6 � and p 2 Z:

We note that the number of vanishing wavelet moments limits the order of smooth-
ness that can be characterized.

Example: A classical example of a wavelet is the Mexican hat function,

 (x) = (1� 2x2)e�x
2

:

Being the second derivative of a Gaussian, it has two vanishing moments.

Note: More detailed treatments of the continuous wavelet transform can be found
in [34, 95, 96, 101].

2.3 Multiresolution analysis

2.3.1 The scaling function and the subspaces Vj

There are two ways to introduce wavelets: one is through the continuous wavelet
transform as mentioned in the previous section, and another is through multireso-
lution analysis. Here we start by de�ning multiresolution analysis, and then point
out some of the connections with the continuous wavelet transform.

A multiresolution analysis of L2(R) is de�ned as a sequence of closed subspaces
Vj � L2(R), j 2 Z, with the following properties [63, 134]:

1. Vj � Vj+1,

2. v(x) 2 Vj , v(2x) 2 Vj+1,

3. v(x) 2 V0 , v(x+ 1) 2 V0,

4.
+1[
j=�1

Vj is dense in L2(R) and
+1\
j=�1

Vj = f0g,

5. A scaling function ' 2 V0, with a non-vanishing integral, exists so that the
collection f'(x� l) j l 2 Zg is a Riesz basis of V0.

We will use the following terminology: a level of a multiresolution analysis is one of
the Vj subspaces and one level is coarser (respectively �ner) with respect to another
whenever the index of the corresponding subspace is smaller (respectively bigger).
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An introduction to the concept of multiresolution analysis and its usefulness can
be found in [165, 166].

Let us make a couple of simple observations concerning this de�nition. Since
' 2 V0 � V1, a sequence fhkg 2 `2 exists so that the scaling function satis�es

'(x) = 2
X
k

hk '(2x� k): (2.4)

This functional equation goes by several di�erent names: the re�nement equation,
the dilation equation or the two-scale di�erence equation. We shall use the �rst.

It also follows immediately that the collection of functions f'j;l j l 2 Zg, with
'j;l(x) =

p
2j '(2jx� l); is a Riesz basis of Vj .

By integrating both sides of (2.4), and dividing by the (non-vanishing) integral
of ', we see that X

k

hk = 1: (2.5)

The scaling function is, under very general conditions, uniquely de�ned by its
re�nement equation and the normalization [69],Z +1

�1

'(x) dx = 1:

In many cases, no explicit expression for ' is available. However, there are fast
algorithms that use the re�nement equation to evaluate the scaling function ' at
dyadic points (x = 2�jk, j; k 2 Z) [21, 32, 63, 165]. In many applications, we
never need the scaling function itself; instead we may often work directly with the
hk.

The spaces Vj will be used to approximate general functions. This will be done
by de�ning appropriate projections onto these spaces. Since the union of all the
Vj is dense in L2(R), we are guaranteed that any given function of L2 can be
approximated arbitrarily close by such projections.

To be able to use the collection f'(x � l) j l 2 Zg to approximate even the
simplest functions (such as constants), it is natural to assume that the scaling
function and its integer translates form a partition of unity , or, in other words,

8x 2 R :
X
k

'(x� k) = 1: (2.6)

Note that by Poisson's summation formula, the partition of unity is (essentially)
equivalent to b'(2�k) = �k for k 2 Z: (2.7)

By (2.4), the Fourier transform of the scaling function must satisfy

b'(!) = h(!=2) b'(!=2); (2.8)
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where h is a 2�-periodic function de�ned by

h(!) =
X
k

hk e
�ik!: (2.9)

Since b'(0) = 1, we can apply (2.8) recursively. This yields, at least formally, the
product formula

b'(!) =
1Y
j=1

h(2�j!):

The convergence of this product is examined in [41, 63]. The representation of b'
is nice to have in many situations. For example, it can be used to construct '(x)
from the sequence fhkg. Using (2.7) and (2.8), we see that we obtain a partition
of unity if

h(�) = 0 or
X
k

(�1)k hk = 0:

Also note that (2.5) can be written as

h(0) = 1:

Examples of scaling functions:

� A well-known family of scaling functions is the set of cardinal B-splines. The
cardinal B-spline of order 1 is the box function N1(x) = �[0;1](x). For m > 1
the cardinal B-spline Nm is de�ned recursively as a convolution:

Nm = Nm�1 �N1:

These functions satisfy

Nm(x) = 2m�1
mX
k=0

 
m

k

!
Nm(2x� k);

and cNm(!) =

 
1� e�i!
i!

!m
:

� Another classical example is the Shannon sampling function,

'(x) =
sin(�x)

�x
with b'(!) = �[��;�](!):

We may take

h(!) = �[��=2;�=2](!) for ! 2 [��; �];
and, consequently,

h2k = 1=2 �k and h2k+1 =
(�1)k

(2k + 1)�
for k 2 Z:



2.3. MULTIRESOLUTION ANALYSIS 17

Now, for later reference, let us introduce the following 2�-periodic function:

b(!) =
X
k

j b'(! + k2�)j2: (2.10)

The fact that ' and its translates form a Riesz basis, corresponds to the fact that
there are positive constants A and B so that

0 < A 6 b(!) 6 B <1:

Using (2.8) and rearranging the even and odd terms, we have

b(2!) =
X
k

j b'(2! + k2�)j2

=
X
k

jh(! + k�)j2 j b'(! + k�)j2

=
X
k

jh(! + k2�)j2 j b'(! + k2�)j2 + jh(! + � + k2�)j2 j b'(! + � + k2�)j2

= jh(!)j2 b(!) + jh(! + �)j2 b(! + �): (2.11)

This shows that b is actually �-periodic.

2.3.2 The wavelet function and the detail spaces Wj

Let Wj denote a space complementing Vj in Vj+1, i.e. a space that satis�es

Vj+1 = Vj �Wj:

We note that the space Wj is not necessarily unique; there may be several ways
to complement Vj in Vj+1.

The space Wj contains the \detail" information needed to go from an approx-
imation at resolution j to an approximation at resolution j + 1. Consequently,M

j

Wj = L2(R):

A function  is a wavelet if the collection of functions f (x � l) j l 2 Zg is
a Riesz basis of W0. The collection of wavelet functions f j;l j l; j 2 Zg is then
a Riesz basis of L2(R). (The de�nition of  j;l is similar to the one of 'j;l in the
previous section.) Since the wavelet  is an element of V1, a sequence fgkg 2 `2
exists so that

 (x) = 2
X
k

gk '(2x� k): (2.12)

The Fourier transform of the wavelet can be written as

b (!) = g(!=2) b (!=2); (2.13)
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where g is a 2�-periodic function given by

g(!) =
X
k

gk e
�ik!: (2.14)

Each space Vj and Wj has a complement in L2(R) denoted by V c
j and W c

j , respec-
tively. We have:

V c
j =

1M
i=j

Wi and W c
j =

M
i6=j

Wi:

We de�ne Pj as the projection operator onto Vj and parallel to V c
j , and Qj as the

projection operator onto Wj and parallel to W c
j . A function f can now be written

as

f(x) =
X
j

Qjf(x) =
X
j;l

j;l  j;l(x):

Recalling the discussion in Section 2.2, we see that this last equation is an inverse
\discrete" wavelet transform. At this moment, the exact conditions on the wavelet
are still unclear. They will be made more precise in the next sections. There, it
will also become clear how to �nd the coe�cients j;l. We �rst turn to the case
where the  j;l form an orthonormal basis for L2(R).

2.4 Orthogonal wavelets

The class of orthogonal wavelets is particularly interesting. We start by introducing
the concept of an orthogonal multiresolution analysis. This is a multiresolution
analysis where the wavelet spacesWj are de�ned as the orthogonal complement of
Vj in Vj+1. Consequently, the spaces Wj with j 2 Z are all mutually orthogonal,
the projections Pj and Qj are orthogonal, and the expansion

f(x) =
X
j

Qjf(x)

is an orthogonal expansion. A su�cient condition for a multiresolution analysis to
be orthogonal is

W0 ? V0;

or

h ; '(� � l) i = 0 for l 2 Z;
since the other conditions simply follow from scaling. Using Poisson's summation
formula, we see that this condition is (essentially) equivalent to

8! 2 R :
X
k

b (! + k2�) b'(! + k2�) = 0: (2.15)
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An orthogonal scaling function is a function ' so that the set f'(x� l) j l 2 Zg
is an orthonormal basis, or

h';'(� � l) i = �l for l 2 Z: (2.16)

With such a ', the collection of functions f'(x � l) j l 2 Zg is an orthonormal
basis of V0 and the collection of functions f'j;l j l 2 Zg is an orthonormal basis of
Vj. Using Poisson's formula, (2.16) is (essentially) equivalent to

8! 2 R :
X
k

j b'(! + k2�)j2 = f(!) = 1: (2.17)

From (2.11) we now see that,

8! 2 R : jh(!)j2 + jh(! + �)j2 = 1; (2.18)

or X
k

hk hk�2l = �l=2 for l 2 Z:

The last two equations are equivalent, but they only provide a necessary condition
for the orthogonality of the scaling function and its translates. This relationship
is investigated in detail in [42, 122].

Now, an orthogonal wavelet is a function  so that the collection of functions
f (x � l) j l 2 Zg is an orthonormal basis of W0. This is the case if

h ;  (� � l) i = �l:

Again these conditions are (essentially) equivalent to

8! 2 R :
X
k

j b (! + k2�)j2 = 1;

and, using a similar argument as above, a necessary condition is given by

8! 2 R : jg(!)j2 + jg(! + �)j2 = 1:

Since the spaces Wj are mutually orthogonal, the collection of functions f j;l j
j; l 2 Zg is an orthonormal basis of L2(R).

The projection operators Pj and Qj can now be written as

Pjf(x) =
X
l

h f; 'j;l i'j;l(x) and Qjf(x) =
X
l

h f;  j;l i j;l(x):

They yield the best L2 approximations of the function f in Vj andWj , respectively.
For a function f 2 L2(R) we have the orthogonal expansion

f(x) =
X
j;l

j;l  j;l(x) with j;l = h f;  j;l i :
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Again, this can be viewed as a discrete version of the continuous wavelet transform.
Examples of orthogonal wavelets will be given in Section 2.8.

Using (2.17) we can write the condition (2.15) as

8! 2 R : g(!) h(!) + g(! + �) h(! + �) = 0: (2.19)

From this last equation it follows that the function g(!) needs to be of the form

g(!) = a(!)h(! + �);

where a is a 2�-periodic function so that

a(! + �) = �a(!):
The orthogonality of the wavelet immediately follows from the orthogonality of
the scaling function if

ja(!)j = 1:

As we will see later on, it is important for the scaling function and wavelet to
have compact support. The compact support of the wavelet and scaling function is
equivalent with the fact that h and g are trigonometric polynomials (i.e. the sums
in (2.9) and (2.14) are �nite). In the above case, we see that if the scaling func-
tion is compactly supported, so is the wavelet, provided that a is a trigonometric
polynomial. The only trigonometric polynomials that satisfy the conditions for a
are monomials of the form,

C e�(2k+1)!i with jCj = 1 and k 2 Z:
Up to the constant C and an integer translation, the di�erent choices for a all give
rise to the same wavelet. Any other choice for a will lead to a wavelet without
compact support. If the coe�cients hk are real, so are the gk if C = �1. The
standard choice is a(!) = �e�i!. This means that we derive an orthogonal wavelet
from an orthogonal scaling function by choosing

gk = (�1)k h1�k: (2.20)

This still leaves us with the problem of constructing a compactly supported scaling
function. We will comment on this in Section 2.6.

In [125], an orthogonalization procedure to �nd orthonormal wavelets is pro-
posed. It states that if a function ' and its integer translates form a Riesz basis
of V0, then an orthonormal basis of V0 is given by 'orth and its integer translates
with b'orth(!) =

b'(!)q
b(!)

; (2.21)

where b(!) is the function de�ned in (2.10). The fact that we started from a Riesz
basis guarantees that b(!) is strictly positive. We see that ' indeed satis�es the
orthogonality condition (2.17). Note that if ' is compactly supported, 'orth will,
in general, not be compactly supported.
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2.5 Biorthogonal wavelets

The orthogonality property puts a strong limitation on the construction of wave-
lets. For example, it is known that the Haar wavelet is the only real-valued wavelet
that is compactly supported, symmetric and orthogonal [63]. The generalization
to biorthogonal wavelets has been considered to gain more exibility. Here, a dual
scaling function e' and a dual wavelet e exist. They generate a dual multiresolution
analysis with subspaces eVj and fWj , so that

eVj ?Wj and Vj ? fWj; (2.22)

and, consequently, fWj ?Wj0 for j 6= j 0:

The dual multiresolution analysis is not necessarily the same as the one generated
by the original basis functions. A condition equivalent to (2.22) is:

h e';  (� � l) i = h e ; '(� � l) i = 0:

Moreover, the dual functions also have to satisfy

h e';'(� � l) i = �l and h e ;  (� � l) i = �l:

By using a scaling argument, we have the seemingly more general properties that

h e'j;l; 'j;l0 i = �l�l0 for l; l0; j 2 Z (2.23)

and
h e j;l;  j0;l0 i = �j�j0�l�l0 for l; l0; j; j 0 2 Z: (2.24)

Here the de�nitions of e'j;l and e j;l are similar to the ones for 'j;l and  j;l. Note
that the role of the basis (i.e. the ' and  ) and the dual basis can be interchanged.
Using the same Fourier techniques as in the previous section, the biorthogonality
conditions are (essentially) equivalent to

8! 2 R :

8>>>>>>>>>>><>>>>>>>>>>>:

X
k

be'(! + k2�) b'(! + k2�) = 1X
k

be (! + k2�) b (! + k2�) = 1X
k

be (! + k2�) b'(! + k2�) = 0X
k

be'(! + k2�) b (! + k2�) = 0:

(2.25)

Since they de�ne a multiresolution analysis, the dual functions must satisfy

e'(x) = 2
X
k

ehk e'(2x� k) and e (x) = 2
X
k

egk e'(2x� k): (2.26)
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If we de�ne the functions eh and eg in the same fashion as we did for h and g, then
necessary conditions are again given by

8! 2 R :

8>>>><>>>>:
eh(!) h(!) + eh(! + �)h(! + �) = 1eg(!) g(!) + eg(! + �) g(! + �) = 1eg(!) h(!) + eg(! + �)h(! + �) = 0eh(!) g(!) + eh(! + �) g(! + �) = 0;

(2.27)

or

8! 2 R :

" eh(!) eh(! + �)eg(!) eg(! + �)

# "
h(!) g(!)

h(! + �) g(! + �)

#
=

"
1 0
0 1

#
:

Hence, if we let

m(!) =

"
h(!) h(! + �)
g(!) g(! + �)

#
;

and similarly for fm, then fm(!)mt(!) = 1:

By interchanging the matrices on the left-hand side, we get

8! 2 R :

(
h(!) eh(!) + g(!) eg(!) = 1

h(!) eh(! + �) + g(!) eg(! + �) = 0:
(2.28)

Note that the orthogonal case corresponds to m being a unitary matrix. Cramer's
rule now states that eh(!) =

g(! + �)

�(!)
(2.29)

and

eg(!) = �h(! + �)

�(!)
; (2.30)

where

�(!) = detm(!):

The space generated by the set of functions f j;l j l 2 Zg complements Vj in Vj+1

if and only if �(!) does not vanish.
The projection operators take the form

Pjf(x) =
X
l

h f; e'j;l i'j;l(x) and Qjf(x) =
X
l

h f; e j;l i j;l(x);
so that

f =
X
j;l

h f; e j;l i j;l:
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Note that this can be viewed as a \discrete" wavelet transform and that the con-
ditions on  are less restrictive than in the orthogonal case. From the equations
(2.23), (2.24), and (2.26) we see that

ehk�2l = h e'(x� l); '(2x� k) i and egk�2l = h e (x� l); '(2x� k) i :
In particular, by writing '(2x� k) 2 V1 in the bases of V0 and W0, we obtain

'(2x� k) =
X
l

ehk�2l '(x� l) +X
l

egk�2l  (x � l): (2.31)

Even if the scaling function and the wavelet are not orthogonal, the multires-
olution analysis may still be orthogonal. Let us study this in more detail.

A biorthogonal scaling function and wavelet are semiorthogonal if they generate
an orthogonal multiresolution analysis [4, 6, 34]. (The name pre-wavelet is also
used for such a wavelet.) Since the Wj subspaces are mutually orthogonal we have
that

Wj ? fWj0 and Wj ?Wj0 for j 6= j 0:

Consequently, Wj = fWj , which implies that Vj = eVj . Thus, the primary and dual
functions generate the same (orthogonal) multiresolution analysis. A dual scaling
function can now be found by letting

be'(!) =
b'(!)
b(!)

:

Here b(!) again is the function de�ned in (2.10). We see that the �rst equation
of (2.25) is satis�ed, and, since b is a bounded, 2�-periodic function that does not
vanish, the translates of ' and e' generate the same space. This corresponds to:

eh(!) =
h(!) b(!)

b(2!)
:

In order to have an orthogonal multiresolution analysis, (2.19) must also be satis-
�ed. As before, this means that we need to pick g so that

g(!) = a(!)h(! + �);

where a is a 2�-periodic function with

a(! + �) = �a(!):

If a is a trigonometric polynomial, then the scaling function is compactly sup-
ported. By looking at the last equation of (2.27) it is clear that a simple choice
is

a(!) = �e�i! b(! + �);
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so that
�(!) = e�i! b(2!);

and, consequently,

eg(!) = �e�i! h(! + �)

b(2!)
:

If ' is compactly supported, this construction guarantees that  is compactly
supported too, since h and b, and hence also g, are trigonometric polynomials.
Note, however, that the dual functions are not compactly supported.

2.6 Wavelets and polynomials

The moments of the scaling function and wavelet are de�ned by:

Mp =
Z +1

�1

xp '(x) dx and Np =
Z +1

�1

xp  (x) dx with p 2 N;

and similarly for the dual functions. The scaling functions are normalized with
M0 = fM0 = 1.

Recall that we want the scaling function to satisfy a \partition of unity" prop-
erty and, furthermore, that this corresponds to h(�) = 0. From (2.30) we see that
this implies that eg(0) = 0 and, hence, that fN0 = 0. Thus, the dual wavelet needs
to have a vanishing integral. This is reminiscent of the case of the continuous
wavelet transform where we needed the wavelet to have a vanishing integral.

As we pointed out before, the fact that the wavelet has a vanishing integral
allows us to give a precise characterization of the functions with a certain smooth-
ness (when the order of smoothness � is less than 1), in terms of the decay of
the continuous wavelet transform. The analogous fact is true here. The wavelet
coe�cients are given by inner products with the dual wavelets. The fact that these
have a vanishing integral allows us to characterize exactly which functions will be
of a certain smoothness by looking at the decay of the coe�cients.

As in the case of the continuous wavelet transform, to obtain similar character-
izations of classes of functions of smoothness � > 1, the dual wavelet needs to have
more vanishing moments. This is closely related to the property that the scaling
function and its translates can represent polynomials. We make this statement
more precise.

Let N denote the number of vanishing moments of the dual wavelet,fNp = 0 for 0 6 p < N and fNN 6= 0:

This is the same as saying that
be (!) has a root of multiplicity N at ! = 0. Sincebe'(0) 6= 0, it is also equivalent to the fact that eg(!) has a root of multiplicity N at

! = 0. Thus, the sequence fegkg also has N vanishing discrete moments,X
k

egk kp = 0; for 0 6 p < N:
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From (2.30), we see that this is equivalent to h(!) having a root of multiplicity N
at ! = �, which, by using (2.8), implies that

ip b'(p)(2k�) = �kMp for 0 6 p < N: (2.32)

By Poisson's summation formula, it follows thatX
l

(x� l)p '(x� l) = Mp for 0 6 p < N: (2.33)

Rearranging the last expression, we see that any polynomial with degree smaller
than N can be written as a linear combination of the functions '(x� l) with l 2 Z.

At this point we digress a little and make two small remarks.

1. The fact that h(!) has a root of multiplicity N at ! = �, means that we can
factor h(!) as

h(!) =

 
1 + e�i!

2

!N
K(!);

with K(0) = 1 and K(�) 6= 0. This factorization, together with the or-
thogonality conditions and the fact that K is a trigonometric polynomial, is
used as a starting point for the construction of compactly supported wavelets
[45, 63].

2. When writing a polynomial as a linear combination of the '(x � l), the
coe�cients in the linear combination themselves are polynomials of the same
degree in l. More precisely, if A is a polynomial of degree N � 1, then a
polynomial B, of the same degree, exists so that

A(x) =
X
l

B(l)'(x � l): (2.34)

The fact that B is a polynomial can be seen from

B(l) =
Z
A(x) e'(x� l) dx =

Z
A(x+ l) e'(x) dx:

Furthermore,
A(x) =

X
l

B(x � l)'(l);

since the polynomials on the left and right-hand sides match at each integer.

With the extra vanishing moment conditions on the dual wavelet, we can char-
acterize smoothness up to order � < N . Another consequence is that the con-
vergence rate of the wavelet approximation for smooth functions now immediately
follows: if f 2 CN , then

kPjf(x)� f(x)k = O(hN ) with h = 2�j: (2.35)
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Figure 2.1: The subband �ltering scheme.

The conditions (2.32) are referred to as the Strang{Fix conditions, and these were
established long before the development of wavelet theory [85, 165, 168].

In Chapter 4, we will derive an asymptotic error expansion in powers of h,
which can be used in numerical extrapolation.

The exponent N in the factorization of h also plays a role in the regularity of
'. The H�older regularity is N � 1 at most, but in many cases it is lower due to
the inuence of K. The regularity of solutions of re�nement equations is studied
in detail in [55, 56, 69, 70, 82, 152, 191, 190].

Note that we never required the dual scaling function to satisfy a partition
of unity, nor the wavelet to have a vanishing moment. It is indeed possible to
have a wavelet with a non-vanishing integral. In that case, the regularity of the
dual functions is very low. It may even be that they are distributions instead of
functions, but this is not necessarily a problem in applications. We will encounter
such cases in Chapters 3 and 6.

2.7 The fast wavelet transform

Since Vj is equal to Vj�1�Wj�1, a function vj 2 Vj can be written uniquely as
the sum of a function vj�1 2 Vj�1 and a function wj�1 2 Wj�1:

vj(x) =
X
k

�j;k 'j;k(x) = vj�1(x) + wj�1(x)

=
X
l

�j�1;l 'j�1;l(x) +
X
l

j�1;l  j�1;l(x):

In other words, we have two representations of the function vj , one as an element
in Vj and associated with the sequence f�j;kg, and another as a sum of elements
in Vj�1 and Wj�1 and associated with the sequences f�j�1;kg and fj�1;kg. The
following relations show how to pass between these representations. By (2.26),

�j�1;l = h vj ; e'j�1;l i =
p
2 h vj ;

X
k

ehk�2l e'j;k i
=
p
2
X
k

ehk�2l �j;k; (2.36)

and, similarly,
j�1;l =

p
2
X
k

egk�2l �j;k: (2.37)
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Figure 2.2: The decomposition scheme.
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Figure 2.3: The reconstruction scheme.

The opposite direction, from f�j�1;lg and fj�1;lg to f�j;kg, is equally easy. Using
(2.31) we have

�j;k =
p
2
X
l

hk�2l �j�1;l +
p
2
X
l

gk�2l j�1;l: (2.38)

When applied recursively, these formulae de�ne the fast wavelet transform; the
relations (2.36) and (2.37) de�ne the forward transform, while (2.38) de�nes the
inverse transform.

Now, from the fact that h(0) = g(�) = 1 and g(0) = h(�) = 0, we see that h(!)
acts like a low pass �lter for the interval [0; �=2] and g(!) similarly behaves like a
band pass �lter for the interval [�=2; �]. Equation (2.8) (respectively (2.13)) then
implies that the major part of the energy of the functions in V0 (respectively W0)
is concentrated in the intervals [0; �] (respectively [�; 2�]). The behavior of the
dual functions is the same. In an approximate sense, this means that the wavelet
expansion splits the frequency space into dyadic blocks [2j�; 2j+1�] with j 2 Z

[134, 135].
In signal processing, this idea is known as subband �ltering, or, more speci�-

cally, as quadrature mirror �ltering. Quadrature mirror �lters were studied before
wavelet theory. The decomposition step consists of applying a low-pass (eh) and a
band-pass (eg) �lter followed by downsampling (# 2) (i.e. retaining only the even
index samples), see Figure 2.1. The reconstruction consists of upsampling (" 2)
(i.e. putting a zero between every two samples) followed by �ltering and addition.
One can show that the conditions (2.28) correspond to the exact reconstruction of
a subband �ltering scheme. More details can be found in [153, 185, 188, 189].

An interesting problem now is; given a function f , determine, with a certain
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accuracy and in a computationally favorable way, the coe�cients �n;l of a func-
tion in the space Vn, which are needed to start the fast wavelet transform. This
problem is studied in Chapter 3, where solutions such as (quasi-)interpolation and
quadrature formulae are introduced.

2.8 Examples of wavelets

Now that we have discussed the essentials of wavelet multiresolution analysis, we
take a look at some important properties of wavelets.

Orthogonality: Orthogonality is convenient to have in many situations, e.g. it
directly links the L2 norm of a function to the norm of its wavelet coe�cients by

kfk =
sX

j;l

2j;l:

In the biorthogonal case these two quantities are only equivalent. Another ad-
vantage of orthogonal wavelets is that the fast wavelet transform is a unitary
transformation. Consequently, its condition number is equal to one, which is the
optimal case.

If the multiresolution analysis is orthogonal (remember that this includes semi-
orthogonal wavelets), the projection operators onto the di�erent subspaces yield
optimal approximations in the L2 sense.

Compact support: If the scaling function and wavelet are compactly sup-
ported, the �lters h and g are �nite impulse response �lters, so that the summations
in the fast wavelet transform are �nite. This obviously is of use in implementa-
tions. If they are not compactly supported, a fast decay is desirable so that the
�lters can be approximated reasonably by �nite impulse response �lters.

Rational coe�cients: For computer implementations it is of use if the �lter
coe�cients hk and gk are rationals or, even better, dyadic rationals. Multiplication
by a power of two on a computer corresponds to shifting bits, which is a very fast
operation.

Symmetry: If the scaling function and wavelet are symmetric, then the �lters
have generalized linear phase. The absence of this property can lead to phase
distortion. This is important in signal processing applications.

Smoothness: The smoothness of wavelets plays an important role in compres-
sion applications. Compression is usually achieved by setting small coe�cients
j;l to zero, and thus leaving out a component j;l  j;l from the original function.
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If the original function represents an image and the wavelet is not smooth, the
error can easily be detected visually. Note that the smoothness of the primary
functions is more important to this aspect than that of the dual. Also, a higher
degree of smoothness corresponds to better frequency localization of the �lters. Fi-
nally, smooth basis functions are desired in numerical analysis applications where
derivatives are involved.

Number of vanishing moments of the dual wavelet: We saw earlier that
this is important in singularity detection and characterization of smoothness spaces.
Also, it determines the convergence rate of wavelet approximations of smooth func-
tions. Finally, the number of vanishing moments of the dual wavelet is connected
to the smoothness of the wavelet (and vice versa).

Analytic expressions: As previously noted, an analytic expression for a scaling
function or wavelet does not always exists but in some cases it is available and
nice to have. In harmonic analysis, analytic expressions of the Fourier transform
are particularly useful.

Interpolation: If the scaling function satis�es

'(k) = �k for k 2 Z;

then it is trivial to �nd the function of Vj that interpolates data sampled on a grid
with spacing 2�j, since the coe�cients are equal to the samples.

As could be expected, it is not possible to construct wavelets that have all
these properties. We have a classic trade-o� situation. We take a look at several
compromises.

Examples of orthogonal wavelets:

� Two simple examples of orthogonal scaling functions are the box function |
�[0;1](x), and the Shannon sampling function | sinc(�x). The orthogonality
conditions are easy to verify, either in the time or frequency space. The
corresponding wavelet for the box function is the Haar wavelet

 Haar(x) = �[0;1=2](x) � �[1=2;1](x);

and the Shannon wavelet is

 Shannon(x) =
sin(2�x)� sin(�x)

�x
:

These two, however, are not very useful in practice, since the �rst has very
low regularity and the second has very slow decay.
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� A more interesting example is the Meyer wavelet and scaling function [140].
These functions belong to C1 and have faster than polynomial decay. Their
Fourier transform is compactly supported. The scaling function and wave-
let are symmetric around 0 and 1=2, respectively, and the wavelet has an
in�nite number of vanishing moments. The construction of these functions
was done on the Fourier transform side. In Chapter 7, we will discuss such
constructions and their applications in more detail.

� The Battle-Lemari�e wavelets are constructed by orthogonalizing B-spline
functions using (2.21) and have exponential decay [19, 125]. The wave-
let with N vanishing moments is a piecewise polynomial of degree N � 1
that belongs to CN�2.

� Probably the most frequently used orthogonal wavelets are the original Dau-
bechies wavelets [63, 65]. They are a family of orthogonal wavelets indexed
by N 2 N, where N is the number of vanishing wavelet moments. They are
supported on an interval of length 2N � 1. A disadvantage is that, except
for the Haar wavelet (which has N = 1), they cannot be symmetric or anti-
symmetric. Their regularity increases linearly with N and is approximately
equal to 0:2075N for large N . In [66], three variations of this family, all with
orthogonal and compactly supported functions, are constructed:

1. The previous construction does not lead to a unique solution if N and
the support length are �xed. One family is constructed by choosing, for
each N , the solution which has closest to linear phase (which is most
symmetric). The original family corresponds to choosing the extremal
phase.

2. Another family has more regularity, at the price of a slightly larger
support length (2N + 1).

3. In a third family, the scaling function also has vanishing moments
(Mp = 0 for 0 < p < N). This is of use in numerical analysis applica-
tions where inner products of arbitrary functions with scaling functions
have to be calculated very quickly [25]. Their construction was re-
quested by Ronald Coifman, and Ingrid Daubechies therefore named
them coiets. They are supported on an interval with length 3N � 1.

Examples of biorthogonal wavelets:

� Biorthogonal wavelets were constructed by Albert Cohen, Ingrid Daubechies
and Jean-Christophe Feauveau in [41, 45]. Here, �(!) is chosen equal to e�i!,
and thus

g(!) = �e�i! eh(! + �) and eg(!) = �e�i! h(! + �):
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Table 2.1: A quick comparison of wavelet families.

wavelet compact support analytic expression symmetry orthogonality compact

family primary dual primary dual semi full support b 
a x x o o o x x o

b x x x o x o o o

c x o x x x x o o

d o o o o x x x x

e o o x x x x x o

a: Daubechies' orthogonal wavelets
b: biorthogonal spline wavelets
c: semiorthogonal spline wavelets
d: Meyer wavelet
e: orthogonal spline wavelets

The scaling functions are the cardinal B-splines and the wavelets also are
spline functions. All functions including the dual ones have compact support
and linear phase. Moreover, all �lter coe�cients are dyadic rationals. A
disadvantage is that for small �lter lengths, the dual functions have very low
regularity.

� Semiorthogonal spline wavelets were constructed by Charles Chui and Jian-
zhong Wang in [37, 38, 39]. The scaling functions are cardinal B-splines of
order m and the wavelet functions are splines with support [0; 2m� 1]. All
primary and dual functions still have generalized linear phase and all coef-
�cients used in the fast wavelet transform are rationals. A powerful feature
here is that analytic expressions for the wavelet, scaling function, and dual
functions are available. A disadvantage is that the dual functions do not
have compact support, but have exponential decay instead. The same wave-
lets, but in a di�erent setting, were also derived by Akram Aldroubi, Murray
Eden and Michael Unser in [181, 183]. They also showed that, for N going
to in�nity, the spline wavelets converge to Gabor functions [182].

� Other semiorthogonal wavelets can be found in [115, 142, 143, 151]. A char-
acterization of all semiorthogonal wavelets is given in [4, 6].

The properties of some of the orthogonal, biorthogonal and semiorthogonal
wavelet families are summarized in Table 2.1.
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Examples of interpolating scaling functions:

� The Shannon sampling function

'Shannon =
sin(�x)

�x
;

is an interpolating scaling function. It is band-limited, but it has very slow
decay.

� Constructions of interpolating functions will be discussed in Chapter 3.

2.9 Wavelets on an interval

So far we have been discussing wavelet theory on the real line. For many applica-
tions, the functions involved are only de�ned on a compact set, such as an interval,
and to apply wavelets then requires some modi�cations.

2.9.1 Simple solutions

To be speci�c, let us discuss the case of the unit interval [0; 1]. Given a function
f on [0; 1], the most obvious approach is to set f(x) = 0 outside [0; 1], and then
use wavelet theory on the line. However, for a general function f this \padding
with 0" introduces discontinuities at the endpoints 0 and 1; consider for example
the simple function f(x) = 1, x 2 [0; 1]. Now, as we have said earlier, wavelets
are e�ective for detecting singularities, so arti�cial discontinuities are likely to
introduce signi�cant errors.

Another approach, which is often better, is to consider the function to be
periodic with period one, f(x + 1) = f(x). In other words, we assume that the
function is de�ned on the circle and identify the circle with [0; 1]. Wavelet theory
on the circle parallels that on the line. Note that if f has period one, then the
wavelet coe�cients on a given scale satisfy h f;  j;k i = h f;  j;k+2j i , k 2 Z, j > 0.
This simple observation readily allows us to rewrite wavelet expansions on the
line as analogous ones on the circle, with wavelets de�ned on [0; 1]. A periodic
multiresolution analysis on the interval [0; 1] can be constructed by periodizing the
basis functions as follows,

'�j;l(x) = �[0;1](x)
X
m

'j;l(x+m) for 0 6 l < 2j and j > 0: (2.39)

If the support of 'j;l, is a subset of [0; 1], then '
�
j;l = 'j;l. Otherwise 'j;l is chopped

into pieces of length one, which are shifted onto [0; 1] and added up, yielding '�j;l.

Similar de�nitions hold for  �j;l, e'�j;l and e �j;l. This \wrap around" procedure is
satisfactory in many situations (and certainly takes care of functions like f(x) = 1,
x 2 [0; 1]). However, unless the behavior of the function f at 0 matches that at 1,
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the periodic version of f has singularities there. A simple function like f(x) = x,
x 2 [0; 1], gives a good illustration of this.

A third method, which works if the basis functions are symmetric, is to use
reection across the edges. This preserves continuity, but introduces discontinuities
in the �rst derivative. This solution is sometimes satisfactory in image processing
applications.

2.9.2 Meyer's boundary wavelets

What really is needed, are wavelets intrinsically de�ned on [0; 1]. We sketch a
construction of orthogonal wavelets on [0; 1], recently presented by Yves Meyer
[141]. We start from an orthogonal Daubechies scaling function with 2N non-zero
coe�cients:

'(x) = 2
2N�1X
k=0

hk '(2x� k): (2.40)

It is easy to see that supp' = [0; 2N � 1], and, as a consequence,

Bj;k = supp'j;k(x) = [2�jk; 2�j(k + 2N � 1)]: (2.41)

This implies that for su�ciently small scales 2�j, j > j0, a function 'j;k can only
intersect at most one of the endpoints 0 or 1. Let us restate this in a di�erent way.
De�ne the set of indices

Sj = fk : Bj;k \ (0; 1) 6= ;g:

We de�ne three subsets of this set containing the indices of the basis functions at
the left boundary, in the interior, and at the right boundary:

S
(1)
j = fk : 0 2 B�

j;kg;
S
(2)
j = fk : B�

j;k � (0; 1)g;
S
(3)
j = fk : 1 2 B�

j;kg:

Here E� denotes the interior of the set E. For su�ciently large j the sets S
(1)
j and

S
(3)
j are disjoint and

Sj = S
(1)
j [ S(2)

j [ S(3)
j :

It is easy to write down what these sets are more explicitly:

S
(1)
j = fk : �2N + 2 6 k 6 �1g;
S
(2)
j = fk : 0 6 k 6 2j � 2N + 1g;
S
(3)
j = fk : 2j � 2N + 2 6 k 6 2j � 1g:
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Note, in particular, that the sets S
(1)
j and S

(3)
j contain the indices of 2N � 2

functions, independently of j. We now let V
[0;1]
j denote the restriction of functions

to Vj :

V
[0;1]
j = ff : f(x) = g(x); x 2 [0; 1]; for some function g 2 Vjg:

Clearly, since the Vj form an increasing sequence of spaces,

V
[0;1]
j � V

[0;1]
j+1 ;

and V
[0;1]
j , j > j0, form a multiresolution analysis of L2([0; 1]). It is also obvious

that the functions in f'(x� l)j[0;1] : l 2 Sjg span V [0;1]
j . Here g(x) j[0;1] denotes the

restriction of g(x) to [0; 1]. Not quite as obvious is the fact that the functions in

this collection are linearly independent, and hence form a basis for V
[0;1]
j . In order

to obtain an orthonormal basis, we may argue as follows. As long as the function
'j;k lives entirely inside [0; 1], restricting it to [0; 1] has no e�ect. In particular,

the functions 'j;k, k 2 S(2)
j are still pairwise orthogonal. A key observation now is

that for k 2 S(1)
j , l 2 S(2)

j [ S(3)
j ,

h'j;k; 'j;l i [0;1] =
Z 1

0
'j;k(x)'j;l(x) dx =

Z +1

�1

'j;k(x)'j;l(x) dx = 0; (2.42)

and similarly when k 2 S
(3)
j , l 2 S

(2)
j [ S(1)

j . We see that the three collections

f'(x � l)j[0;1] : l 2 S(1)
j g, f'(x � l)j[0;1] : l 2 S

(2)
j g, and f'(x � l)j[0;1] : l 2 S

(3)
j g

are mutually orthogonal. So, since the functions in f'(x � l)j[0;1] : l 2 S
(2)
j g

already form an orthonormal set, it only remains to separately orthogonalize the
functions in f'(x� l)j[0;1] : l 2 S(1)

j g and in f'(x� l)j[0;1] : l 2 S(3)
j g. This is easily

accomplished with a Gram-Schmidt procedure.
Now, if we let W

[0;1]
j denote the restriction of functions in Wj to [0; 1], then we

have that
V

[0;1]
j+1 = V

[0;1]
j +W

[0;1]
j : (2.43)

So, the basis elements in V
[0;1]
j together with the restriction of the wavelets  j;k to

[0; 1] span V
[0;1]
j+1 . However, there are 2

j+2N �2 wavelets that intersect [0; 1], and,
since dimV

[0;1]
j+1 � dimV

[0;1]
j = 2j we have too many functions. The restrictions of

the wavelets in Wj that live entirely inside [0; 1] are still mutually orthogonal and,

by an observation similar to (2.42), they are also orthogonal to V
[0;1]
j . There are

2N � 2 wavelets whose support intersects an endpoint. However, we only need
N � 1 basis functions at each endpoint. One can now use (2.31) to write out the
dependencies, and construct N � 1 basis functions at each endpoint. After that,
we just apply a Gram-Schmidt procedure again, and we have an orthonormal basis
for W

[0;1]
j .



2.9. WAVELETS ON AN INTERVAL 35

This elegant construction of Yves Meyer has a couple of disadvantages. Among
the functions 'j;k that intersect [0; 1] there are some that are almost zero there.
Hence, the set f'j;kgk2Sj is almost linearly dependent, and, as a consequence,
the condition number of the matrix, corresponding to the change of basis from
f'j;kgk2Sj to the orthonormal one, becomes quite large. Furthermore, we have

dimV
[0;1]
j 6= dimW

[0;1]
j , which means that there is an inherent imbalance between

the spaces V
[0;1]
j and W

[0;1]
j , which is not present in the case of the whole real line.

2.9.3 Dyadic boundary wavelets

As we noted earlier, see (2.34), all polynomials of degree 6 N � 1 can be writ-
ten as linear combinations of the 'j;l for l 2 Z. Hence, the restriction of such

polynomials to [0; 1] are in V
[0;1]
j . Since this fact is directly linked to many of the

approximation properties of wavelets, any construction of a multiresolution anal-
ysis on [0; 1] should preserve this. The construction in [46] uses this as a starting
point and is slightly di�erent from the one by Yves Meyer. Let us briey describe
this construction as well. Again we start with an orthogonal Daubechies scaling
function ' with 2N non-zero coe�cients, and assume that we have picked the
scale �ne enough so that the endpoints are independent as before. By (2.34) and,
since the f'j;kg is an orthonormal basis for Vj, each monomial x�, � 6 N � 1, has
the representation x� =

P
k hx�; 'j;k i'j;k(x). The restriction to [0; 1] can then be

written as

x�j[0;1] =

0@ 0X
k=�2N+2

+
2j�2NX
k=1

+
2j�1X

k=2j�2N+1

1A hx�; 'j;k i'j;k(x)j[0;1]:
If we let

x�j;L = 2j(�+1=2)
0X

k=�2N+2

hx�; 'j;k i'j;k(x)j[0;1]

and, similarly,

x�j;R = 2j(�+1=2)
2j�1X

k=2j�2N+1

hx�; 'j;k i'j;k(x)j[0;1];

then

2j=2(2jx)�j[0;1] = x�j;L + 2j(�+1=2)
2j�2NX
k=1

hx�; 'j;k i'j;k(x)j[0;1] + x�j;R:

The spaces �Vj, j > j0, that form a multiresolution analysis of L2([0; 1]), we take to

be the linear span of the functions fx�j;Lg�6N�1, fx�j;Rg�6N�1, and f'j;kj[0;1]g2
j�2N
k=1 :
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�Vj = span fx�j;Lg�6N�1 [ span f'j;kg2j�2Nk=1 [ span fx�j;Rg�6N�1:
Finding an orthonormal basis for �Vj now is easy; the collections fx�j;Lg�6N�1,
f'j;kg2j�2Nk=1 , and fx�j;Rg�6N�1 are mutually orthogonal, and all of the functions in
these are linearly independent. We thus only have to orthogonalize the functions
x�j;L and x

�
j;R to get our orthonormal basis. Note that, by construction, dim �Vj = 2j

and all polynomials of degree 6 N � 1 are in �Vj. It is also easy to see that

�Vj � �Vj+1:

To get to the corresponding wavelets, we let �Wj be the orthogonal complement
of �Vj in �Vj+1. The wavelets  j;k with 1 6 k 6 2j � 2N are all in �Vj+1 and live
entirely inside [0; 1]. The remaining 2N functions required for an orthonormal
basis of �Wj, can be found, for example by using (2.31) again.

This last construction carries over to more general situations. For example, we
can also use biorthogonal wavelets and much more general closed sets than [0; 1]
[12, 47, 108].

There are also other constructions of wavelets on [0; 1]. For historical perspec-
tive, it is interesting to notice that Franklin's original construction [86] was given
for [0; 1]. Another interesting one, in the case of semiorthogonal spline wavelets,
has been given by Charles Chui and Ewald Quak [33]; we refer to the original
paper for details.

2.10 Wavelet packets

A simple, but powerful extension of wavelets and multiresolution analysis are wave-
let packets [53]. In this section, it will be useful to switch to the following notation:

me(!) = he(!) g1�e(!) for e = 0; 1:

The fundamental observation is the following fact, called the splitting trick [36,
44, 140]:
Suppose that the set of functions ff(x� k) j k 2 Zg is a Riesz basis for its closed

linear span S. Then the functions

f0k =
1p
2
f0(x=2� k) and f1k =

1p
2
f1(x=2� k) for k 2 Z;

also constitute a Riesz basis for S, where

bf e(!) = me(!=2) bf(!=2):
We see that the classical multiresolution analysis is obtained by splitting Vj

with this trick into Vj�1 and Wj�1 and then doing the same for Vj�1 recursively.
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Figure 2.4: Wavelet packets scheme.

The wavelet packets are the basis functions that we obtain if we also use the
splitting trick on the Wj spaces. So starting from a space Vj, we obtain, after
applying the splitting trick L times, the basis functions

 Le1 ;:::;eL;j;k(x) = 2(j�L)=2 Le1;:::;eL(2
j�Lx� k);

with b Le1;:::;eL(!) =
LY
i=1

mei(2
�i !) b'(2�L!):

So, after L splittings, we have 2L basis functions and their translates over integer
multiples of 2L�j as a basis of Vj . The connection between the wavelet packets
and the wavelet and scaling functions is

' =  L0;:::;0 and  =  L1;0;:::;0:

However, we do not necessarily have to split each subspace at every stage.
In Figure 2.4, we give a schematical representation of a space and its subspaces
after using the splitting on three levels. The top rectangle represents the space
V3 and each other rectangle corresponds to a certain subspace of V3 generated by
wavelet packets. The slanted lines between the rectangles indicate the splitting,
the left referring to the �lter m0 and the right to m1. The dashed rectangles then
correspond to the wavelet multiresolution analysis V3 = V0 �W0 �W1 �W2. The
bold rectangles correspond to a possible wavelet packet splitting and a basis with
functionsn

 1
0(4x� k);  2

1;1(2x� k);  3
0;0;1(x� k);  3

1;0;1(x� k) j k 2 Z
o
:

For the dual functions, a similar procedure has to be followed.
In the Fourier domain, the splitting trick corresponds to dividing the frequency

interval essentially represented by the original space into a lower and an upper part.
So the wavelet packets allow more exibility in adapting the basis to the frequency
contents of a signal.
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It is easy to develop a fast wavelet packet transform. It just involves applying
the same low and band pass �lters also to the coe�cient of functions of Wj again
in an iterative manner. This means that, starting from M samples, we construct
a full binary tree with (M log2M) entries. The power of this construction lies
in the fact that we have much more freedom in deciding which basis functions
we will use to represent the given function. We can choose to use the set of M
coe�cients of the tree to represent the function that is optimal with respect to a
certain criterion. This procedure is called best basis selection, and one can design
fast algorithms that make use of the tree structure. The particular criterion is
determined by the application, and which basis functions that will end up in the
basis depends on the data.

For applications in image processing, entropy-based criteria were proposed in
[54]. The best basis selection in that case has a numerical complexity of O(M).
Applications in signal processing can be found in [52, 195].

This wavelet packets construction can also be combined with wavelets on an
interval and wavelets in higher dimensions [73].

2.11 Multidimensional wavelets

Up till now we have focused on functions of one variable and the one-dimensional
situation. However, there are also wavelets in higher dimensions. A simple way to
obtain these is to use tensor products. To �x ideas, let us consider the case of the
plane. Let

�(x; y) = '(x)'(y) = '
 '(x; y);
and de�ne

V0 = ff : f(x; y) =
X
k1;k2

�k1;k2 �(x� k1; y � k2); � 2 l2(Z2)g:

Of course, if f'(x � l) j l 2 Zg is an orthonormal set, then f�(x � k1; y � k2)g
form an orthonormal basis for V0. By dyadic scaling we obtain a multiresolution
analysis of L2(R2). The complement W0 of V0 in V1 is similarly generated by the
translates of the three functions

	(1) = '
  ; 	(2) =  
 '; and 	(3) =  
  : (2.44)

Another, perhaps even more straightforward, wavelet decomposition in higher
dimensions exists. By carrying out a one-dimensional wavelet decomposition for
each variable separately, we obtain

f(x; y) =
X
i;l

X
j;k

h f;  i;l 
  j;k i  i;l 
  j;k(x; y): (2.45)

Note that the functions  i;l
 j;k involve two scales, 2�i and 2�j, and each of these
functions are (essentially) supported on a rectangle. The decomposition (2.45) is
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therefore called the rectangular wavelet decomposition of f while the functions
in (2.44) are the basis functions of the square wavelet decomposition. For both
decompositions, the corresponding fast wavelet transform consists of applying the
one-dimensional fast wavelet transform to the rows and columns of a matrix.

These simple constructions are insu�cient in many cases. What we need some-
times are wavelets intrinsically constructed for higher dimensions. One of the in-
teresting problems here is how to split a space into complementary subspaces. In
the univariate case we split into two spaces, each with essentially the same \size."
If we use the square tensor product basis in d dimensions, we split into 2d sub-
spaces, 2d � 1 of which are spanned by wavelets. There are several constructions
of nonseparable wavelets that use this kind of splitting. One of the problems here
is, given the scaling function, is there an easy way, cf. (2.20), to �nd the wavelets?
This was studied in [72, 151, 164]. Another idea is to still try to split into just two
subspaces. This involves the use of di�erent lattices [130]. In the bivariate case,
Ingrid Daubechies and Albert Cohen constructed smooth, compactly supported,
biorthogonal wavelets, using ideas from the univariate construction [43].

Also many other constructions, such as hexagonal lattices [48] and Cli�ord
valued wavelets [13], exist.

2.12 Applications

2.12.1 Data compression

A common applications of wavelet theory is data compression. There are two
basic kinds of compression schemes: lossless and lossy. In the case of lossless
compression, one is interested in reconstructing the data exactly, without any loss
of information. We consider here lossy compression. This means we are ready to
accept an error, as long as the quality after compression is acceptable. With lossy
compression schemes we potentially can achieve much higher compression ratios
than with lossless compression.

To be speci�c, let us assume that we are given a digitized image. The com-
pression ratio is de�ned as the number of bits the initial image takes to store on
the computer divided by the number of bits required to store the compressed im-
age. The interest in compression has grown as the amount of information we pass
around has increased. This is easy to understand when we consider the fact that
to store a moderately large image, say a 512�512 pixels, 24 bit color image, takes
about 0.75 MBytes. This is only for still images; in the case of digital video, the
situation becomes even worse. Then, we need this kind of storage for each frame,
and we have something like 30 frames per second.

Let us de�ne, somewhat mathematically, what we mean by an image. Let us
for simplicity discuss an L � L grayscale image with 256 grayscales (i.e. 8 bit).
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Figure 2.5: Image transform coding.

This can be considered to be a piecewise constant function f de�ned on a square

f(x; y) = pij 2 N; for i 6 x < i+ 1; j 6 y < j + 1; and 0 6 i; j < L;

where 0 6 pij 6 255. Now, one of the standard procedures for lossy compression
is through transform coding, see Figure 2.5. The most common transform used in
this context is the \Discrete Cosine Transform" (DCT), a variant of the Fourier
transform. However, we are interested in the case when the transform is the fast
wavelet transform.

There are several ways to use the wavelet transform for compression purposes
[132, 133]. One is to consider compression to be an approximation problem [77, 78].
More speci�cally, let us �x an orthogonal wavelet  . Given an integer M > 1, we
try to �nd the \best" approximation of f by using a representation

fM (x) =
X
kl

bjk  jk(x) with M non-zero coe�cients bjk: (2.46)

The basic reason why this potentially might be useful is that each wavelet picks up
information about the image f essentially at a given location and at a given scale.
Where the image has more interesting features, we can spend more coe�cients,
and where the image is nice and smooth we can use fewer, and still get good
quality of approximation. In other words, the wavelet transform allows us to focus
on the relevant parts of f . Now, to give this mathematical meaning, we need to
agree on an error measure. Ideally, for image compression we should use a norm
that corresponds as closely as possible to the human eye. However, let us make it
simple and discuss the case of L2.

So we are interested in �nding an optimal approximation minimizing the error
kf � fMk2. Because of the orthogonality of the wavelets this equals0@X

jk

j h f;  jk i � bjkj2
1A1=2

: (2.47)

A moment's thought reveals that the best way to pick M non-zero coe�cients bjk,
making the error as small as possible, is by simply picking the M coe�cients with
largest absolute value, and setting bj;k = h f;  jk i for these numbers. This then
yields the optimal approximation f optM .

Another fundamental question is which images can be approximated well by
using the procedure just sketched. Let us take this to mean that the error satis�es

kf � f optM k2 = O(M��); (2.48)
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for some � > 0. The larger �, the faster the error decays as M increases and the
fewer coe�cients are generally needed to obtain an approximation within a given
error. The exponent � can be found easily. It can be shown that0@X

M>1

(M�kf � f optM k2)p
1

M

1A1=p

� (
X
jk

j h f;  jk i jp)1=p (2.49)

with 1=p = 1=2 + �. The maximal � for which (2.48) is valid can be estimated
by �nding the smallest p for which the right-hand side of (2.49) is �nite. The
expression on the right is one of many equivalent norms on the Besov space _B2�;p

p

(Besov spaces are smoothness spaces generalizing the H�older continuous functions).
The � in the left-hand side of (2.49) is actually not exactly the same as in (2.48).
However, for practical purposes, the di�erence is of no consequence.

In Chapter 7, we construct algorithms for image compression. Here, we use a
construction of wavelets on the Fourier transform side. As a result, the transform
can be seen as a variant of the DCT.

2.12.2 Operator analysis

As mentioned earlier, interest in wavelets historically grew from the fact that
they are e�ective tools for studying problems in partial di�erential equations and
operator theory. More speci�cally, they are useful for understanding properties of
so-called Calder�on-Zygmund operators.

Let us �rst make a general observation about the representation of a linear
operator T and wavelets. Suppose that f has the representation

f(x) =
X
jk

h f;  jk i jk(x):

Then,
T f(x) =

X
jk

h f;  jk iT  jk(x);

and, using the wavelet representation of the function T  jk(x), this equals

X
jk

h f;  jk i
X
il

hT  jk;  il i il(x) =
X
il

0@X
jk

hT  jk;  il i h f;  jk i
1A il(x):

In other words, the action of the operator T on the function f is directly translated
into the action of the in�nite matrix AT = f hT  jk;  il i gil;jk on the sequence
fh f;  jk i gjk. This representation of T as the matrix AT is often referred to as the
\standard representation" of T [25]. Also a \nonstandard representation" exists.
For virtually all linear operators a function (or, more generally, a distribution),
the reproducing kernel K, exists so that

T f(x) =
Z
K(x; y)f(y) dy:
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The nonstandard representation of T is given by the (two-dimensional) wavelet

coe�cients of the kernel K, using the square decomposition fhK;	(j)
k1 ;k2
i g (again,

we have more than one wavelet function in two dimensions), while the standard
representation corresponds to the rectangular decomposition.

Let us then briey discuss the connection with Calder�on-Zygmund operators.
Consider a typical example. Let H be the Hilbert transform,

H f(x) =
1

�

Z 1

�1

f(s)

x� s ds:

The basic idea now is that the wavelets  jk are approximate eigenfunctions for this,
as well as for many other related (Calder�on-Zygmund) operators. We note that
if  jk were exact eigenfunctions, then we would have H jk(x) = �jk  jk(x), for
some number �jk and the standard representation would be a diagonal \matrix":

AH = f hH il;  jk i g = f�il h il;  jk i g = f�il �il;jkg:

This is, unfortunately, not the case. However, it turns out that AT is an almost
diagonal operator, in the appropriate, technical sense, with the o�-diagonal ele-
ments quickly becoming small. To get some idea why this is the case, note that
for large jxj, we have, at least heuristically,

H jk(x) �
1

�x

Z
 jk(y) dy:

A priori, the decay of the right-hand side would thus be O(1=x), which of course
is far from the rapid decay of a wavelet  jk. Recall, however, that  jk has at least
one vanishing moment so the decay is in fact much faster than just O(1=x), and
the shape of H jk(x) resembles that of  jk(x).

So, for a large class of operators, the matrix representation, either the standard
or the nonstandard, has a rather precise structure with many small elements.
In this representation, we then expect to be able to compress the operator by
simply omitting small elements. Note that this is essentially the same situation,
as in the case of image compression, the \image" now being the kernel K(x; y).
Hence, if we could do basic operations, such as inversion and multiplication, with
compressed matrices, rather than with the discretized versions of T , then we may
signi�cantly speed up the numerical treatment. This program of using the wavelet
representations for the e�cient numerical treatment of operators was initiated in
[25]. We also refer to [8, 9] for related material and many more details.

In a di�erent direction, because of the close similarities between the scaling
function and �nite elements, it seems natural to try wavelets where traditionally
�nite element methods are used, e.g. for solving boundary value problems [102].
There are interesting results showing that this might be fruitful; for example, it has
been shown [25, 60, 145, 197] that for many problems the condition number of the
N �N sti�ness matrix remains bounded as the dimension N goes to in�nity. This
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is in contrast with the situation for regular �nite elements, where the condition
number tends to in�nity.

Wavelets have also been used in the solution of evolution equations [18, 92,
121, 129]. A typical test problem here is Burgers' equation:

@u

@t
+ u

@u

@x
= �

@2u

@x2
:

The time discretization is obtained here using standard schemes such as Crank-
Nicholson or Adams-Moulton. Wavelets are used in the space discretization. Adap-
tivity can be used both in time and space [18].

We will discuss the connection between wavelets and di�erential equations fur-
ther in Chapters 5 and 6.
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Chapter 3

Quadrature Formulae for the

Calculation of the Wavelet

Decomposition

\ It has been long my personal understanding that the separation of practical

and theoretical work is arti�cial and injurious.

Much of the practical work done in computing, both in software and hardware

design, is unsound and clumsy because the people who do it do not have any

clear understanding of the fundamental principles underlying their work.

Most of the abstract mathematical and theoretical work is sterile because

it has no point of contact with real computing."

|Christopher Strachy, seen on a Computer Science professor's door.

3.1 Introduction

As we saw in the previous chapter, almost every application using wavelets at
some point involves the calculation of the multiresolution coe�cients �j;l and j;l
of a function f . Remember that these coe�cients are de�ned as inner products
with dual functions. However, we can hardly ever calculate these integrals exactly.
Therefore, we need to construct schemes to approximate them numerically. A
classic method is a so-called quadrature formula, which approximates an integral
of a function, possibly multiplied with a weight function, with a linear combination
of evaluations of that function at particular points called abscissae [59, 148].

We discuss here the construction and use of quadrature formulae in connection
with multiresolution analysis. Algorithms for the implementation of the construc-
tions are provided. Since the construction involves the moments of the scaling
function we also derive a recursion formula to calculate them. We show that
the construction using monomial moments is ill-conditioned and build a well-
conditioned construction using Chebyshev polynomials. Numerical examples of

45
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the use of these formulae in a multiresolution analysis are given. Finally, we com-
pare the quadrature formulae with other methods and discuss how wavelets on an
interval can be handled.

3.2 General idea

Consider a multiresolution analysis where the �nest level is n and assume, without
loss of generality, that the coarsest level is 0. This implies that we need to calculate
the coe�cients �j;l for 0 6 j 6 n and j;l for 0 6 j < n. As described in Section
2.7, the coe�cients �j;l and j;l with j < n can be calculated from the �n;l using
the fast wavelet transform. We therefore use the quadrature formula on the �nest
level to approximate the �n;l. Remember that these coe�cients are de�ned as

�n;l =
p
2n
Z +1

�1

f(x) e'(2nx� l) dx:
We only consider real-valued functions, so the complex conjugation is superuous.
Because of the translation and dilation properties we can focus on the case n =
l = 0,

�0;0 =
Z +1

�1

f(x) e'(x) dx:
Here we consider the dual scaling function as a weight function. Furthermore, for
notational simplicity, we from now on omit the tilde in the notation of the dual
scaling function. We keep in mind that the coe�cients are given by the inner
products with the dual functions and remember that, as mentioned earlier, basis
functions and dual functions are always interchangeable.

The idea of a quadrature formula now is to �nd weights wk and abscissae xk
so that Z +1

�1

f(x)'(x) dx � Q[f(x)] =
rX

k=0

wk f(xk): (3.1)

Once the weights and abscissae are known, the coe�cients on the �nest level can
be approximated by

�n;l �
1p
2n

rX
k=0

wk f

 
xk + l

2n

!
: (3.2)

Evidently, the quadrature formula can also be used to calculate the coe�cients �j;l
with j < n. Why it is better to use the quadrature formula only on the �nest level
and the fast wavelet transform on the coarser levels will become apparent later.

We now need to address two important issues: how to choose the abscissae and
how to �nd the weights.

The weights are determined by the fact that the quadrature formula is, in some
sense, a good approximation for the integral. We will be more precise later on and
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just mention now that this typically leads to a linear system in the unknowns wk.
For the abscissae one classically has two options. On one hand one can �x the
abscissae and solve for the weights, while on the other hand one can consider the
abscissae as unknowns too, cf. the idea of Gaussian quadrature formulae [170]. In
the �rst case the quadrature formula is easier to construct, while in the second
it is more accurate. In connection with multiresolution analysis, we settle for a
compromise.

The abscissae have to be chosen equidistant for two reasons. First of all, in
many applications such as signal processing, image processing and time series, the
function f is only known through its evaluations at equidistant points. The second
reason follows from the translation properties of the multiresolution analysis. One
typically needs to calculate the coe�cients �n;l for a wide range of the parameter l.
If the abscissae are not equidistant, each coe�cient needs r function evaluations.
Note that function evaluations can be computationally very expensive in compari-
son with the algebraic operations of the quadrature formula. In case the abscissae
are equidistant, quadrature formulae for neighboring coe�cients can share func-
tion evaluations. More precisely, if the distance between two abscissae is 2�n, each
extra coe�cient only needs one extra function evaluation, cf. (3.2).

The fact that they are equidistant does not pin down their location exactly.
We still can allow a shift � and a di�erent spacing. Therefore, we let the abscissae
be of the form k2�s + � with k 2 Z. The shift � is an extra unknown and is
determined together with the weights by the fact that the quadrature formula
needs to approximate the integral.

Let us consider the problem of �nding the unknowns. A popular technique to
solve problems involving functions in numerical analysis is to design an approxi-
mate solution scheme that is exact for polynomials. When numerically approxi-
mating integrals, this leads to the following de�nition.

De�nition 3.1 The degree of accuracy of a quadrature formula is q if it yields

the exact result for every polynomial of degree less than or equal to q.

We can write this as

Q[xi] = Mi for 0 6 i 6 q: (3.3)

The importance of the degree of accuracy can be understood as follows: if the
function f is smooth, it locally resembles a polynomial and the quadrature formula
gives an accurate result. We give a more precise statement in Section 3.5. Note
that we do not impose any regularity conditions on '. Equations (3.3) now lead
to an algebraic system in the unknowns wk and � .

The smaller the number of abscissae r, the more e�cient the quadrature for-
mula since the number of function evaluations and algebraic operations for one
coe�cient is proportional to r. From simply counting the number of unknowns
and equations we can hope for q = r. However, this is not guaranteed as the
algebraic system is nonlinear.
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3.3 Special cases

3.3.1 Trapezoidal rule

A simple quadrature formula is the trapezoidal rule, where

Q[f(x)] =
X
k

'(k) f(k): (3.4)

In general, the use of this rule is limited because it only has a degree of accuracy
equal to one. In connection with multiresolution analysis, however, the following
lemma holds:

Lemma 3.2 If the scaling function satis�es the Strang-Fix condition,

b'(p)(k2�) = 0 for 0 6 p < N and k 6= 0;

the degree of accuracy of the trapezoidal rule (3.4) is equal to N � 1.

Proof : Follows immediately from (2.33) for x = 0. 2

In other words, if the scaling function and its integer translates can reproduce
polynomials up to degree N � 1, the trapezoidal rule has a degree of accuracy
equal to N . This simple result is remarkable. It was already known that the
trapezoidal rule is more accurate than expected in special cases such as periodic
integrands. This lemma adds another case, namely when the weight function sat-
is�es the Strang-Fix condition up to some order. Note that no regularity of the
weight function ' is required. The function only needs to be continuous at the in-
tegers. Typical functions that satisfy the Strang-Fix condition are the functions of
�nite element methods such as B-splines. In case ' satis�es a re�nement relation,
the values '(k) can easily be calculated as solutions of an eigenvalue problem as
described in [165].

A disadvantage is that the trapezoidal rule is not very e�cient. In case ' is
not compactly supported, the sum in (3.4) has to be broken o�, which usually
leads to a large number of abscissae. But also when ' is compactly supported, the
trapezoidal rule is not really e�cient: the Daubechies orthogonal scaling functions
have a support length of 2N � 1, and hence r = 2N � 2 = 2q. Remember that
we are hoping for r = q. Only in the case of cardinal B-splines is the trapezoidal
rule useful. The B-spline of order m has support width of m and can reproduce
polynomials of degree less than or equal to m� 1. Consequently, q = r = m� 1.

3.3.2 One-point formulae

Before we consider the general construction, let us take a look at the case where
the number of abscissae is one. Since the integral of the scaling function is one,
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we can write a one-point formula as Q[f(x)] = f(x1). This means that we take
the function value as an approximation for the coe�cient. Evidently, if x1 =M1,
the degree of accuracy is equal to one. In the case of orthogonal wavelets, the
following theorem holds:

Theorem 3.3 If '(x) is an orthogonal scaling function with N > 1, then

M2 = M2
1:

Proof : De�ne
�m = hx; '(x)'(x�m) i :

Because of the orthogonality it holds that

��m = hx�m;'(x�m)'(x) i = �m:

Consequently,

0 =
X
m

m�m = hx; '(x)
X
m

m'(x�m) i :

Since N > 1, we have thatX
m

m'(x�m) = x�M1:

Combining the last two equations yieldsM2 �M2
1 = 0. 2

This implies that the degree of accuracy of a one-point quadrature formula is two,
which is one more than expected. Note: This theorem was proven independently
for the case of Daubechies' scaling functions in [93].

3.3.3 Coiets

The idea of a one-point quadrature is attractive because of its simplicity. Its degree
of accuracy is, however, limited. Therefore, Ingrid Daubechies constructed orthog-
onal scaling functions with compact support for which the one-point quadrature
has a higher degree of accuracy [66]. These scaling functions again can reproduce
polynomials up to degree N � 1, but moreover have N � 1 vanishing moments,

Mp = 0 for 1 6 p < N: (3.5)

The corresponding wavelets were called coiets after Ronald Coifman, who asked
for their construction, because he and his collaborators wanted to use them in
numerical analysis applications such as the solution of integral equations [25].
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Figures 3.1 and 3.2 show them in case N = 2 and N = 4. We see from (2.33) that
they also satisfy X

k

kp'(k) = �p for 0 6 p < N: (3.6)

In this case the one-point quadrature formula with x1 = 0 immediately has a
degree of accuracy of N � 1.

The price to pay for these extra moment conditions is a larger support of the
basis functions. The support width of the coiets and the associated wavelets
is 3N � 1, as opposed to 2N � 1 for the original Daubechies orthogonal scaling
functions and wavelets. This implies that all fast wavelet transform �lters fhkg and
fgkg will be approximately 50% longer. This can be a very high price, especially
in real time applications or situations where one needs to calculate the fast wavelet
transform many times. In these cases one might prefer to use a more complicated
quadrature formula on the �nest level, which has a su�ciently high degree of
accuracy but does not imply the use of longer �lters.
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Figure 3.1: Coiet for N = 2.

3.3.4 Practical aspects

In applications such as signal and image processing, usually the data is given in
the form of discrete samples fdlg. One then has several possibilities regarding how
to relate these samples to a continuous function. What is often done is to take
the sample values as coe�cients of the basis functions. It was proposed in [135] to
construct a function vn 2 Vn as

vn(x) =
p
h
X
l

dl 'n;l(x) with h = 2�n
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Figure 3.2: Coiet for N = 4.

to start the multiresolution analysis. We can see that the continuous function vn
will in a way \follow" the discrete samples dl. The quadrature formula can help us
to �nd a relationship between the function vn and the discrete samples dl. Indeed,
using the notation with tilde again,

p
h dl = h vn; e'n;l i

and

h vn; e'n;l i =
p
h [vn(h (M1 + l)) +O(ht)] with h = 2�n;

so

dl = vn(h (M1 + l)) +O(ht):
This means that vn satis�es a quasi-interpolating property. Quasi-interpolation
will be studied in greater detail in Section 3.8.3. Here t = 2 in general, t = 3 for
orthogonal wavelets and t = N for coiets.

Consider the case where the samples dl can be seen as function evaluations of
a smooth function f , dl = f(hl). Then the following theorem is important:

Theorem 3.4 If f 2 CN with f (i) bounded for i 6 N , then (h = 2�n)X
l

f(hl)'(2nx� l) =
X
l

'(l) f(x � hl) +O(hN ):

Proof :

X
l

f(hl)'(2jx� l) =
X
l

N�1X
i=0

(hl � x)i
i!

f (i)(x)'(2jx� l) +O(hN )
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=
N�1X
i=0

f (i)(x)
(�h)i
i!

X
l

(2jx� l)i '(2jx� l) +O(hN )

=
N�1X
i=0

f (i)(x)
(�h)i
i!

X
l

li'(l) +O(hN )

=
X
l

'(l)
N�1X
i=0

f (i)(x)
(�hl)i
i!

+O(hN )

=
X
l

'(l) f(x � hl) +O(hN ):

2

This theorem states that taking function evaluations as coe�cients results in
approximating a di�erent function efn(x) =

P
l '(l) f(x � hl) with an error of

O(hN ). This function can be seen as a \blurred" version of f(x), as f'(l)g is a
low pass �lter. Now, efn(x) will converge to f(x) for n ! 1 since

P
k '(k) = 1.

However, in general this convergence is only O(h). In the case of the coiets we
see from (3.6) that efn(x) = f(x) +O(hN ).

3.4 General case

3.4.1 Construction scheme

Since the degree of accuracy of a one-point formula in general is limited, we con-
struct multiple-point quadrature formulae. In this section we assume that ' has
compact support [0; L] and satis�es a re�nement equation (2.4) with L + 1 non-
zero coe�cients hk. Although the construction is general, we focus on scaling
functions with compact support, since in this case we have the extra limitation
that the abscissae should fall inside the integration interval. We construct an r

point quadrature formula with xk = ak�� , ak = (k�1)2s and (r�1)2s�L 6 � 6 0.
The range of the shift � is determined by the requirement that no abscissae should
fall outside the integration interval. In order to have a non-zero range for the shift
� , the parameters r and s should be chosen so that (r � 1)2s < L. This technique
to construct quadrature formulae is also used in [25], but there the shift � is given
a �xed value.

Since there are r+1 unknowns f�; w1; : : : ; wrg, one can try to achieve a degree
of accuracy q = r. This results in the following system, which is nonlinear in the
unknown � ,

rX
k=1

wk [ak � � ]i = Mi 0 6 i 6 r: (3.7)

The value of the shift � can be determined using the product polynomial �(x).
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This polynomial is de�ned as

�(x) =
rY

k=1

(x� xk) =
rY

k=1

(x+ � � ak) =
rX
i=0

pi(�)x
i;

where pi(�) is a polynomial of degree r � i. Since the degree of accuracy is r, the
quadrature formula gives the exact result for the product polynomial �(x) so,

0 = Qr[�(x)] =
Z L

0
'(x)�(x) dx =

Z L

0
'(x)

rX
i=0

pi(�)x
i dx

=
rX
i=0

pi(�)Mi = �(�):

Here �(�) is a polynomial of degree r in � . For the quadrature formula to exist,
�(�) must have a root in the interval [(r � 1)2s � L; 0]. However, the existence
of such a root is not theoretically guaranteed. If there is no root in this interval,
an arbitrary value for � must be chosen and one degree of accuracy is lost. Once
� is determined, the weights are the solution of the linear system formed by r

equations of (3.7). In order to construct �(�) we write

pi(�) =
r�iX
j=0

pi;j �
j and �(�) =

rX
i=0

r�iX
j=0

pi;j �
jMi =

rX
j=0

0@r�jX
i=0

Mi pi;j

1A � j :
The coe�cients pi;j are symmetric (pi;j = pj;i), since the product polynomial is

symmetric in � and x, and can be found as p
(r)
i;j where

�(m)(x) =
mY
k=1

(x+ � � ak) =
mX
i=0

m�iX
j=0

p
(m)
i;j �

jxi:

An algorithm to calculate the pi;j can be derived by writing

�(m)(x) = (x+ � � am) �(m�1)(x);

and identifying the coe�cients of the powers of x and � . It is described in detail
in Algorithm 3.1.

A disadvantage of this construction is that the system of equations (3.7) is ill-
conditioned if r is large. Table 3.1 shows the condition number of the linear system
for the weights in the case of Daubechies' scaling functions and with r = 2N � 1.
We see that the condition becomes very poor in case r is large and consequently
the numerical results for the weights can no longer be trusted. In case N = 8, the
system is even singular within working precision (16 decimal digits).
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Algorithm 3.1: Construction of the product polynomial.

p
(0)
0;0  1

for m 1 (1) r

for i 0 (1)m

for j  0 (1)m� i
p
(m)
i;j  p

(m�1)
i�1;j + p

(m�1)
i;j�1 � am � p(m�1)i;j

end for

end for

end for

Table 3.1: Condition number of the construction with monomial moments.

N r condition

2 3 4 101

3 5 1:104

4 7 1:107

5 9 3:109

6 11 1:1013

7 13 5:1016

8 15 \singular"
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3.4.2 Calculation of the moments

In order to construct the quadrature formula, we �rst need an algorithm to calcu-
late the moments of a scaling function numerically. Simple algebraic manipulations
lead to

Mp =
Z +1

�1

xp '(x) dx

= 2
X
k

hk

Z +1

�1

xp '(2x� k) dx

= 2�p
X
k

hk

Z +1

�1

(x+ k)p '(x) dx

= 2�p
pX
i=0

 
p

i

!X
k

hk k
i
Z +1

�1

xp�i '(x) dx

= 2�p
pX
i=0

 
p

i

!
miMp�i;

where the mi are the discrete moments of the sequence fhkg,

mi =
X
k

ki hk:

Consequently the moments can be calculated with a p-terms recursion relation,

Mp =
1

2p � 1

pX
i=1

 
p

i

!
miMp�i:

3.4.3 Modi�ed construction

The ill-conditioning problem of the construction using monomial moments can be
overcome if we use the basis of Chebyshev polynomials. This technique is also
used successfully in [90, 147].

The Chebyshev polynomial Tk(x) of degree k is de�ned by

Tk(cos �) = cosk�;

see [1]. The Chebyshev polynomials are orthogonal with respect to a weight func-
tion,

1

�

Z +1

�1

1p
1� x2 Tk(x)Tl(x) dx =

8>><>>:
1=2 if k = l = 0

1 if k = l 6= 0

0 otherwise;

and have equioscillating properties in the interval [�1; 1].
Since the interesting properties of these polynomials only hold in the interval

[�1; 1], we transform the scaling function '(x) to this interval giving a function
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'�(y) and use the notation y for an independent variable that varies between �1
and 1,

2'�(y) = L'(x) with 2x = L(y + 1):

The re�nement equation (2.4) becomes

'�(y) = 2
X
k

hk '
�(2y � 2k=L+ 1):

We construct a quadrature formula,

�0;0 =
Z L

0
'(x)f(x)dx =

Z +1

�1
'�(y)f

 
L(y + 1)

2

!
dy

=
Z +1

�1
'�(y)f�(y)dy �

rX
k=1

w�

kf
�(yk) =

rX
k=1

wkf(xk) = Qr[f(x)];

with wk = w�
k, yk = a�k � ��, a�k = 2ak=L� 1, and �� = 2�=L. LetMt

p denote the
moments of the transformed scaling function

Mt
p =

Z +1

�1
yp '�(y) dy;

and letM�
p denote the modi�ed moments,

M�

p =
Z +1

�1
Tp(y)'

�(y) dy:

The new system can be written as

rX
k=1

wk Ti(a
�

k � ��) = M�

i 0 6 i 6 r: (3.8)

The solution procedure is similar to the one in the previous section. We construct
a polynomial ��(��), written as a linear combination of Chebyshev polynomials,
and try to �nd a root in the appropriate interval. In order to construct ��(��) we
write

�(y) = 2�(r�1)
rX
i=0

r�iX
j=0

qi;j Tj(�
�)Ti(y)

and

��(��) = 2�(r�1)
rX
j=0

r�jX
i=0

qi;jM�

i Tj(�
�):

Now let

2(m�1)�(m)(y) = 2(m�1)
mY
k=1

(y + �� � a�k) =
mX
i=0

m�iX
j=0

q
(m)
i;j Tj(�

�)Ti(y) (3.9)
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Table 3.2: Condition number of the construction with modi�ed moments.

N r condition

2 3 1 100

3 5 9:100

4 7 4:101

5 9 2:102

6 11 6:102

7 13 1:103

8 15 4:103

and

2(m�1)�(m)(y) = 2(m�1) (y + �� � am) �(m�1)(y)

= 2
m�1X
i=0

m�i�1X
j=0

q
(m�1)
i;j (y + �� � am)Tj(�� )Ti(y)

=
m�1X
i=0

m�1�iX
j=0

�
q
(m�1)
i;j Tj(�� )Ti+1(y) + q

(m�1)
i;j Tj(�� )Tji�1j(y)

+ q
(m�1)
i;j Tj+1(�� )Ti(y) + q

(m�1)
i;j Tjj�1j(�� )Ti(y)

� 2 am q
(m�1)
i;j Tj(�� )Ti(y)

�
=

mX
i=1

m�iX
j=0

q
(m�1)
i�1;j Tj(�� )Ti(y) +

m�2X
i=�1

m�2�iX
j=0

q
(m�1)
i+1;j Tj(�� )Tjij(y)

+
m�1X
i=0

m�iX
j=1

q
(m�1)
i;j�1 Tj(�� )Ti(y) +

m�1X
i=0

m�2�iX
j=�1

q
(m�1)
i;j+1 Tjjj(�� )Ti(y)

� 2 am
m�1X
i=0

m�1�iX
j=0

q
(m�1)
i;j Tj(�� )Ti(y): (3.10)

An algorithm for the calculation of the qi;j = q
(r)
i;j can be found by identifying

the coe�cients of the Chebyshev polynomials of equal degree in x and in �� in
(3.9) and (3.10). It is given in Algorithm 3.2.

The condition number of the system for the construction of the same formula
as in the previous section is now given in Table 3.2. The condition is much better,
especially for large r.

The roots of the polynomial �(��) can be found as the eigenvalues of its Cheby-
shev companion matrix. The e�ect of an orthogonal basis on the condition of the
roots of a polynomial is discussed in [91]. It is stated there that the interval of
orthogonality should contain the roots of interest. This condition is satis�ed in
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Algorithm 3.2: Modi�ed construction of the product polynomial.

q
(0)
0;0  1=2

for m 1 (1) r

for i 0 (1)m

for j  0 (1)m� i
q
(m)
i;j  q

(m�1)
i�1;j + q

(m�1)
i;j�1 +

q
(m�1)
i+1;j + q

(m�1)
i;j+1 � 2 am q

(m�1)
i;j

if i = 1 then q
(m)
1;j  q

(m)
1;j + q

(m�1)
0;j

if j = 1 then q
(m)
i;1  q

(m)
i;1 + q

(m�1)
i;0

end for

end for

end for

most cases here.

3.4.4 Calculation of the modi�ed moments

It is possible to calculate the modi�ed moment as a linear combination of the
monomial moments using the coe�cients t

(p)
i of the Chebyshev polynomials,

Tp(y) =
pX
i=0

t
(p)
i yi and M�

p =
pX
i=0

t
(p)
i Mt

i: (3.11)

However, a considerable loss of signi�cant digits will occur since these coe�cients
tend to be large and di�erent in sign. The condition would be as bad as in the
construction using the monomial moments since calculating the modi�ed moments
like this essentially does not change the problem. We therefore need a formula to
calculate the modi�ed moments directly. We know that

M�

p =
Z +1

�1
Tp(y)'

�(y) dy

= 2
X
k

hk

Z k=L

k=L�1
Tp(y)'

�(2y + 1� 2k=L) dy

=
X
k

hk

Z +1

�1
Tp

 
u� 1 + 2k=L

2

!
'�(u) du: (3.12)
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In order to �nd a recursion formula, we write this last shifted and dilated Cheby-
shev polynomial as a sum of Chebyshev polynomials of degree less than or equal
to p,

Tp

 
y � 1 + 2k=L

2

!
= 2�p

pX
i=0

w
(p)
i (k)Ti(y):

Hence

M�

p =
1

2p � 1

p�1X
i=0

 
LX
k=0

hkw
(p)
i (k)

!
M�

i : (3.13)

The w
(p)
i (k) can be calculated recursively. We will use the notation w

(p)
i =

w
(p)
i (k) and � = 2k=L� 1 for simplicity here. Now

Tp+1

 
y + �

2

!
= 2�(p+1)

p+1X
i=0

w
(p+1)
i Ti(y) (3.14)

and

Tp+1

 
y + �

2

!
= (y + �)Tp

 
y + �

2

!
� Tp�1

 
y + �

2

!

= 2�p
pX
i=0

w
(p)
i y Ti(y) + 2�p

pX
i=0

w
(p)
i �Ti(y)� 2�(p�1)

p�1X
i=0

w
(p�1)
i Ti(y)

= 2�(p+1)

 
pX
i=0

w
(p)
i Ti+1(y) +

pX
i=0

w
(p)
i Tji�1j(y)

+ 2�
pX
i=0

w
(p)
i Ti(y) � 4

p�1X
i=0

w
(p�1)
i Ti(y)

1A
= 2�(p+1)

0@p+1X
i=1

w
(p)
i�1 Ti(y) +

p�1X
i=�1

w
(p)
i+1 Tjij(y)

+ 2�
pX
i=0

w
(p)
i Ti(y) � 4

p�1X
i=0

w
(p�1)
i Ti(y)

1A : (3.15)

The algorithm can be found by identifying the coe�cients of the Chebyshev poly-
nomials of equal degree in (3.14) and (3.15). It is given in Algorithm 3.3. To check
whether this method is numerically stable, we performed the following numerical
experiment. We implemented (3.11) and (3.13) on a computer both in single pre-
cision (8 decimal digits) and double precision (16 decimal digits). Comparing the
single and double precision result then gives the number of accurate digits of the
single precision result. Table 3.3 gives the 30 �rst modi�ed moments of the orthog-
onal Daubechies scaling function with N = 2. The accurate digits are underlined.
It is obvious that (3.13) is stable and (3.11) is not. Note that the purpose of this
experiment is not so much to show that the �rst method is unstable, which can
easily be foreseen, but to show that the second is stable.
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Table 3.3: Calculation of the modi�ed moments.

p using (3.11) using (3.13)

1 {5.77350259 e{01 {5.77350259 e{01
2 {3.33333313 e{01 {3.33333303 e{01
3 8.15621793 e{01 8.15621853 e{01
4 {3.37566257 e{01 {3.37566108 e{01
5 {3.29552889 e{01 {3.29553157 e{01
6 2.66140223 e{01 2.66139805 e{01
7 1.06536865 e{01 1.06537372 e{01
8 {1.27771378 e{01 {1.27768755 e{01
9 2.50720978 e{02 2.50720195 e{02
10 2.38552094 e{02 2.38473043 e{02
11 {9.77897644 e{02 {9.78003293 e{02
12 3.16085815 e{02 3.16353105 e{02
13 1.03759766 e{01 1.03776902 e{01
14 {5.28259277 e{02 {5.30452169 e{02
15 {6.67419434 e{02 {6.67688027 e{02
16 5.24291992 e{02 5.29438257 e{02
17 1.97753906 e{02 1.90952606 e{02
18 {2.29492188 e{02 {2.47176141 e{02
19 9.27734375 e{03 1.74157508 e{02
20 {2.53906250 e{02 {1.71462391 e{02
21 {1.95312500 e{03 {3.38922292 e{02
22 6.25000000 e{02 4.09903340 e{02
23 8.20312500 e{02 3.17543037 e{02
24 {7.81250000 e{03 {3.69057357 e{02
25 {8.28125000 e{01 {2.07382068 e{02
26 {1.84375000 e+00 2.48349365 e{02
27 1.01875000 e+01 1.16013910 e{03
28 1.75000000 e+01 {1.61309689 e{02
29 {6.32500000 e+01 2.14398224 e{02
30 {1.30000000 e+02 3.96057591 e{03
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Algorithm 3.3: Calculation of the modi�ed moments.

w
(0)
0  1

w
(1)
0  �

w
(1)
1  1

w
(2)
0  2�2 � 3

w
(2)
1  4�

w
(2)
2  1

for p 2 (1) : : :

w
(p+1)
0  w

(p)
1 + 2�w

(p)
0 � 4w

(p�1)
0

w
(p+1)
1  2w

(p)
0 + w

(p)
2 + 2�w

(p)
1 � 4w

(p�1)
1

for i 2 (1) p� 1

w
(p+1)
i  w

(p)
i�1 + w

(p)
i+1 + 2�w

(p)
i � 4w

(p�1)
i

end for

w(p+1)
p  w

(p)
p�1 + 2�w(p)

p

w
(p+1)
p+1  w(p)

p

end for
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3.5 Error analysis of the quadrature formula

Remember that the criterion of the degree of accuracy was chosen to have accurate
results in case of smooth functions. In this section we make this statement more
precise and also show why we need the fast wavelet transform to calculate the
coe�cients on the coarser levels.

Let Fr[f(x)] denote the error of the quadrature formula,

Fr[f(x)] =
Z +1

�1

f(y)'(y) dy �Qr[f(x)]:

Suppose that f 2 Cq+1(supp'). One then immediately understands that the �rst
q + 1 terms of the Taylor formula of f around a point of supp' are integrated
exactly and that the error somehow depends on the (q+1)-th derivative of f . This
also follows from Peano's theorem [71].

To get a more precise formulation in the case r = q, we can reason along the
following lines. Let x0 be an arbitrary point of the interval (0; L) not equal to
one of the abscissae and let Pr be the polynomial of degree r that interpolates the
function f in x0; : : : ; xr. If f belongs to Cr+1[0; L] and has bounded derivatives,
then [31],

8x 2 supp' : 9 �(x) 2 supp' : f(x) = Pr(x) + er(x)

with

er(x) =
�(x) (x� x0)

(r + 1)!
f (r+1)(�(x)):

Then

Fr[f(x)] = Fr[Pr(x) + er(x)] = Fr[Pr(x)] + Fr[er(x)] = Fr[er(x)]

= h'; er i �Qr[er(x)]

=
1

(r + 1)!

Z
r
'(x)�(x) (x � x0) f (r+1)(�(x)) dx

with �(x) 2 supp'. This error estimate, however, is not very useful in practice.
One usually does not know the (r + 1)-th derivative of the function. Moreover,
one has no control over the function �(x). Deriving an upper bound usually leads
to very pessimistic estimates.

However, our purpose is not so much to get accurate estimates on the error
as to understand its asymptotic behavior. For the remainder of this section we
switch back to the biorthogonal notation, i.e. the notation with tilde for the dual
functions. Let �0n;l be the computed approximation of the coe�cients, where e' is
taken as weight function,

�0n;l = 2�n=2Q[f(2�n(x+ l))]:
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It then follows that
�n;l � �0n;l

�n;l
= O(2�n(q+1)): (3.16)

If one now uses the fast wavelet transform to calculate the coe�cients on the
coarser levels, they will all have a relative error of order 2�n(q+1). On the other
hand, the use of the quadrature formula directly on the coarser levels j (j < n) will
give an error of order 2�j(q+1). This is precisely why we only use the quadrature
formula on the �nest level.

This analysis also helps us to choose the degree of accuracy. Remember from
Chapter 2 that the multiresolution approximation of a function converges as

kPnf � fk = O(hN ) with h = 2�n:

This immediately shows that the degree of accuracy should at least be N � 1,
otherwise the use of the quadrature formula ruins the convergence rate of the
multiresolution approximation. In other words, let

P 0n f(x) =
X
l

�0n;l 'n;l(x);

then

kP 0nf � fk = O(hN )

if q > N�1. At this moment q = N�1 seems the most natural choice. In Chapter
4 we show that there are situations in which one needs to choose q > N � 1.

Remember that the trapezoidal rule for e'(x) has a degree of accuracy equal tofN�1. This means that it does not ruin the convergence rate of the multiresolution
approximation in case fN > N . This is true in the orthogonal and semiorthogonal
case.

Suppose we are only interested in one coe�cient on a �xed level, let us say
�0;0. One can then use a quadrature formula on a �ner level n (n > 0) and use
the fast wavelet transform to calculate �0;0. This scheme converges with an error
of order hq+1, with h = 2�n. Using a generalization of Bernoulli polynomials it is
possible to derive an asymptotic error expansion in powers of h for this scheme.
This was done independently by Pierre Verlinden in [187] and Wolfgang Dahmen
and Charles Micchelli in [61]. It can be seen as a generalization of the classic
Euler-McLaurin formula to which it reduces in case ' is the box function. As a
result it is possible to use convergence acceleration methods similar to Romberg
integration.

Note: Di�erent error estimates for quadrature formulae and related methods
were proposed in [94]. It is shown here that the quadrature formula constructed
in this chapter, except in an exotic case, give accurate approximations.
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3.6 Fitting the formulae in the multiresolution

analysis

3.6.1 Using a quadrature formula at the �nest level

Suppose we have to calculate T coe�cients �n;l yielding a function vn,

vn(x) =
T�1X
l=0

�n;l 'n;l(x) with �n;l = h f; e'n;l i :
The quadrature formula and error estimation yield

�n;l =
p
h

"
rX

k=1

wkf (h ((k � 1)2s � � + l)) +O(hr+1)

#
with h = 2�n: (3.17)

One usually wants to avoid evaluating (or \sampling") the function f at ab-
scissae with spacing smaller than 2�n. This means that s > 0. The total number
of evaluations for the calculation of the T inner products is equal to T +(r� 1) 2s.
Note that this number is dominated by the �rst term and is only slightly dependent
on r. As a result the one-point quadrature formula, which needs T evaluations,
can be replaced with a quadrature formula with a higher degree of accuracy, which
requires in total almost the same number of evaluations. The workload is equal to
T � r multiplications and T (r � 1) additions.

For a certain r, one usually wants to choose the maximal s to have abscissae
spread out over the whole integration interval. The maximal s within the require-
ment that (r� 1)2s < L, however, corresponds to the smallest admittance interval
for � . If for a formula with s > 0 no � can be found, one can always try to �nd a
formula with spacing 2s�1.

3.6.2 Using a quadrature formula at the one but �nest

level

The restrictions s > 0 and (r � 1)2s < L imply that the degree of accuracy is
limited to q < L. There is a way to get around this and achieve a higher degree
of accuracy. We describe here a method to obtain a higher degree of accuracy in
one part of the multiresolution tree at the cost of a lower degree of accuracy in the
other part. The part of the tree, in which the degree of accuracy increases, is the
subtree formed by the �n�1;l : : : �0;l and the n�2;l : : : 0;l. The part of the tree, in
which the degree of accuracy decreases, is formed by the �n;l and the n�1;l.

The idea is to use function evaluations with spacing h = 2�n in a quadrature
formula for the calculation of the coe�cients at the one but �nest level, namely
the �n�1;l. This means that s has to be chosen equal to �1 whereas r > L, so that

�n�1;l =
p
2h

"
rX

k=1

wk f (h ((k � 1)� 2� + 2l)) +O(hr+1)

#
: (3.18)
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The shift � and the weights wk are determined as described in Section 3.4. The
number of evaluations for the calculation of T inner products is 2T + r� 2. From
these coe�cients the multiresolution coe�cients of the �rst part of the tree can be
calculated using the decomposition scheme. The error on the coe�cients of this
part is O(hr+1).

For the calculation of the �n;l, we use a quadrature rule with s = 0 and r = L.
The degree of accuracy is L � 1, since the value of the parameter � is already
determined by the �rst quadrature formula. The n�1;l can be calculated with one
step of the decomposition scheme. The error of the coe�cients of the second part
of the tree is O(hL).

This idea is particularly useful for applications like the one mentioned at the
end of Section 3.5, where one was only interested in coe�cients of the coarsest level.
In fact, it is possible to \jump" over more than one level, i.e. use a quadrature
formula with s < �1 at the level n + s. This way one can achieve a very high
degree of accuracy. Note that the error on the levels with j > n+ s still behaves
like O(hL).

A problem here is that as the number of abscissae grows large (> 30), the
evaluation of the quadrature formula can become ill-conditioned. Also, it is not
guaranteed that a higher degree of accuracy always gives a smaller error, even
if the function is su�ciently smooth, because the constant in front of the error
term can become very large. As a result we have a trade-o� situation. One can
experiment on how to choose the optimal s for a given scaling function.

3.7 Numerical results

We constructed quadrature formulae for the Daubechies orthogonal scaling
functions and veri�ed that the formulae Qr with 2 6 r 6 2N � 1 exist for 2 6
N 6 10, i.e. the polynomial �(�) has at least one root in the appropriate interval.
For r = 2, one of the weights is always zero and we return to the one-point formula.
In 9 of these 90 formulae, no � could be found for the maximal value of s and s
was taken one smaller. This was in most cases for r = N . For B-spline scaling
functions, the quadrature formula QL exists for 2 6 L 6 10 and Q2L (in the sense
of (3.18)) exists for 2 6 L 6 4. The weights of these formulae can vary in sign, but
their absolute value does not grow too large when the number of points increases.
The evaluation of the quadrature formula is thus well-conditioned.

We compare now di�erent quadrature formulae in a practical example. We
construct several multiresolution trees, each with coarsest level 0 and �nest level
n, and this for several n. We compare each time �0;0. Notice, however, that the
error is of the same order in the whole multiresolution tree.

As an example we take for ' the Daubechies orthogonal scaling function with
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Table 3.4: Error of the integration rules.

Trapezoidal One-point
n 5:2n rule formula Q�

5 Q5 Q10

0 5 7.08e-04 1.17e-02 6.13e-04 2.15e-03 -
1 10 4.17e-03 1.43e-03 9.78e-05 4.40e-05 1.03e-08
2 20 7.96e-04 1.76e-04 4.30e-06 6.51e-07 1.11e-12
3 40 1.15e-04 2.19e-05 1.52e-07 9.38e-09 4.21e-15
4 80 1.53e-05 2.74e-06 5.03e-09 1.38e-10 9.99e-16
5 160 1.98e-06 3.43e-07 1.61e-10 2.09e-12 -
6 320 2.50e-07 4.28e-08 5.10e-12 3.19e-14 -
7 640 3.15e-08 5.35e-09 1.60e-13 1.11e-16 -
8 1280 3.96e-09 6.69e-10 4.66e-15 - -
9 2560 4.96e-10 8.37e-11 2.22e-16 - -
10 5120 6.20e-11 1.04e-11 - - -

N = 3, f(x) = sin(x) and

�0;0 =
Z 5

0
'(x) sin(x)dx � 0:741104421925905: (3.19)

We compare the one-point formula, Q5, Q10 (with s = �1 applied at level n� 1),
and the trapezoidal rule. The total number of evaluations is then, respectively,
5:2n � 4, 5:2n, 5:2n and 5:2n � 1. We also use a formula Q�

5 where � was given a
�xed value equal to �1=2. The results are given in Table 3.4. They show that for
su�ciently di�erentiable functions f , it is useful to search for the optimal value of
the shift � .

3.8 Related methods

Quadrature formulae are one possibility to approximate the multiresolution anal-
ysis coe�cients from the function samples. In this section we discuss this problem
in a more general setting and compare quadrature formulae with other solutions.

For notational simplicity we consider the case when j = 0. We also switch back
to the notation with tilde for the dual functions. The problem can then be stated
as: given the samples dk = f(k + �) of the function f , �nd a function in V0 that,
in some sense, approximates these samples. We write this function asX

l

�l '(x� l);

and refer to this problem as the sampling problem. Note that � can be an unknown.
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It is natural to assume that the coe�cients �l are linear functionals of the
samples dk and that this relationship is invariant to integer translates. This implies
that every solution can be written as a convolution. The general form of the
solution thus involves a sequence fakg so that

f�kg = fakg � fdkg:

This means that we have constructed a linear operator S from C0 to V0, which can
be written as

S f(x) =
X
l

�l '(x� l);

which we refer to as the sampling operator .

De�nition 3.5 The sampling operator is local if a compact set S exists so that

for all f 2 C0 and x 2 R, S f(x) only depends on f(y) for y in

x+ S = fx+ y j y 2 Sg:

A local sampling operator is desirable because it is easy to implement. The fol-
lowing lemma gives a necessary condition for a sampling operator to be local.

Lemma 3.6 A sampling operator is local if only a �nite number of the coe�cients

ak are non-zero and ' is compactly supported.

In case of a quadrature formula it is immediately clear that the ak are the
weights. In the remainder of this section we study another solution, interpola-
tion, in more detail and compare these solutions with ideas coming from a signal
processing viewpoint.

3.8.1 Interpolation

The basic idea is to �nd a function of V0 that interpolates the samples. We therefore
introduce the following de�nition.

De�nition 3.7 A sampling operator S is interpolating if

Sf(k + �) = dk = f(k + �):

In this section we consider the case � = 0. We �rst consider the trivial case.

De�nition 3.8 A scaling function ' is interpolating if '(k) = �k.

In this case the solution is immediately given by �l = f(l). The following lemma,
which follows from the re�nement relation, can help to characterize interpolating
scaling functions.

Lemma 3.9 If ' is interpolating, then h2k = �k=2.
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Note that the converse is not always true. The following function is a counterex-
ample:

'(x) =

8><>:
3 + x for x 2 [�3; 0)
3� x for x 2 [0; 3)

0 elsewhere.

It is a stretched hat function with h�3 = h3 = 1=4, h0 = 1=2 and the other hk zero,
and obviously is not interpolating. We will discuss how to construct interpolating
scaling functions later in this section.

In general, the interpolation problem can be written as

dk = S f(k) =
X
l

�l '(k � l);

or

fdkg = f�kg � f'(k)g: (3.20)

This shows that the solution can by found by solving an inverse convolution prob-
lem. Algebraically it can be seen as inverting an in�nite Toeplitz matrix with
entries '(k � l). This matrix is banded in case the scaling function is compactly
supported. Let d(!), �(!) and p(!) respectively be the discrete Fourier trans-
forms of the sequences fdkg, f�kg and f'(k)g. The relationship (3.20) can then
be written as

d(!) = �(!) p(!):

This leads to the following result:

Lemma 3.10 The interpolation problem (3.20) has a unique solution if p(!) does
not vanish.

The solution is then given by

f�kg = fakg � fdkg;

where X
k

ak e
�i!k =

1

p(!)
:

This technique was studied in [4, 6, 194]. A problem here is that even if the
scaling function is compactly supported, 1=p(!) in general is not a trigonometric
polynomial. Hence, the ak form an in�nite sequence and the interpolating sampling
operator is not local. In other words, each coe�cient �l depends on all the data
samples dk. This is evidently not very useful computation-wise. It is, however,
possible to show that the coe�cients of 1=p(!) decay exponentially as jkj tends to
in�nity. Consequently, if one sets forth a certain numerical accuracy, the in�nite
convolution can be broken o�.
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We can use this result to construct an interpolating scaling function whose
integer translates span V0 by letting

b'interpol(!) =
b'(!)
p(!)

:

Again, even if ' is compactly supported, the interpolation function generally is
not but instead it is exponentially decreasing. Typical examples are the cardinal
spline interpolants of even order [158]. One exception here is the second order,
where the B-spline itself (the hat function) is interpolating.

3.8.2 Shifted interpolation

In case p(!) vanishes, an interpolating function does not exist. We can then,
similar to the construction of the quadrature formulae, add some exibility to
the interpolation problem by not necessarily associating the data with the integer
locations but allowing a shift � 2 (0; 1). We formulate the problem now as

dk =
X
l

�l '(k � l + �):

We have an extremely nice situation if shifting the scaling function yields an
interpolating function. The following lemma then tells us what the shift should
be.

Lemma 3.11 If '(� + k) = �k and N > 1, then � =M1.

Proof : Follows immediately from the fact thatX
l

(x� l)'(x � l) = M1:

2

Note that this is exactly the same shift as in the case of the one-point quadrature
formula. Unfortunately, this property is hardly ever satis�ed. It was noted by
Mary Ellen Bock and the author that in case of the orthogonal Daubechies scaling
functions it is numerically almost satis�ed. For the scaling function with N = 2,
which has support [0; 3], we checked that

M1 = (1 +
p
3)=4 � 0:683

'(M1) � 1:00020859077
'(M1 + 1) � -4.17181539384e-04
'(M1 + 2) � 2.08590769692e-04:

We calculated these values using the cascade algorithm, which allows us to deter-
mine the value of a scaling function locally. All the given digits are correct. One
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Figure 3.3: Daubechies' orthogonal scaling function with N = 2.

can use also Figure 3.3 for a graphical check. This means that letting �l = dl gives
a function that interpolates the data with a relative accuracy of 4:10�4. In this
case it is also possible to construct a very elegant geometric interpretation of the
fast wavelet transform [26].

In the general case the solution to the shifted interpolating problem is given
by

�(!) =
d(!)

Z'(�; !) ;

provided that the denominator does not vanish [103]. Remember that Z stands
for the Zak transform. It is almost always possible to �nd a � so that Z'(�; !)
does not vanish. Note that Z'(�; !) is a 2�-periodic function in !.

The shifted interpolation is particularly useful when the scaling function is
symmetric around a non-integer. Typical examples are the B-splines of odd order,
which are symmetric around an integer + 1=2 such that � = 1=2 is a natural choice.
In this case one cannot have � = 0, since p(!) vanishes at ! = �. Janssen studies
more general criteria for the choice of � in [103]. Unfortunately, this construction
also almost always leads to a non-local sampling operator.

3.8.3 Quasi-interpolation

Because an interpolating sampling operator is generally a non-local sampling op-
erator, we consider a less strict condition or so-called quasi-interpolation.

De�nition 3.12 A sampling operator is called a quasi-interpolating operator if it

reproduces every polynomial of degree less than N and if it is local.
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Consequently, if f coincides with a polynomial of degree less than N on a bounded
and closed interval I, then S f will also coincide with this polynomial on the
interval Io where

Io = fx j x+ S � Ig;
and S is the smallest set that can be used in De�nition 3.5. This tells us that if
f locally behaves like a polynomial of degree less than N , S f will locally coincide
with this polynomial and thus interpolate f . This explains the term \quasi"-
interpolation.

Quasi-interpolating operators for spaces of cardinal spline functions were stud-
ied in [34]. Completely analogous to the case of a quadrature formula it is now
possible to derive an asymptotic error estimate. It should be no surprise that the
error behaves like O(hN ).

It is immediately clear that a quadrature formula with degree of accuracy
greater than or equal to N gives rise to a quasi-interpolating sampling operator,
which is local in case ' is compactly supported. In fact, in case q > N , the
quadrature formula does a little more, since the sampling operator constructed
using it satis�es

P0 xp = S xp for N 6 p 6 q:

Note that these functions are no longer polynomials.

3.8.4 Compactly supported interpolating scaling

functions

We present a di�erent construction of an interpolating scaling function. It relies
on the simple observation that any pair of biorthogonal scaling functions generates
a new, interpolating, scaling function � by letting

�(x) =
Z +1

�1

'(y + x) e'(y) dy:
The interpolation property immediately follows from the biorthogonality condition.

It is easy to see that the interpolating function satis�es a re�nement relation
with coe�cients Hk = �(k=2)=2 and where

H(!) =
X
k

Hk e
�i!k = h(!) eh(!);

and
H(!) +H(! + �) = 1:

This interpolating scaling function has several nice properties. If the scaling func-
tion and its dual are compactly supported, so is the interpolation scaling function.
In the case of an orthogonal scaling function, the interpolating function is just
its autocorrelation function. It is smoother than ' and e', it is symmetric, and
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it can reproduce the polynomials with degree less than N + fN . Note that the
interpolating function does not generate the same multiresolution analysis as '.
One can build a new multiresolution analysis where the dual of the interpolating
scaling function is formally the Dirac function such that fH(!) = 1. Following
the construction of biorthogonal bases as described in Section 2.5, we see that a
wavelet function that generates complementary spaces Wj can then be chosen as

	(x) = �(2x� 1):

The dual wavelet is then a linear combination of Dirac impulses and has N + fN
vanishing moments, or more precisely,be	(!) = �e�i!H(! + �):

Evidently this only yields a multiresolution analysis for function spaces where
pointwise evaluation is a bounded operator. This means we need to impose some
smoothness on the functions.

A fast wavelet transform with �nite impulse response �lters follows immediately
from this construction. A disadvantage is that these �lters introduce considerable
aliasing in the fast wavelet transform. This is a typical example of a multiresolution
analysis generated by a wavelet that does not have a vanishing moment, cf. the
remark in Section 2.6. Note that the dual scaling function does not satisfy a
partition of the unity. We will encounter some more examples in Chapter 6.

Recently Lemari�e [124], Shensa [161], and Beylkin and Saito [157], noted that
this construction, starting from the Daubechies orthogonal wavelets, yields a fam-
ily of interpolating functions that were originally studied by Deslauriers and Dubuc
in [75, 76]. They were also used for the characterization of function spaces in [80]
and in signal processing applications in [157]. The interpolating scaling function
constructed as the autocorrelation function of the Daubechies orthogonal scaling
function with N = 2 is shown in Figure 3.4. In fact, one gets exactly the same func-
tion starting from any pair of compactly supported biorthogonal scaling functions
with N + fN = 4.

These interpolation schemes are also closely related to stationary subdivision,
see [32].

3.8.5 Signal processing approach

Researchers have also studied the sampling problem from a signal processing view-
point [6, 161]. Their analysis is based on the fact that the functions of V0 have
most of their energy concentrated in the frequency band [��; �]. This follows from
the fact that h(!) has most of its energy concentrated in the interval [��=2; �=2],
see Section 2.7. In fact, in case the scaling function is taken to be the Shannon
sampling function,

'(x) =
sin(�x)

�x
;
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Figure 3.4: Deslauriers-Dubuc interpolating scaling function with N + fN = 4.

then all of the energy is concentrated exactly in these intervals. Note that this
function is an orthogonal and interpolating scaling function, but that it dies o�
very slowly.

We continue the discussion on the Fourier transform side. Because of the shift
invariance we can concentrate on the case l = 0:

�0 =
X
l

a�l f(l + �)

=
1

2�

X
l

a�l

Z +1

�1

ei!(l+�) bf(!) d!
=

1

2�

Z +1

�1

bf(!) X
l

ale
�i!lei!� d!

=
1

2�
h bf;A i ;

where A(!) is a 2�-periodic function,

A(!) = a(!) e�i!� ;

and a(!) is de discrete Fourier transform of fakg. The Parseval identity gives the
exact value

�0 =
1

2�
h bf; be' i ;

thus

�0 � �0 =
1

2�
h bf ; be'� bA i : (3.21)

We can now formulate the problem as follows: �nd the unknowns � and ak so
that A(!) in some sense is a good approximation for be'(!) in the neighborhood of
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the interval [��; �]. Using this setting, we propose several solutions and compare
them with the ones we already know.

1. The simplest solution just lets a(!) = 1, which corresponds to �l = al. This
means that A(0) = be'(0). To let the phase correspond at ! = 0, one needs
to choose � = fM1. Note that this is in fact a one-point quadrature formula.

2. The construction of a general quadrature formula lets the derivatives of A(!)
and be'(!) at ! = 0 coincide up to the order equal to the degree of accuracy.

3. One can let A(!) coincide with the 2�-periodization of be'(!),
A(!) =

X
k

be'(! + k2�):

Since the energy of e'(!) is concentrated in [��; �], this can be a reasonable
approximation. Using the Poisson summation formula we see that

A(!) =
X
l

be'(l) e�i!l:
This thus corresponds to the use of the trapezoidal rule as a quadrature
formula.

4. One can let A(!) coincide with be'(!) on the interval [��; �]. This will lead to
the exact result in case the function f(x) is band-limited, with the band not
exceeding [��; �]. A sampling theorem similar to the classic Shannon sam-
pling theorem can then be proven [5]. Note that A(!) is not a trigonometric
polynomial and the scheme thus is not local. The decay of the coe�cients
depends on the smoothness of A(!) as a 2�-periodic function. The decay is
here a little better than in the classic Shannon case because be'(!) has a root
of multiplicity fN at � and ��.

5. Remember that the interpolation solution corresponds to choosing

A(!) = 1=p(!):

It is interesting to note that in the orthogonal case this is almost exactly the
inverse of the solution given by the trapezoidal rule.

6. Evidently many other criteria and corresponding solutions can be suggested.
One possibility is to �x the degree of a trigonometric polynomial A(!) and
then look for the L1 approximation of be'(!) in the interval [��; �].

This analysis shows the major di�erence between a numerical analysis and a
signal processing point of view. In signal processing the sampling rate and thus
the �nest level of the multiresolution analysis are usually �xed. Moreover, one
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has no a priori information about the smoothness of the data. Asymptotical error
estimates, which typically rely on smoothness of the data and on the fact that one
can increase the resolution, are thus useless. Therefore, solutions such as 4 and 6
are preferred. They try to minimize the error for all frequencies that are expected
to be present in the signal.

In numerical analysis applications the situation is di�erent. Here one tries to
solve a mathematical problem that is formulated in terms of functions of a continu-
ous variable, di�erential equations being a typical example. The solution is known
to have some smoothness and one has control over the resolution. A quadrature
formula here is the appropriate tool and the asymptotical error estimate predicts
the behavior of the error in function of the resolution. On the Fourier transform
side, increasing the resolution corresponds to \shrinking" the data towards zero
in (3.21). Remember that the quadrature formula lets the derivatives of A(!) ande'(!) match at the origin.

3.9 Wavelets on an interval

So far our discussion only involved the case of the real line, which is invariant to
integer shifts. Recently, several constructions of wavelets on an interval became
available [12, 33, 46, 47, 141]. These constructions all have in common that the
functions that are supported, in some sense, away from the endpoints correspond
to the ones from the real line, while new basis functions are constructed near the
endpoints (see also Section 2.9). One of the problems is that the shift invariance
is lost at the boundary. Therefore, it is not immediately clear how the coe�cients
should correspond to the data. Fourier techniques cannot be used anymore.

One idea is to construct special quadrature formulae for the boundary scaling
functions. We have done some experiments that show that this is feasible. One can
derive a recursion formula to calculate the moments of the boundary functions and
use them in an algorithm to �nd the weights. A disadvantage is that this method
sometimes requires a non-uniform sampling. Several other solutions have been
proposed.

In [47] a so-called preconditioning step is introduced. This is inspired by the
fact that the coe�cients of a polynomial in the V0 space are not a polynomial
sequence any more. The preconditioning step involves applying a linear transform
to the data samples near the boundary such that in case of a polynomial data
sequence one gets the coe�cients of a polynomial in the V0 space. This assures
that smooth sequences will have small wavelet coe�cients, which is one of the
basic reasons why wavelets are suited for data compression.

In [12] so-called recursive wavelets are introduced. We explain this idea �rst
on the real line. The V0 space is here de�ned as the space of the functions that
are piecewise constant on the intervals [k; k + 1). It is thus generated by \block"
functions '0;l, which are orthogonal. For j < 0 we de�ne the basis functions for
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Vj and Wj recursively through the relations

'j;k(x) =
X
k

hm�2k 'j+1;m(x);

and

 j;k(x) =
X
k

gm�2k 'j+1;m(x):

Here the sequences fhkg and fgkg come from a classic multiresolution analysis and
correspond to basis functions ' and  . Similar relations de�ne the dual functions.
This assures that the wavelet coe�cients can be calculated with the fast wavelet
transform. Note that the wavelets here are not any longer the dilates and translates
of one particular function. Note also that all basis and dual functions are piecewise
constant on intervals of length one.

One assumes now that the samples dl are inner products,

dl = 2n=2 h f(x); �[0;1)(x� k) i :

One can then construct a recursive multiresolution scheme as follows:

�0;l = 2�n=2 dl and �j�1;l =
p
2
X
k

hk�2l �j;k:

Here
'j;l(x) = 2j=2'(j)(2jx� l);

with (j 6 0)
'(j)(x) = T�j �[0;1)(x);

and T an operator de�ned as

Tg(x) = 2
X
k

hk g(2x� k):

It is proven in [63] that lim
j!�1

'(j)(x) = '(x), where ' is the original scaling

function corresponding with the sequence fhkg. In fact, this scheme is applicable
for a wide range of functions '(0) with integral one. When applying the above
construction for wavelets on a closed interval we obtain recursive wavelets for the
interval. This construction has the advantage that sampling and preconditioning
on the �nest level become trivial.

3.10 Future research

Remember that the quadrature formulae and the related methods we discussed all
use the samples of the function f . In [79] David Donoho considered the following
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problem: suppose that not the samples of the function f are given but rather its
inner products with the box functions or the so-called boxcar coe�cients,

dl =
Z l+1

l
f(x)dx;

how to construct a multiresolution analysis? This problem is inspired by the
fact that some physical devices such as a CDC camera rather generate boxcar
coe�cients than function samples. He gives a solution by constructing scaling
functions, which are biorthogonal to the box functions so that the boxcar coe�-
cients immediately are the coe�cients of these scaling functions. A disadvantage
of this solution is that one is restricted to this particular family of multiresolution
analyses. Another solution, which does not have this disadvantage is the use of
recursive wavelets as proposed in the previous section.

We here propose to use a generalization of quadrature formulae. We �rst state
the problem in a more general setting. Suppose we are given the samples of the
convolution of f with a \window" function g,

dl = (f � g)(l) =
Z +1

�1

f(x) g(l � x) dx:

Depending on the application, typical choices for g are box functions, Gaussians, B-
splines, Dirac impulses, etc. We try to �nd the multiresolution analysis coe�cient
�0 of f as

�0 =
X
k

wk dk = Q0[f(x)];

where Q0 stands for a generalized quadrature formula. The weights wk of the gen-
eralized quadrature formula can then be found by expressing that the quadrature
formula gives the exact result in case f is a polynomial. This results in solving a
linear system formed by the following equations:

X
k

wk

Z +1

�1

xp g(k � x) dx = Mp for 0 6 p < q:

This means that only the moments of the window function are needed in the
construction. Is should be possible to derive an asymptotic error estimate similar
to the one for a classic quadrature formula.

Another direction for future research is inspired by the work of Beylkin [23, 24].
He addresses the following problem: Given the projection of a function f in the
space Vj, �nd a good approximation for the coe�cients of F (f), where F is a
non-linear function. A canonical example is F (u) = u2. One way to do this is to
construct

PjF (Pjf):
Here we again can use the same idea, i.e. construct a local scheme that is exact
in the case of polynomials. In the case of the quadratic function this leads to the
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evaluations of the coe�cients

ck;l =
Z +1

�1

'(x)'(x� l)'(x � k) dx:

These again can be found as solutions of an eigenvalue problem (see also [61]). One
can expect that asymptotical error estimates similar to the ones for the quadrature
formulae can be derived.

A third direction for further research is inspired by discussions with Pierre
Verlinden. Instead of using quadrature formula for the calculation of wavelet coef-
�cients, he wants to use wavelets to construct new quadrature formulae for general
integrals. The basic idea is to construct a quadrature formula that integrates the
wavelet approximation of the integrand. One of the advantages is that it would
be very natural to build an adaptive integration scheme. Essentially, the wavelet
coe�cients will tell us if the function is locally well-behaved and thus if further
re�nement is needed.

Finally, in this chapter we always assumed that the function f is smooth. The
study of the case where f has singularities opens another new direction for re-
search. This involves the design of new recursion schemes for the moments and
new construction algorithms for the quadrature formulae. We did some experi-
ments for the case where the function has an algebraic singularity of the form x�

that show that this is feasible.

3.11 Concluding remarks

In this chapter we showed how one can construct quadrature formulae and when
they can be used in a multiresolution analysis. In Chapter 4 we will study more
carefully how the use of a quadrature formula a�ects the error of a multiresolution
approximation. These quadrature formulae will be useful in the solution of ordi-
nary di�erential equations in Chapter 6. The basic underlying idea of a quadrature
formula, i.e. to construct a local scheme that is exact for polynomials, turns out
to be extremely useful for the construction of wavelets biorthogonal with respect
to a weight function in Chapter 5.



Chapter 4

Asymptotic Error Expansions

for Wavelet Approximations

\It is one thing, to show a Man that he is in an Error,

and another, to put him in possession of Truth"

|John Locke, An Essay Concerning Humane Understanding (1690).

4.1 Introduction

For every classic approximation method used in numerical analysis, think of or-
thogonal polynomials or trigonometric functions, it is important to know and un-
derstand the behavior of the error. In this chapter we take a closer look at the
error of a wavelet approximation. We therefore de�ne the error operator as

En = 1� Pn:

Again we concentrate on the case where f is a smooth function. We already
know from Chapter 2 that the error asymptotically behaves as O(hN ), see (2.35).
Here and throughout this chapter h = 2�n. We will try to understand how the
error spatially, i.e. in the variable x, depends on the behavior of f . We will do
so by deriving an error expansion in powers of h, which is asymptotically valid
for h approaching zero. This will lead to the de�nition of three new families of
functions that are the building blocks of the expansion, and which we will refer to
as monowavelets. We study their properties, and show how they can be used to
understand the behavior of the error.

Using the error expansion, we will explain interpolating properties of the wave-
let approximation and construct convergence acceleration algorithms. We also will
show that the expansion is a well-suited tool for comparing approximation proper-
ties of di�erent wavelet families. Therefore, we will need to study the dependencies
in a multiresolution analysis. Finally, we will also try to understand how the use
of a quadrature formula as described in Chapter 3 e�ects the error expansion.

79
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4.2 Construction of the expansion

In this section we derive the asymptotical error expansion for Enf . Since we know
that the error decays as O(hN ), we propose an expansion of the form

Enf(x) =
MX
p=N

hp Up�N(x) +O(hM+1):

The idea is to �rst construct an expansion for Qn and then use the fact that

En =
1X
j=n

Qj ;

to �nd the expansion for En. We want to work under very general conditions on
the wavelet and dual wavelet. Therefore, we assume that  ; e 2 DM+1, f 2 CM+1,
and f (l) bounded for l 6M + 1. Recall now that

Qnf(x) = 2n
X
l

h f(y); e (2ny � l) i  (2nx� l) =
X
l

n;l  (2
nx� l): (4.1)

We �rst construct an expansion for n;l and then use this equation to �nd the
expansion for Qn. One way would be to use a Taylor expansion around y = 2�nl.
This, however, leads to an error expansion which is not very practical to work with
[177]. Therefore, we start our construction by writing a Taylor formula around
y = x (where y is the integration variable in the inner products):

n;l = 2n h f(y); e (2ny � l) i
= 2n h

MX
p=0

f (p)(x)
(y � x)p

p!
+ f (M+1)(�(x; y))

(y � x)M+1

(M + 1)!
; e (2ny � l) i

with �(x; y) between x and y

=
MX
p=0

2n f (p)(x)

p!
h (y � x)p; e (2ny � l) i + �n;l(x);

with

�n;l(x) = 2n h f (M+1)(�(x; y))
(y � x)M+1

(M + 1)!
; e (2ny � l) i :

Note that as the derivatives of f are bounded and e belongs to DM+1, all the inner
products are �nite. The dual wavelet has N vanishing moments so that

2n h (y � x)p; e (2ny � l) i = 0 for 0 6 p < N;

and thus the �rst N terms of the summation over p vanish. For N 6 p 6 M we
have, using the transformation z = 2ny � l, that

2n h (y � x)p; e (2ny � l) i = h (hz + hl � x)p; e (z) i
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= hp h
pX
s=0

 
p

s

!
zp�s (l � 2nx)s; e (z) i

= hp
pX
s=0

 
p

s

!fNp�s (l � 2nx)s:

The last N terms of this sum again vanish, so the upper bound of the summation
over s can be p�N . Thus,

n;l =
MX
p=N

hp f (p)(x)

p!

p�NX
s=0

 
p

s

!fNp�s (l � 2nx)s + �n;l(x):

Combining this expansion and (4.1) yields that

Qnf(x) =
MX
p=N

hp f (p)(x)

p!

p�NX
s=0

 
p

s

!fNp�s (�1)s �s(2nx) +Kn(x):

Here �p is the �rst monowavelet, which is de�ned as

�p(x) =
X
l

(x� l)p  (x � l) for 0 6 p < M �N;

and Kn is given by
Kn(x) =

X
l

�n;l(x) (2
n x� l):

Next we need to show that Kn behaves like O(hN ):

jKn(x)j 6
X
l

j�n;l(x)j j (2n x� l)j

6
kf (M+1)k1
(M + 1)!

2n
X
l

h jy � xjM+1; j e (2ny � l)j i j (2n x� l)j
= hM+1kf (M+1)k1

(M + 1)!

X
l

h jz + l � x=hjM+1; j e (z)j i j (x=h � l)j
6 hM+1kf (M+1)k1

(M + 1)!
�

X
l

24M+1X
j=0

mj jx=h� ljj
 
M + 1

j

!35 j (x=h � l)j
with mj = h jzjM+1�j; j e (z)j i (�nite since e 2 DM+1)

6 hM+1kf (M+1)k1
(M + 1)!

max
06j6M+1

mj �

X
l

24M+1X
j=0

jx=h� ljj
 
M + 1

j

!35 j (x=h � l)j
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= hM+1 kf (M+1)k1
(M + 1)!

max
06j6M+1

mj �X
l

(jx=h� lj+ 1)M+1 j (x=h � l)j:

Since this last summation over l can be bounded independently of x and h, it
holds that jKn(x)j 6 C hM+1 with C independent of x and n. Now we need to
combine the error expansions for Qn into one for En. Therefore, we de�ne a new
monowavelet ��p and write

Qnf(x) =
MX
p=N

hp f (p)(x)

p!
��p�N(2

nx) +Kn(x) ; (4.2)

with

��p(x) =
pX
s=0

 
N + p

s

!fNN+p�s (�1)s �s(x): (4.3)

So

Qn+jf(x) =
MX
p=N

hp f (p)(x)

p! 2jp
��p�N(2

n+jx) +Kn+j(x):

Finally, adding the projections Qn+j f yields the desired expansion,

Enf(x) =
MX
p=N

hp f (p)(x)

p!
�p�N(2

nx) +O(hM+1): (4.4)

Here �p is the third monowavelet which is de�ned as

�p(x) =
1X
j=0

��p(2
jx)

2j(p+N)
:

The error is still O(hN ) because

jKn+j(x)j 6 C 0 hM+1=2j(M+1);

and thus
1X
j=n

jKn+j(x)j 6 C hM+1:

We conclude by saying that the general term of the expansions consists of:
a power of h, the same order of derivative of f , and a monowavelet. We can
look at the monowavelet as the \oscillating" part and at the derivative as the
\modulating" part.
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4.3 Properties of monowavelets

4.3.1 De�nition

Recall that the monowavelet �p is de�ned as

�p(x) =
X
l

(x� l)p  (x � l): (4.5)

It is the one-periodization of xp  (x). If  2 Dp then the series (4.5) converges
uniformly on [0; 1] and �p is bounded. This can be seen using the Weierstrass M -
test combined with the fact that xp (x) 2 D0. One can check that this condition
was always satis�ed in the previous section. From the de�nition it follows thatZ 1

0
�p(x) dx = Np for p 2 N;

and thus the �rst fN monowavelets have a vanishing mean.
The monowavelet �p is de�ned as

�p(x) =
1X
j=0

��p(2
jx)

2j(p+N)
: (4.6)

The series (4.6) converges uniformly on [0; 1], and the monowavelet is periodic with
period one. Also,

��p(x) = �p(x)�
�p(2x)

2N+p
; (4.7)

and Z 1

0
�p(x) dx =

2(N+p)

2(N+p) � 1

Z 1

0
��p(x) dx

=
2(N+p)

2(N+p) � 1

pX
s=0

 
N + p

s

!
(�1)s fNN+p�sNs

= 0 if p < fN:
Again the �rst fN monowavelets have a vanishing mean.

4.3.2 Invariance

There are obviously many possible choices for the wavelet  whose translates
and dilates generate the same subspaces Wj. A trivial alternative would just be
 (x�1). From its de�nition we see that the function �p depends on the particular
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choice for  . This is not true for ��p and �p. Writing (4.2) with n = 0 in case f is
a monomial xp with p > N yields

Q0 x
p =

pX
s=N

 
p

s

!
xp�s ��s�N(x): (4.8)

It follows that ��p only depends on the multiresolution analysis subspaces Wj and
not on which particular functions  j;k generate it. So �

�
p is more characteristic for

a multiresolution analysis than �p. The same is true for �p as

E0 xp = (1�P0)xp =
pX

s=N

 
p

s

!
xp�s �s�N(x): (4.9)

These dependencies are studied in more detail in Section 4.8. Note that

�0(x) = xN �P0 xN :

This is the error of the approximation of the lowest degree monomial that cannot be
approximated exactly. Equation (4.9) generalizes this to higher degree monomials.

This also explains the name \monowavelets". The monowavelets come from pe-
riodizing amonomial multiplied with a wavelet or from projecting downmonomials.
These techniques are also used in spline theory where the resulting functions are
called monosplines [159].

4.3.3 Fourier series

Write the Fourier series of �p as

�p(x) =
X
k

sp;k ek(x);

with
ek(x) = exp(2�ikx);

and

sp;k =
Z 1

0
�p(x) ek(x) dx:

Poisson's summation formula yields

sp;k = ip b (p)(2k�):

The coe�cients with even index can be written as

sp;2k = ip b (p)(4k�) = ip
dp

d!p

h
g(!=2) b'(!=2)i

!=4k�

= (i=2)p
dp

d!p

h
g(!) b'(!)i

!=2k�
: (4.10)
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If p < fN , these terms vanish, since 2k� is a root of order fN of g(!). So only the
odd index terms, which are antisymmetric around 1=2, remain and thus

�p(x+ 1=2) = ��p(x); (4.11)

or X
l

(x+ l=2)p  (x + l=2) = 0 for p < fN:
So the 1=2-periodization of xp  (x) is exactly zero if p < fN . We also know that
2k�, k 6= 0 is a root of order N of b'(!). This, together with (4.10), yields that iffN 6 p < Ntot = fN +N , the sp;2k with k 6= 0 vanish, or

sp;2k = ip b (p)(0) �k = Np �k:
So

�p(x+ 1=2) + �p(x) = 2Np; (4.12)

or X
l

(x+ l=2)p  (x+ l=2) = 2Np for fN 6 p < Ntot:

The ��p have Fourier series

��p(x) =
X
k

s�p;k ek(x);

with

s�p;k =
pX
j=0

 
N + p

j

!fNN+p�j (�1)j sj;k:

Since they are de�ned as �nite linear combinations of the �p, the �
�
p with p <

fN
also have vanishing even coe�cients in their Fourier series and thus satisfy

��p(x+ 1=2) = ���p(x) for p < fN: (4.13)

The �p have Fourier series

�p(x) =
X
k

tp;k ek(x): (4.14)

Writing the Fourier series of both sides of (4.7) yields

tp;2k+1 = s�p;2k+1 and tp;2k = s�p;2k +
tp;k

2N+p
;

or, if p < fN and thus s�p;2k = 0,

tp;k =
s�p;2l+1

2m(N+p)
with k = 2m(2l + 1): (4.15)

The transition from �p to �p apparently corresponds to �lling in the gaps at the
even indices in the Fourier spectrum.
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4.3.4 Zeros

Lemma 4.1 If  is continuous and in Dp with p < fN , the monowavelets �p and

��p have at least two zeros in the interval [0; 1).

Proof : If  is in Dp, then the series (4.5) converges uniformly and �p is continu-
ous. Since ��p is a �nite linear combination, it is continuous too. The proof
then immediately follows from (4.11) and (4.13). Also, if x0 is a root in [0; 1),
so is (x0 + 1=2) mod 1. 2

Lemma 4.2 If  is continuous and in Dp with p < fN and N > 1, the monowavelet
�p has at least two zeros in the interval [0; 1).

Proof : The function �p is de�ned as the limit of a uniformly convergent series of
continuous functions, so it is continuous. We have, using (4.13) and (4.14),

�p(0) = �p(1) =
2(N+p)

2(N+p) � 1
��p(0) and �p(1=2) = �2

(N+p) � 2

2(N+p) � 1
��p(0):

This means we have at least two changes of sign. 2

4.3.5 Symmetry

If the wavelet is even or odd,

 (�x) = (�1)m  (x);
so are �p and �

�
p and, more precisely,

�p(�x) = (�1)m+p �p(x) and ��p(�x) = (�1)m+p ��p(x):

More generally, if the wavelet is (anti)symmetric around an integer k,

 (2k � x) = (�1)m  (x);
then ��p is (anti)symmetric, or

��p(�x) = (�1)m+p ��p(x):

This is true because the function  (x� k) generates the same space Wj and thus
gives rise to the same ��p function while  (x � k) is even or odd. Note that we
cannot make a simple statement about �p. The following statements regarding the

zeros of �p (and consequently of ��p) and �p, for p <
fN hold:

� If �p is odd, it has zeros at the integers because of �p(0) = 0 and the peri-
odicity. It then also has zeros at the integers + 1=2 because of (4.11).

� If �p is even, this combined with (4.11) yields �p(x) = ��p(1=2 � x). It
thus has zeros at the integers + 1=4, and again because of (4.11) also at the
integers + 3=4.

� If �p is odd, it has zeros at the half integers; if it is even we cannot tell more
about the position of its zeros this easily.
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4.3.6 Connection with scaling function

The relationship between �p for p < Ntot and the scaling function can be written
more explicitly using the Zak transform. Remember that the Zak transform of a
function f 2 L2(R) is de�ned as [103, 104]:

(Zf)(x; !) =
X
l

e�i!l f(x+ l) for x; ! 2 R;

and satis�es
(Zf)(x; !) =

X
k

bf(! + 2�k) ei(!+2�k)x:

De�ne now:
p = ip g(p)(�) =

X
k

kp (�1)k gk:

Then

sp;2k+1 = ip
dp

d!p

h
g(!=2) b'(!=2)i

!=(2k+1)2�

=
�
i

2

�p pX
s=0

 
p

s

!
g(p�s)(�) b'(s)((2k + 1)�)

= 2�p
pX
s=0

 
p

s

!
p�s i

s b'(s)((2k + 1)�):

Now, for p < fN ,

�p(x) = (Z xp  )(x; 0)
=

X
k

sp;2k+1 e2k+1(x)

= 2�p
pX
s=0

 
p

s

!
p�s

X
k

is b'(s)((2k + 1)�) e2k+1(x)

= 2�p
pX
s=0

 
p

s

!
p�s (Z xs')(2x; �)

= 2�p
pX
s=0

 
p

s

!
p�s

X
l

(�1)l (2x� l)s '(2x� l):

For fN 6 p < Ntot one has that

�p(x) = Np + 2�p
pX
s=0

 
p

s

!
p�s

X
l

(�1)l (2x� l)s '(2x� l):

In case p = 0 we have that

s0;2k+1 = g(�) b'((2k + 1)�) = b'((2k + 1)�); (4.16)

and
�0(x) =

X
l

(�1)l'(2x� l) = 2
X
l

'(2x� 2l)� 1: (4.17)
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Figure 4.1: �p for coiet with N = 2.
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Figure 4.2: �0 for Daubechies' wavelets with N = 2; 3; 4; 6; 8; 10.
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4.4 Examples of monowavelets
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Figure 4.3: �0 for Daubechies' wavelets with N = 2; 3; 4; 6.

In the Haar case, �0 �[0;1] is the Haar wavelet and �0 is a sawtooth function with
�0(x) = x � 1=2 for 0 6 x < 1. The �0(2

jx) functions with j > 0 are then called
the Rademacher functions, which are well-known in probability theory.

However, it is not always possible to derive an analytic expression for the
monowavelets. We therefore wrote a computer program that allows us to numeri-
cally evaluate them. It �rst constructs the wavelet and then just uses the de�nition
of the monowavelets. It uses ten terms in the de�nition of �p. Using this program
we constructed the following graphs.

Figure 4.1 shows the �rst six �p monowavelets in case  is the coiet with
N = 2. One can graphically check that the 1/2-periodization of the �rst two is
zero and of the following two a constant. The next examples concentrate on the
leading terms (p = 0).

Figures 4.2 and 4.3 show �0 and �0=NN in the case of the orthogonal Daube-
chies wavelets. One can understand that �0 and �0=NN cannot be distinguished
graphically for N bigger than 6. Note that for N = 10, the monowavelet looks like
a shifted sine function.
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N = 8

Figure 4.4: �0 for Deslauriers-Dubuc with N = 2; 4; 6; 8.

Monowavelets built from Deslauriers-Dubuc wavelets are shown in Figures 4.4
and 4.5. The properties described in Section 4.3 can now easily be veri�ed graph-
ically.

The Meyer wavelet [140] has supp b (!) = [�8�=3;�2�=3] [ [2�=3; 8�=3], sob (2k�) is identically zero for jkj 6= 1. We have b (�2�) = �p2=2, and thus

�0;Meyer(x) = �
p
2 cos(2�x):

The Meyer wavelet has faster than polynomial decay and thus all the functions �p
are de�ned. They are all of the form

�p;Meyer(x) = ap sin(2�x� bp):
The asymptotical error expansion, however, does not make sense in this case, since
all the moments of this wavelet vanish (N =1).

For the Shannon wavelet, where

 Shannon(x) =
sin(2�x)� sin(�x)

�x
;

one can see that X
l

 Shannon(x� l)
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N = 4

Figure 4.5: �0 for Deslauriers-Dubuc with N = 2; 4.

diverges. Note that the Shannon wavelet is not in D0.
For the Meyer wavelet, which has in�nitely many vanishing moments, the �p

function is a sine. For the di�erent Daubechies families, the monowavelets seem to
converge to a sine function as N goes to in�nity. So it seems that as the number of
vanishing moments goes to in�nity, the monowavelets converge to sine functions.
This makes sense because the smoother  , the faster the decay of b and the more
�0 looks like its fundamental frequency component. There is, however, no general
proof of this phenomenon to our knowledge.

4.5 Spline monowavelets

In this section we study monowavelets in case the scaling function and wavelet are
spline functions. Therefore, we �rst introduce Euler and Bernoulli polynomials
and splines.

4.5.1 Euler and Bernoulli polynomials and splines

A sequence of polynomials Vm, m 2 N, is an Appell sequence if Vm is a polynomial
of strict degree m and if

V 0

m = mVm�1:

The Euler and Bernoulli polynomials are two Appell sequences, denoted, respec-
tively, with Em(x) and Bm(x), which satisfy [1, 83]:

2 exz

ez + 1
=
X
n

Em(x)

m!
zm for jzj < 2�;

and
z exz

ez � 1
=
X
n

Bm(x)

m!
zm for jzj < �:
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The �rst elements of the sequences are

E0(x) = 1
E1(x) = x� 1=2
E2(x) = x2 � x
E3(x) = x3 � 3=2x2+ 1=4
E4(x) = x4 � 2x3 + x;

and

B0(x) = 1
B1(x) = x� 1=2
B2(x) = x2 � x+ 1=6
B3(x) = x3 � 3=2x2 + 1=2x:
B4(x) = x4 � 2x3 + x2 � 1=30:

The Bernoulli polynomials satisfy

Bm(x+ 1)�Bm(x) = mxm�1;

and consequently

B(p)
m (0) = B(p)

m (1) for 0 6 p 6 m� 2:

This means that, if we de�ne a one-periodic function Bm as

Bm(x) = Bm(x� bxc);
then this is a periodic spline of order m + 1 with integer knots that belongs to
Cm�2. It is called the Bernoulli periodic spline [120]. The �rst four are shown in
Figure 4.6. Its Fourier series for m > 1 is

Bm(x) = � m!

(2�i)m
X
k

0 ek(x)

km
:

The prime indicates that the term with k = 0 is omitted. The function Bm has
the same parity (even/odd) as m.

Something similar is possible for the Euler polynomials. They satisfy

Em(x+ 1) +Em(x) = 2xm;

and consequently

E(p)
m (0) = �E(p)

m (1) for 0 6 p 6 m� 1:

This means that if we de�ne a two-periodic function Em as

Em(x) = (�1)bxcEm(x� [x]);

then this is a periodic spline of order m + 1 with integer knots that belongs to
Cm�1. It is called the Euler periodic spline [120, 159]. The �rst four are shown in
Figure 4.7. The function Em has the opposite parity (even/odd) as m. Also,

Em(j +m=2) = (�1)j �m:
It is sometimes normalized so that �m = 1, see [27, 159]. It is then the cardinal
spline interpolant of the sequence yk = (�1)k. Its Fourier series for m > 1 is

Em(x) =
2m!

(�i)m+1

X
k

e2k+1(x=2)

(2k + 1)m+1
:
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Figure 4.6: Bm for m = 1; 2; 3; 4.

4.5.2 Spline wavelets

We consider the multiresolution analysis where V0 is the space of piecewise poly-
nomials of degree m � 1 with integer knots that belong to Cm�2. Note that this
implies that N = m. From the dual multiresolution analysis we only require thatfN > 0. The dual scaling function and wavelet need not be splines. We supply
the notation with an extra superscript (m) (not to be confused with the derivative
of a function). A possible choice of scaling function is '(m) = Nm, the cardinal
B{spline of order m. We know that

cNm(!) =

 
1� e�i!
i!

!m
;

so that (from (4.15) and (4.16))

s
(m)
0;2k+1 =

�
2

i�

�m 1

(2k + 1)m
and t

(m)
0;k = fN (m)

m

�
2

i�

�m 1

km
:

We will show in Section 4.8 that, for all possible dual wavelets,

fN (m)
m = � m!

22m
:
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Figure 4.7: Em for m = 1; 2; 3; 4.

This implies that

�
(m)
0 (x) =

2m�1

(m� 1)!
Em�1(2x) and �

(m)
0 (x) = Bm(x):

The �p(x) and �p(x) functions with p > 0 here are also one-periodic splines
of order m. Analytic expressions can be obtained, but the derivation is quite
technical and is omitted here. We refer to [171] for details. We only include the
main result, which states that

� (m)
p (x) = (�1)p

 
m

p

!
Bm+p(x) for p < fN:

The fact that we have an analytic expression for the monowavelets here is extremely
useful in convergence acceleration algorithms as described in Section 4.7.

Remarks

� Equation (4.6) for p = 0 yields the following relationship between Euler and
Bernoulli splines:

Bm(x) = � m

2m+1

1X
i=0

Em�1(2
i+1x)

2mi
:
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Something similar is also true for the polynomials, as

Bm(x) = � m

2m+1

kX
i=0

Em�1(2
i+1x)

2mi
+
Bm(2

k+1x)

2m(k+1)
;

and this is just an iterated version of [1, equation (23.1.27)].

� In [167, pages 147{151], Strang and Fix construct an asymptotical error
analysis for the projection in the space spanned by piecewise linear �nite
elements. This result coincides with the one presented here in case m = 2
and M = 2.

4.6 Interpolation

The leading term of the expansion (4.4) looks like

hN �0(x=h) f
(N)(x)=N !:

Remember that we stated that it consists of an oscillating and a modulating part.
The modulating part is given by the envelopes

hN f (N)(x) �max and hN f (N)(x) �min; (4.18)

where

�max = max
x2[0;1]

�0(x)=N ! and �min = min
x2[0;1]

�0(x)=N !:

The �rst term oscillates between these two envelopes. As a result of Lemma 4.2
this function has at least 2n+1 zeros per unit length. This leads to the following
theorem:

Theorem 4.3 If f is su�ciently smooth, the approximation Pnf asymptotically

interpolates f in at least 2n+1 points per unit length.

The \asymptotically" here means that one can always �nd a large enough n so
that the interpolating properties hold. Essentially, one needs to take n so that
the remaining terms do not inuence the zeros of the �rst term. The examples
of Section 4.10 will show that n need not be very large. Note that the number
of interpolation points is twice the number of basis functions. The interpolation
points zk, where Pnf(zk) = f(zk), satisfy

z2k = (x1 + k)h +O(h2) and z2k+1 = (x2 + k)h +O(h2);

where x1 and x2 are zeros of �0(x) in [0; 1).
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4.7 Numerical extrapolation

One of the most powerful applications of error expansions are extrapolation algo-
rithms, cf. [186]. The general idea is to use approximations at di�erent resolutions
to identify, estimate, and eliminate the most relevant components of the expansion
and thus obtain convergence acceleration. The easiest case is if the expansion con-
sists of powers of the scale parameter h. Then, classic methods, such as Richardson
extrapolation, can be used.

The multiresolution scheme naturally gives us a number of approximations at
di�erent levels, which can be used for convergence acceleration. We assume that
x is a point so that 2mx 2 Z, where m is the coarsest level of the multiresolution
scheme. Because of the periodicity of the monowavelets, the asymptotic error
expansion at x then consists of powers of h.

Table 4.1 shows the results of a numerical experiment where

f(x) = exp(�20 (x� 0:5)2);

and the wavelet used is the Daubechies wavelet with N = 2. The �rst column
shows the relative error of the approximation at x = 1=4 for levels n from 2 to 9.
The other columns are the relative errors of the values obtained with the following
Richardson extrapolation scheme:

rn;1 = Pnf(1=4) for 2 6 n 6 9;

and

rn;j =
2N+j�2 rn;j�1 � rn�1;j�1

2N+j�2 � 1
for 3 6 n 6 9 and n 6 j 6 9:

The �rst column shows a convergence of h2, i.e. on each level the error is roughly
divided by 4. Subsequent columns correspond to eliminating one term of the
expansion. We see that in this case simple linear combinations result in an increase
from 5 to almost 13 accurate digits.

This simple algorithm, however, only works for the points with 2mx 2 Z. In
case this condition is not satis�ed it cannot be used any more. It is then necessary
to numerically evaluate the monowavelets so that the coe�cients �p(x=h) can be
taken into account in the algorithm. In this case an analytical expression for the
monowavelets, such as the one derived for the spline case, is extremely useful.

In a more general setting, it is also possible to consider f as a distribution.
Note that a distribution f is characterized by inner products h f; � i where � be-
longs to the class of test functions. If f is a distribution, we can approximate the
inner products h f; � i by h Pnf; � i . We can use the asymptotic error expansion
of the wavelet approximation to get an asymptotic error expansion for these in-
ner products. For a certain class of test functions this error expansion consists
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Table 4.1: The Richardson extrapolation table for x = 1/4.

n j
Enf(1=4)

f(1=4)
j

2 1.2e-01 - - - - - - -

3 5.6e-02 3.3e-02 - - - - - -

4 1.7e-02 3.5e-03 6.8e-04 - - - - -

5 4.3e-03 1.9e-04 2.8e-04 2.5e-04 - - - -

6 1.1e-03 2.5e-06 3.0e-05 1.3e-05 5.5e-06 - - -

7 2.7e-04 2.3e-06 2.3e-06 4.3e-07 1.4e-08 7.3e-08 - -

8 6.6e-05 4.2e-07 1.5e-07 1.2e-08 1.3e-09 1.6e-09 9.9e-10 -

9 1.6e-05 6.2e-08 9.9e-09 3.4e-10 3.6e-11 1.6e-11 3.6e-12 3.1e-13

of powers of h whose coe�cients are independent of h. This makes Richardson
extrapolation applicable again.

An important implication of this algorithm is the following: Traditionally, when
using wavelet approximation, the only way to achieve O(hN ) convergence is to use
a dual wavelet with N vanishing moments. This can have disadvantages such as
long �lters or extra problems when working on an interval. Now, it is possible to
use wavelets with a low number of vanishing moments (such as Haar), but still get
the fast O(hN ) convergence using the extrapolation algorithm. This is especially
useful in applications where one naturally works with boxcar coe�cients, cf. the
discussion in Section 3.10.

4.8 Comparison of multiresolution analyses

The error expansion can be used to compare di�erent multiresolution analyses.
The error decays as O(hN ), and the constant in front of this factor is given by

U0(x) = �0(x=h)
f (N)(x)

N !

For su�ciently small h the leading term of the expansion provides a su�ciently
accurate approximation of the error. To compare di�erent multiresolution analyses
we therefore just look at

AN = k�0k1;
because

kEn fkp � hN kU0kp 6
AN h

N

N !
jf jN;p:

Here the Sobolev seminorm is de�ned as

jf jN;p = kf (N)kp:
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Table 4.2: AN for di�erent wavelet families.

extremal- closest-to- Deslauriers-
N phase linear-phase coiet spline Dubuc

1 0.500 0.500 0.5000
2 0.500 0.500 0.641 0.1667 0.1667
3 0.597 0.597 0.0481
4 0.865 0.915 0.856 0.0333 0.3000
5 1.904 1.918 0.0244
6 5.109 5.701 4.899 0.0238 1.7857
7 18.169 18.044 0.0261
8 70.927 71.865 59.436 0.0333 21.6176
9 310.398 303.921 0.0476

4.8.1 Di�erent multiresolution analyses

A �rst possibility is to compare di�erent multiresolution analyses that have the
same N . The order of convergence of the wavelet approximation evidently is the
same. Therefore, we compare the numerical value of the constant AN . Table 4.2
gives AN as a function of N for the Daubechies orthogonal wavelets, spline wave-
lets, and Deslauriers-Dubuc wavelets. As we will see in the next section, Am is the
same for all spline wavelets (orthogonal, biorthogonal or semiorthogonal) of order
m. The spline wavelets have by far the smallest constants.

The ratio between AN for Daubechies' orthogonal wavelets and spline wavelets
behaves roughly like 2N . Consequently, an approximation using splines at a certain
level n is yields roughly the same error as an approximation using Daubechies'
orthogonal scaling functions at level n + 1. In other words, in order to obtain
an approximation with a certain numerical error, one needs, in general, one more
level with Daubechies' orthogonal wavelets than with spline wavelets. Remember
that one extra level involves double the amount of work.
Note: The fact that the �rst non-vanishing dual wavelet moment plays a role in
comparing errors in the discrete case was also pointed out in [116].

4.8.2 Fixed multiresolution analysis

Another idea is to compare AN for a multiresolution analysis with �xed Vj sub-
spaces, but di�erentWj subspaces and consequently di�erent projection operators.
Typically, we want to compare biorthogonal bases with (semi-)orthogonal ones.
Recall that in the latter case the projection operators are orthogonal and yield
best approximations in the L2 sense.

In order to compare the error expansion for di�erent families of wavelets, we
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�rst need to study some dependencies in a multiresolution analysis more carefully.
Here we always use the normalizations

b'(0) = 1 and g(�) = 1;

to avoid non-uniqueness. The following dependencies now hold in any multireso-
lution analysis:

� Given a scaling function, the subspaces Vj are uniquely determined by

Vj = clos spanf'j;l j l 2 Zg:

On the other hand, given the subspaces Vj, in�nitely many scaling functions
exist that generate these spaces. More precisely, if ' is a such a function,
any function '� with b'�(!) = a(!) b'(!); (4.19)

where a(!) is a bounded 2�-periodic function that does not vanish and a(0) =
1, generates the same subspaces Vj. Moreover, any function generating the
same subspaces is of this form.

� A similar statement holds for the wavelet  and the subspaces Wj .

� Given the subspaces Wj , the subspaces Vj are uniquely determined by

Vj =
j�1M
i=�1

Wi:

On the other hand, if the Vj are given, in�nitely many choices for complemen-
tary spaces Wj are possible, one choice being the orthogonal complements.

� Given the spaces Wj , the fWj are uniquely determined by the fact that

Wj ? fWj0 if j 6= j 0 and
M
j

fWj = L2(R):

Figure 4.8 shows these dependencies in a graph.
For each characteristic of a multiresolution analysis we now can de�ne its de-

pendency: V -dependent, '-dependent, W -dependent, or  -dependent. Something
is called '-dependent if it depends on the speci�c choice of scaling function. The
other dependencies are de�ned similarly. We always use the most characteristic
dependency. By looking at the dependency graph we see that something that is
V -dependent is also '-dependent, but we only use the term '-dependent for some-
thing that is not V -dependent. In other words, something that is V -dependent
does not change if the scaling function ' is replaced with a function '� that gener-
ates the same Vj spaces. In order to become more familiar with this terminology,
we illustrate it with some examples.
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Figure 4.8: Dependencies in a multiresolution analysis.

� Anything that is V -dependent is also W -dependent.

� The projection Qnf is W -dependent.

� The projection Pnf is W -dependent too, as

Pn =
n�1X
j=�1

Qj:

� The number of vanishing dual wavelet moments (N) is V -dependent.

� The �0 monowavelet is '-dependent because of (4.17).

� The ��p and �p monowavelets are, in general, W -dependent because of (4.8)
and (4.9).

� Anything that is '-dependent and W -dependent at the same time is V -
dependent.

We extend these properties with the following lemmas:

Lemma 4.4 The �rst non-vanishing dual wavelet moment is V -dependent and,

more precisely,

fNN = �(i=2)N h(N)(�) = (�1=2)N
X
k

(�1)k kN hk:

Proof : We �rst prove that it is '-dependent. Pick a scaling function ' that
generates the Vj. Recall that (2.30)

eg(!) = �h(! + �)

�(!)
;

with
�(!) = h(!) g(! + �)� h(! + �) g(!):
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Now, fNN = iN
be (N)

(0) = iN
dN

d!N

heg(!=2) be'(!=2)i
!=0

;

and, since ! = 0 is a root of multiplicity N of eg(!),
fNN = (i=2)N eg(N)(0):

Since ! = � is a root of multiplicity N of h(!), it holds that

eg(N)(0) = �h
(N)(�)

�(0)
:

The fact that �(0) = 1 now yields the '-dependency.

To prove that fNN is V -dependent, take a di�erent scaling function,

b'�(!) = a(!) b'(!);
which has

h�(!) =
a(2!)

a(!)
h(!):

As a(0) = 1, and � is a zero of order N of h(!), it holds that

h�(N)(�) = h(N)(�)=a(�);

which yields the same �rst non-vanishing dual wavelet moment. 2

Lemma 4.5 The leading term of the error expansion is V -dependent.

Proof : The function �0 and fNN are '-dependent, so ��0 =
fNN �0 is '-dependent

too. As ��0 was already W -dependent, it is thus V -dependent. So also �0 and
consequently the leading term of the expansion are V -dependent. 2

Note: If the subspace V0 is the space of the piecewise polynomials of degree m� 1
with integer knots that belong to Cm�2, we can take '(m) to be the B-spline Nm,
so

h(!) =

 
1 + e�i!

2

!m
;

and thus fN (m)
m = � m!

22m
;

and
Am = kBmk1:

In the case m is even we have a simple expression since

A2n = kB2n(x)k1 = jB2nj;
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where B2n is the 2nth Bernoulli number. The leading term of the expansion is
exactly the same for Battle-Lemari�e orthogonal spline wavelets [19, 125], Cohen-
Daubechies-Feauveau biorthogonal spline wavelets [45], and Chui-Wang semior-
thogonal spline wavelets, [34, 39, 37].

The dependency of the higher order terms is studied in the following lemmas.

Lemma 4.6 Given fN , the �rst Ntot = N+fN moments of the dual scaling function

are '-dependent.

Proof : Since e' is a dual function, it holds thatX
k

be'(! + k2�) b'(! + k2�) = 1:

Taking the pth derivative of this expression at ! = 0 yields

X
k

pX
s=0

 
p

s

! be'(s)
(k2�) b'(p�s)(k2�) = 0: (4.20)

Now, since
ip b'(p)(2k�) = Mp �k for 0 6 p < N;

and
ip be'(p)

(2k�) = fMp �k for 0 6 p < fN;
it holds that X

k

be'(l)
(k2�) b'(m)(k2�) = be'(l)

(0) b'(m)(0)

for 0 6 l < fN or 0 6 m < N . The terms for k 6= 0 in (4.20) thus vanish if
s < fN or p� s < N . Consequently, if p < Ntot, then

pX
s=0

 
p

s

!
(�1)s fMsMp�s = 0 for 0 < p < Ntot:

These relations show that the �rst Ntot moments of the dual scaling function
only depend on the �rst Ntot moments of the scaling function. 2

Note: a similar statement holds also for the �rst Ntot discrete moments of the
sequence fhkg.

Lemma 4.7 The functions Qn xp and En xp are V -dependent if p < Ntot.

Proof : It follows from Lemma 4.6 that the function Pn xp is V -dependent. The
proof then immediately follows from the fact that En = 1 � Pn and Qn =
Pn+1 �Pn. 2
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Lemma 4.8 The functions ��p(x) and �p(x) are V -dependent if p <
fN .

Proof : From Lemma 4.7, (4.8), and (4.9). 2

These lemmas can be combined into the following theorem:

Theorem 4.9 The �rst fN terms of the error expansion are V -dependent.

So we can conclude that for the approximation of a smooth function on a small
scale it does not really matter how the spaces Wj are chosen. The outcome that
orthogonal and biorthogonal projections almost give the same result might look
surprising at �rst sight, but one has to keep in mind that it only holds for smooth
functions.

4.9 Quadrature formulae and error expansions

The coe�cients of the basis functions in the projection Pnf are inner products
with the dual functions. As we saw in Chapter 3, these inner products

�n;l = h f; e'n;l i = 2�n=2 h f(2�n(y + l)); e'(y) i ;
usually cannot be calculated exactly, but are approximated by a quadrature for-
mula. We de�ne for e' 2 Dp,

fp = Fr[y
p] = fMp �

rX
k=1

wk x
p
k;

and remember that
fp = 0 for 0 6 p 6 q; (4.21)

where q is the degree of accuracy. The de�nition of Fr is given in Section 3.5.
Recall that the projection operator Pn is de�ned as

Pnf(x) =
X
l

h f(h(y + l)); e'(y) i '(2nx� l):
The use of a quadrature formula results in an approximation of this operator given
by

P 0nf(x) =
X
l

Qr[f(h(y + l))]'(2nx� l):

The error of this \approximation of the approximation" is now,

E 0nf = f � P 0nf = Enf + Pnf �P 0nf:

We try to understand how the quadrature formula a�ects the asymptotic error
expansion. In other words, we derive an expansion for Pn �P 0n. We assume that
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', e' 2 DM+1, f 2 CM+1, and f (p) bounded for p 6 M + 1 and write the �rst M
terms of a Taylor series around x (M > q).

Pnf(x) �P 0nf(x) =
X
l

Fr[f(h(y + l))]'(2nx� l)

=
X
l

Fr

24 MX
p=0

f (p)(x)

p!
(hy + hl � x)p+

f (M+1)(�(x; y))

(M + 1)!
(hy + hl � x)M+1

#
� '(2nx� l)

=
X
l

MX
p=0

hpf (p)(x)

p!
Fr [(y + l � 2nx)p] '(2nx� l)

+hM+1L(2nx)

=
MX
p=0

hpf (p)(x)

p!

pX
s=0

 
p

s

!
fp�s (�1)s �s(2nx) + hM+1L(2nx)

with

�p(x) =
X
l

(x� l)p '(x� l);

and

L(x) =
X
l

Fr

"
f (M+1)(�(x; y))

(M + 1)!
(y + l � x)M+1

#
'(x� l):

We now need to bound L(x):

jL(x)j 6 kf (M+1)k1
(M + 1)!

X
l

Fr
h
jy + l � xjM+1

i
j'(x � l)j

6
kf (M+1)k1
(M + 1)!

X
l

�
h jy + l � xjM+1; e'(y) i+
Qr

h
jy + l � xjM+1

i�
j'(x� l)j

6
kf (M+1)k1
(M + 1)!

(I + II);

with

I 6
X
l

h jy + l � xjM+1; j e'(y)j i j'(x� l)j
6

X
l

24M+1X
j=0

mj jx� ljj
 
M + 1

j

!35 j'(x� l)j
with mj = h jzjM+1�j; j e'(z)j i (�nite since e' 2 DM+1)
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6 max
06j6M+1

mj

X
l

24M+1X
j=0

jx� ljj
 
M + 1

j

!35 j'(x� l)j
= max

06j6M+1
mj

X
l

(jx=h� lj+ 1)M+1 j'(x� l)j

6 C 0;

where C 0 is independent of n and x as ' 2 DM+1, and

II 6
X
l

Qr[jy + l � xjM+1] j'(x� l)j

6
X
l

rX
k=1

jwk jjxk + l � xjM+1 j'(x� l)j

6 max
16k6r

jwk j (1 + jxkjM+1)
X
l

(jx� lj + 1)M+1 j'(x� l)j

6 C 00;

where C 00 also is independent of n and x. The �rst q + 1 terms of the expansion
vanish because of (4.21) so that

Pnf(x) �P 0nf(x) =
MX

p=q+1

hpf (p)(x)

p!

p�q�1X
s=0

 
p

s

!
fp�s (�1)s �s(2nx) + hM+1L(2nx):

Recall that
�p(x) = Mp for 0 6 p < N;

so if we let M = N + q, we have

Pnf(x)�P 0nf(x) =
N+qX
p=q+1

hpf (p)(x)

p!
�p +O(hN+q+1)

with

�p =
p�q�1X
s=0

 
p

s

!
fp�s (�1)sMs:

Formally, this expansion is similar to the expansion of the error of the wavelet
approximation, the only di�erence being that instead of oscillating functions there
are constants in each term. We can get an error expansion for E 0n by adding the
expansions for En and P 0n � P 0n. In order not to ruin the convergence speed of
O(hN ) of the wavelet approximation, we obviously have to take q > N � 1. At
�rst sight is seems most logical to choose q = N � 1. The leading term of the
combined expansion is then

hNf (N)(x)

N !
(�0(x) + fN ):

This immediately leads to the following theorem.
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Theorem 4.10 If

min
x
j�0(x) + fN j > 0;

then the asymptotic interpolating properties of the wavelet approximation as de-

scribed in Theorem 4.3 are lost.

In this case it is actually the quadrature formulae that contributes the most to the
error. So here one might want to use a quadrature formula with degree of accuracy
q > N .

The next theorem follows immediately from Lemma 4.6 and the construction
of the quadrature formula.

Theorem 4.11 Any quadrature formula with degree of accuracy less than Ntot is

V -dependent.

This implies the remarkable result that P 0nf does not depend on the dual scaling
function as long as q < Ntot. In other words, for �xed fN , no matter how the
subspaces Wj are chosen, P 0n will be the same. If the wavelet subspaces Wj are

chosen as the orthogonal complement, we know that fN = N . We denote the
approximate projection in this case as Porth0

n . Consequently, if the dual scaling
function has fN > N and if q < 2N , then the operator P 0n coincides with Porth0

n .

4.10 Numerical examples

We implemented a computer program that calculates the operator P 0n f from the
samples f(k=2n) of a function f . We again consider the function

f(x) = exp(�20(x� 1=2)2);

and calculate P 0n f(x) for x 2 [0; 1].
Figure 4.9 shows the original function and its approximation P 04f(x) in case the

scaling function and the dual scaling function both are the box function (N = fN =
1). The quadrature formula used here has r = 2, x1 = 0, x2 = 1, w1 = w2 = 1=2,
and q = 0.

Figure 4.10 shows P 04f(x) where the scaling function is again the box function,
but the dual scaling function is the one with fN = 3 constructed in [45]. The
quadrature formula used here has r = 4, x1 : : : x4 = �1 : : : 2, w1 = w4 = �1=12,
w2 = w3 = 7=12, and q = 3. Note the di�erence with the previous �gure at the
top of the Gaussian.

Figure 4.11 shows the error E 05f(x) in the case of the orthogonal Daubechies
scaling function with N = 2. The quadrature formula used here has r = 4,
x1; : : : ; x4 = 0; : : : ; 3, and q = 3. One easily identi�es the modulating and oscil-
lating part. The dotted lines are the envelopes of the leading term of the error
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Table 4.3: Comparison of the error for Daubechies' and spline wavelets (N = 4).

level Daubechies' spline

1 7.53e-01 3.05e-01
2 4.01e-01 5.07e-02
3 5.00e-02 7.53e-03
4 3.16e-03 3.13e-04
5 1.52e-04 1.01e-05
6 9.45e-06 4.24e-07
7 6.06e-07 2.37e-08
8 3.82e-08 1.53e-09
9 2.39e-09 9.67e-11
10 1.50e-10 6.06e-12

expansion. At this level the leading term already provides a reasonable approx-
imation of the error. Note also that the interpolation properties as described in
Theorem 4.3 hold.

Figure 4.12 shows the error E 05f(x) in case the scaling function is the orthog-
onal Daubechies function with N = 2. The quadrature formula used here is the
trapezoidal rule with r = 2, x1 = 1, x2 = 2, wk = '(k), and q = 1. The situation
described in Theorem 4.10 occurs here: f2 = 1=2 and minx �(x) = �0:279. We see
that the interpolating properties are lost. The error is about twice as big as in the
previous case. Again the dotted lines are the envelopes of the leading term of the
combined error expansion.

Figure 4.13 shows the error E 05f(x) in case the scaling function is the B-spline
of order N = 2, and the dual scaling function is the one with fN = 2 constructed
in [45]. The quadrature formula has r = 3, x1 : : : x3 = �1 : : : 1, w1 = w3 = �1=12,
w2 = 14=12, and q = 2. Again the dotted lines are the envelopes of the leading
term of the error expansion. One can clearly distinguish the shape of the Bernoulli
spline of degree 2.

Table 4.3 compares maxx jE 0nf(x)j on di�erent levels in two cases. On the
�rst one, the scaling function is the orthogonal Daubechies scaling function with
N = 4, and the quadrature formula has q = 5. The second one corresponds to the
biorthogonal case with ' = N4 (N = 4), and fN = 6. The quadrature formula has
r = 3 and q = 4. The order of convergence is O(h4) in both cases. The inuence
of the quadrature formulae is negligible. On the �ner levels, the error is indeed
divided by 16 each time. This also con�rms what was predicted in Section 4.8:
the approximation using splines at a certain level yields roughly the same error as
an approximation using Daubechies' wavelets with the same N at the next (�ner)
level.
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Figure 4.9: P 04 f in the Haar case and with q = 0.
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Figure 4.10: P 04 f in the Haar case and with q = 3.
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Figure 4.11: E 05 for the Daubechies orthogonal wavelet (N = 2, q = 3).
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Figure 4.12: E 05 for the Daubechies orthogonal wavelet (N = 2, q = 1).
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Figure 4.13: E 05 for the biorthogonal wavelet (N = fN = q = 2).
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4.11 A more accurate �rst term

If we compare Figures 4.11 and 4.13, it looks like the �rst term is a better approx-
imation in the spline case than in the Daubechies case. It seems that the error in
the Daubechies case is a little shifted compared to the envelopes. In this section
we study and explain this phenomenon. It will lead to a more accurate term. Since
it occurs in the orthogonal case we assume that the wavelets are orthogonal.

4.11.1 Approximation of xN+1

We �rst consider the case of approximating f(x) = xN+1 at level 0. Equation (4:2)
yields

Q0 x
N+1 = (N + 1)NN x�0(x) +NN+1 �0(x)� (N + 1)NN �1(x):

The left-hand side of this formula evidently belongs to W0. (This is not entirely
correct unless we see W0 as a subspace of L1(R) instead of L2(R).) On the right-
hand side it is hard to distinguish the components of each subspace. Only the
second term belongs clearly to W0. Therefore, we try to rewrite the right-hand
side and isolate the component of each term in W0. We group the �rst two terms,

Q0 x
N+1 = (N + 1)NN (x+ �)�0(x) � (N + 1)NN �1(x);

with

� =
NN+1

(N + 1)NN
:

Secondly, we isolate the component of �1(x) in W0, by letting

Q0 �1(x) =
X
k

h�1(y));  (y � k) i (x� k)

=
X
k

h�1(y);  (y) i (x � k)

= h�1(y);  (y) i�0(x)
= � �0(x);

where

� = h�1;  i =
Z 1

0
�0(y)�1(y) dy =

Z +1

�1

y  (y)�0(y) dy:

In the next section an algorithm to calculate � is described. De�ne now

��1(x) = � �0(x)� �1(x);

so that �0 and ��1 are orthogonal. Then,

Q0 x
N+1 = (N + 1)NN (x� )�0(x) + (N + 1)NN ��1(x);
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with

 = � � �:
In this formula the second term has no component in W0. We see that in order to
isolate the component in W0, the modulating function (in this case x) has to be
shifted over a distance .

4.11.2 Calculation of �

In this section an algorithm to calculate � accurately is described. We can write

� = hx; �0(x) (x) i
= 2

X
k

gk hx; �0(x)'(2x� k) i

= 1=2
X
k

gk hx; �0((x+ k)=2)'(x) i + 1=2
X
k

gk k h�0((x+ k)=2); '(x) i

= 1=2 (p1 + p2);

with

p2 =
X
k

gk k h�0((x+ k)=2); '(x) i =
X
k

h1�k k h�0(x=2); '(x) i = 1�M1;

and

p1 =
X
k

gk hx; �0((x + k)=2)'(x) i = hx; �0(x=2)'(x) i =
X
l

(�1)l�l;

where
�l = hx; '(x� l)'(x) i :

The �l can be found by solving the linear system

�m =
X
l

al�2m �l + b2m;

with

ai =
X
k

hk hk+i and bi =
X
k

k hk hk+i:

4.11.3 General construction

For the general construction we �rst need a theorem and some lemmas.

Theorem 4.12 If � is a periodic function with period one, and r is the number

of vanishing moments of �  , and g 2 Cr, then Qn [g(x) �(2nx)] = O(hr) where
h = 2�n.
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Proof : We know that

Qn[g(x) �(2nx)] =
X
l

n;l  (2
nx� l);

with

n;l = 2n h g(y); �(2ny) (2ny � l) i = h g(h (y + l)); �(y) (y) i :

The proof now follows from the Taylor formula. 2

Lemma 4.13 The function �j ' has N vanishing moments if 0 6 j < N and no

vanishing moments if N 6 j.

Proof :

hxp; �j(x)'(x) i =
X
l

h (x+ l)p; xj  (x)'(x+ l) i

= MpNj if 0 6 p < N .

This is zero if 0 6 j < N and non-zero if p = 0 and j = N . 2

Lemma 4.14 The following functions also have N vanishing moments if 0 6 j <

N , and no vanishing moments if N 6 j: �j(x)'(x � l) with l 2 Z, �j(2ix)'(x)
with i 2 N, ��j ', and �j '.

Lemma 4.15 The function �j(2
ix) (x) with i > 0 has 2N vanishing moments if

0 6 j < N , and N vanishing moments if N 6 j.

Proof : For i = 1,

hxp;  (x) �j(2x) i = 2
X
l

gl hxp; '(2x� l) �j(2x) i

= 2�p
X
l

gl hxp; '(x� l) �j(x) i

= 2�p
X
l

gl h (x+ l)p; '(x) �j(x) i :

If 0 6 p < N , this is zero for all j because of Lemma 4.13. If N 6 p < 2N ,
the inner product in the summation is a polynomial of degree p � N < N .
To prove the lemma for i > 1, we can follow the same reasoning as above
and use Lemma 4.14. 2

We assume that f 2 CN+2. Then, from (4.2):

Qnf(x) = q0(x)h
N + q1(x)h

N+1 +O(hN+2);
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where

q0(x) = f (N)(x)��0(2
nx) and q1(x) = f (N+1)(x)��1(2

nx);

and, from (4.3):

��0(2
nx) =

NN
N !

�0(2
nx)

��1(2
nx) =

NN+1

(N + 1)!
�0(2

nx)� NN
N !

�1(2
nx)

=
NN
N !

[� �0(2
nx)� �1(2nx)]

=
NN
N !

[� �0(2nx) + ��1(2
nx)] :

The problem here is that both q0(x) and q1(x) have a component in Wn. Indeed,
since Z +1

�1

�0(x) (x) dx = 1;

Theorem 4.12 says that Qnq0(x) = O(h0) and Qnq1(x) = O(h0). We can solve
this problem by grouping the components in Wn,

Qnf(x) =
hN NN
N !

h�
f (N)(x)� h  f (N+1)(x)

�
�0(2

nx) + h f (N+1)(x) ��1(2
nx)+

O(h2)
i

= r0;0(x)h
N + r0;1(x)h

N+1 +O(hN+2);

where

r0;0(x) =
NN
N !

f (N)(x� h)�0(2nx) and r0;1(x) =
NN
N !

f (N+1)(x) ��1(2
nx):

In Figure 4.14, �1 and ��1 are shown for the orthogonal Daubechies wavelets (note
the di�erent scale of the vertical axis left and right). As a consequence of the
orthogonalization, ��1 is about four times as small as �1, and the new �rst term is
thus more accurate. From Theorem 4.12 with �0 and ��1 as �, respectively, we see
that Qnr0;0 = O(h0) and Qnr0;1 = O(h1). This means the component in Wn of
the O(hN+1) term tends to zero if h! 0. Now, for i > 0,

Qn+if(x) =
hN f (N)(x)

2iN
��0(2

nx) +
hN+1 f (N+1)(x)

2i(N+1)
��1(2

nx) +O(hN+2)

=
hN NN
N ! 2iN

"
f (N)(x) �0(2

n+ix) +

h
f (N+1)(x)

2i

�
� �0(2n+ix) + ��1(2

n+ix)
�
+O(h2)

#
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=
hN NN
N ! 2iN

"
f (N)(x� h)�0(2n+ix) +

h
f (N+1)(x)

2i

�
(2i � 1) �0(2

n+ix) + ��1(2
n+ix)

�
+O(h2)

#
= ri;0(x)h

N + ri;1(x)h
N+1 +O(hN+2);

where

ri;0(x) =
NN
N ! 2iN

f (N)(x� h)�0(2n+ix);
and

ri;1(x) =
NN

N ! 2i(N+1)
f (N+1)(x)

�
(2i � 1) �0(2

n+ix) + ��1(2
n+ix)

�
:

Lemma 4.15 states that �j(2
ix) (x) has 2N vanishing moments if 0 6 j < N .

Thus, using Theorem 4.12 with �0(2
ix) and �1(2

ix) as �(x), yields, respectively,
Qnri;0(x) = O(h2N ) and Qnri;1(x) = O(h2N ). So the only term with a component
in Wn that is independent of h is r0;0(x). This means we have proven the following
theorem:

Theorem 4.16 Shifting the modulating function of the �rst term of the error

expansion (4.4), and thus letting

Enf(x) =
hN NN
N !

f (N)(x� h) �(2nx) +O(hN+1); (4.22)

yields an O(hN+1) term with a component in Wn that is O(h) and consequently a

more accurate �rst term.

It is easy to see that the shift  is zero for (anti-)symmetric wavelets. This shift
can be seen as a measure for the symmetry of the wavelet. In Tables 4.4 and 4.5
we give numerical values for  both for the original Daubechies wavelets and for
the closest-to-linear-phase ones. For the original Daubechies, the absolute value of
the shift seems to be increasing linearly with N . As could be expected, the shift
is smaller for the closest-to-linear-phase ones.

4.11.4 Examples

In this section we consider the same example where

f(x) = exp(�20 (x� 0:5)2):

Figure 4.15 shows the error E6f(x). The wavelet used is the Daubechies orthogonal
wavelet withN = 3. On the same �gure, the envelopes of the �rst term of the right-
hand side of (4.4) are drawn dashed and the envelopes of the �rst term of the right-
hand side of (4.22) are drawn solid. Figure 4.16 shows the error E6f(x) using the
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Figure 4.14: �1(x) and ��1(x) for Daubechies' wavelets with N = 2; 5; 8.
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Table 4.4: The shift for the original Daubechies wavelets.

N  N  N  N 

1 0 6 -1.9942 11 -3.9906 16 -6.0034
2 -0.4301 7 -2.3909 12 -4.3924 17 -6.4068
3 -0.8187 8 -2.7892 13 -4.7947 18 -6.8104
4 -1.2077 9 -3.1888 14 -5.1973 19 -7.2142
5 -1.5996 10 -3.5893 15 -5.6003 20 -7.6179

Table 4.5: The shift for the closest-to-linear-phase Daubechies wavelets.

N  N 

2 -0.4301 6 -0.0189
3 -0.8187 7 0.0683
4 0.0860 8 -0.0741
5 0.6132 9 0.3431

Daubechies orthogonal wavelet with N = 9 and the same envelopes. We see that
the �rst term of the error expansion already gives a reasonable approximation of
the actual error and, secondly, that shifting the modulating function indeed yields
more accurate results. For both these examples the inner products h f; 'n;l i were
calculated by the program using a quadrature formula with q = 2N � 1, so this
inuence can be neglected.

4.12 Future research

One possible direction for future research is inspired by discussions with Richard
Gundy. Remember that the �0(2

jx) monowavelets built from the Haar wavelet are
called the Rademacher functions. The study of series of Rademacher functions is of
great importance in functional analysis and probability theory [30]. A classic result
here is Khintchine's inequality [123]. On the other hand, lacunary trigonometric
series, e.g. series of the form

1X
k=0

ake
i2kx;

have been studied extensively [201]. Remember that we pointed out that the
monowavelet series seem to converge to these lacunary trigonometric series if N
tends to in�nity. So monowavelets series form a natural bridge between Rade-
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Figure 4.15: The error and envelopes for N = 3 and n = 6.

macher series and lacunary trigonometric series. It would be fascinating to study
how much of the properties of Rademacher and trigonometric series carry over to
monowavelet series. Another interesting question is if the monowavelets can be
used to build martingales.

For the case of non-smooth functions many results concerning convergence
speed have already been established. Classically, if f has H�older regularity �

with � < N , then the wavelet approximation converges like O(h�). Convergence
for even more general functions was proven by Mark Kon and Louise Raphael in
[117]. An interesting question now, is if one can construct an error expansion for
these functions and characterize the dependence on f as explicitly as in the case
of smooth functions. We have done some experiments for the case where f has
an isolated algebraic singularity of the form x�+ that indicate that this might be
possible.

The construction of an expansion for wavelet approximation on the interval is
another direction. One can understand that most of the construction of the real
line carries over. The only di�erence is that the monowavelets need to be adapted
at the boundary.

All the expansions derived in this chapter are for the case when the error
is measured as the di�erence between the function and the approximation. In
many applications, such as image compression, the error is often measured in a
smoothness norm, such as a Sobolev norm. This means that one essentially checks
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Figure 4.16: The error and envelopes for N = 9 and n = 6.

how close the derivatives of the approximation are to the derivatives of the function.
Using the techniques of this chapter, it should be possible to derive pointwise error
expansions for the derivatives of the error. One thing to keep in mind here, is that
as the order of derivative increases, the convergence speed decreases. Typically,

Dp(Enf(x)) = O(hN�p);

at least if one assumes extra smoothness of the basis functions.
In Section 4.7, we described a simple extrapolation algorithm that worked in

certain dyadic points. We mentioned how more general algorithms could be con-
structed. It would be interesting to implement these and perform some numerical
experiments, especially in the case of spline wavelets where analytic expression for
the monowavelets are available.

4.13 Conclusion

In this chapter we derived an asymptotical error expansion for wavelet approxima-
tion of smooth functions. It is valid for a wide class of wavelets, which includes all
well-known examples. The construction lead to the de�nition of a new family of
functions, monowavelets, whose properties were studied. These properties allowed
us to understand the behavior of the error. We were able to explain the interpo-
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lating properties of the wavelet approximation and showed how the expansion can
be used to obtain convergence acceleration.

The leading term of the expansion was used to compare di�erent multireso-
lution analyses. An important result is that it does not depend on the choice of
complementary space Wj . In other words, the projection of a smooth function
onto a su�ciently �ne scale space of a multiresolution analysis does not essentially
depend on whether this projection is orthogonal or not. We also showed that the
error in the case of Daubechies' orthogonal wavelets is roughly 2N times larger
than in the case of spline wavelets. Thus, in order to obtain an approximation
with a certain accuracy, one needs, in general, one more level with Daubechies'
orthogonal wavelets than with spline wavelets. We also constructed an error ex-
pansion in case the quadrature formulae from Chapter 3 are used to calculate the
projections.
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Chapter 5

The Construction of

Weighted Wavelets

\In things that are tender and unpleasing,

it is good to break the ice by some whose words are of less weight,

and to reserve the more weighty voice to come in as by chance."

|Francis Bacon, Of Cumming.

5.1 Introduction

In the previous chapters we studied wavelets and multiresolution analysis in detail.
It is characteristic that the wavelets are translates and dilates of one function and
that they are (bi)orthogonal with respect to the L2 inner product.

In this chapter we show how wavelets can be adapted to a weighted inner
product. We call such wavelets weighted wavelets. In some sense this parallels
the transition from Legendre polynomials to Chebyshev or Jacobi polynomials. In
the next chapter we will use these wavelets to construct fast algorithms for the
numerical solution of di�erential equations.

The chapter is organized as follows. We discuss how to adapt the de�nition
of multiresolution analysis to a weighted inner product in Section 5.2. As we will
see, one can no longer use the translates and dilates of one function to form a ba-
sis. Consequently, the Fourier transform cannot be used in the construction. We
therefore use an alternative, the Donoho average-interpolation scheme, a construc-
tion based on subdivision. We �rst consider a simple example of the subdivision
scheme (Section 5.3). In Section 5.4, we discuss the construction in general. We
study the convergence of the subdivision scheme and the regularity of the solution
in Section 5.5, and the properties of the basis in Section 5.6. Finally, we give some
examples and discuss ideas for future research.

123
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5.2 Weighted multiresolution analysis

Consider a locally integrable function w so that 0 < w(x) a.e., and the weighted
inner product

h f; g iw =
Z +1

�1

w(x) f(x) g(x) dx:

The associated norm is
kfkw =

q
h f; f iw ;

and we de�ne the space Lw2 as

Lw2 = ff j kfkw <1g:

Remember that the basic idea of wavelets so far was to use the dyadic translates
and dilates of one function as basis functions. This can be seen as an algebraic
structure since translation and dilation become algebraic operations on the Fourier
transform side. We call such wavelets algebraic wavelets.

It is easy to see that in the case of weighted wavelets, the algebraic structure
cannot be used any longer. We thus need to adapt the de�nition of multiresolution
analysis. We �rst concentrate on which properties we want the weighted wavelets
to have. Essentially they are the following:

1. They can be constructed from scaling functions.

2. Simple explicit expression for their coordinate functionals are available (the
dual wavelets).

3. They have compact support.

4. They have cancellation properties (vanishing moments).

5. They are smooth.

We will see that properties (1){(3) result in a fast wavelet transform. Because
of (3) and (4), the wavelets are localized in space and frequency. Consequently,
the wavelet coe�cients decay rapidly where the function is smooth. One can thus
represent a function within a certain accuracy with only a few wavelet coe�cients.
As we saw in Chapter 2, compact representation is the key to applications in data
compression and numerical analysis. Property (5) is of importance in applications
where one needs to take derivatives and when the result is judged visually, cf. the
discussion in Section 2.8.

We de�ne a multiresolution analysis as a sequence of closed subspaces Vj so
that

1. Vj � Vj+1,

2.
+1[
j=�1

Vj is dense in Lw2 and
+1\
j=�1

Vj = f0g,
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3. Scaling functions 'j;k exist so that f'j;kgk is a Riesz basis of Vj .
This implies that for every scaling function 'j;k, coe�cients fhj;k;lg exist so that

'j;k =
X
l

hj;k;l 'j+1;2k+l: (5.1)

Each scaling function satis�es a di�erent re�nement relation. The dual multireso-
lution analysis consists of spaces eVj with bases generated by dual scaling functionse'j;k that are biorthogonal with the scaling functions,

h'j;k; e'j;k0 iw = �k�k0 : (5.2)

The dual scaling functions satisfy re�nement relations with coe�cients fehj;k;lg.
Note that the coe�cients of the re�nement relation can be written as

hj;k;l = h'j;k; e'j+1;2k+l iw :

Let N � 1 be the highest degree of polynomials that can be represented as a linear
combination of the f'j;kgk, and similarly for fN .

We de�ne the space Wj to be a complement of Vj in Vj+1, and let f j;kgk be a
Riesz basis for this space. We have that

 j;k =
X
l

gj;k;l 'j+1;2k+l; (5.3)

and similarly for the dual wavelets. The dual wavelets e j;k are biorthogonal to the
wavelets, or

h j;k; e j0;k0 iw = �k�k0 �j�j0:

The wavelets  j;k have fN vanishing weighted moments,Z +1

�1

w(x)xp j;k = 0 for 0 6 p < fN:
We want to construct compactly supported basis functions and dual functions,

where the index j somehow corresponds to scale and the index k somehow to
location. This is true if a closed interval I � R exists such that

supp'j;k � 2�j (I + k);

and similarly for the wavelets and dual functions. This implies that the coe�cient
sequences of the re�nement relations are �nite.

A fast wavelet transform is now given by

�j;k =
X
l

ehj;k;k�2l �j+1;l

j;k =
X
l

egj;k;k�2l �j+1;l;
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and
�j+1;k =

X
l

hj;l;k�2l �j;l +
X
l

gj;l;k�2l j;l:

All �lters are �nite. The only di�erence with the algebraic fast wavelet transform
is that the �lter coe�cients are di�erent for every coe�cient. Note that with this
setting, we can satisfy properties (1){(5) without the use of the algebraic structure.

We restrict our attention in this chapter to a more speci�c case. First of all,
we use a more restrictive condition on the support in the sense that

supp'j;k = 2�j(supp'0;0 + k); (5.4)

and similarly for the wavelets and dual functions. This implies that the index
range (over l) of the non-zero coe�cients in fhj;k;lgl is independent of j and k.

Secondly, we �x the dual scaling functions and construct scaling functions,
wavelets and dual wavelets with the desired properties. More precisely, we let the
dual scaling functions be the indicator functions on the dyadic intervals,

e'j;k = �I with I = [k2�j; (k + 1)2�j):

Consequently, Z +1

�1

e'j;k(x) dx = 2�j;

and X
k

e'j;k = 1: (5.5)

The re�nement relation for the dual scaling functions is

e'j;k = e'j+1;2k + e'j+1;2k+1: (5.6)

The normalization might look strange at this moment but it will help simplify the
notation of the construction. Because of (5.5) and the biorthogonality (5.2), the
scaling functions satisfy Z +1

�1

w(x)'j;k(x) dx = 1;

and thus X
l

hj;k;l = 1:

From the re�nement relations (5.1) and (5.6) and the biorthogonality (5.2) it
follows that

hj;k;2l + hj;k;2l+1 = �l: (5.7)

In this chapter we focus on the construction of the basis functions and do not
go into the functional analytic point of view. For example, we do not discuss the
issue of when the weighted wavelets form a Riesz basis for Lw2 , as it would lead us
too far.
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Example: The unbalanced Haar wavelets. A simple example of wavelets
that are orthogonal with respect to a weighted inner product exists. It is a variant
of the Haar wavelets. Consider the multiresolution analysis where Vj is the space of
functions that are piecewise constant on dyadic intervals of length 2�j. Obviously,
the set f'j;kgk with 'j;k = �I and I = [k2�j; (k+1)2�j) forms an orthogonal basis
of Vj for any weight function. Let  j;k be a function that is piecewise constant on
the intervals [2�jk; 2�j�1(2k + 1)) and [2�j�1(2k + 1); 2�j(k + 1)), zero elsewhere,
and that satis�es Z +1

�1

w(x) j;k(x) dx = 0:

It then follows immediately that the set f j;kg is orthogonal with respect to the
weighted inner product. Since the wavelet is not symmetric, we call it the unbal-
anced Haar wavelet . These functions have the disadvantage that they only have
one vanishing moment and that they are non-smooth. In the remainder of this
chapter we construct smooth weighted wavelets with more vanishing moments.

Several other constructions of weighted wavelets already exist, see [15, 16, 140,
180]. They, however, have the disadvantage that the wavelets are not compactly
supported.

5.3 Simple example

The construction of algebraic wavelets relies heavily on the Fourier transform. In
the case of weighted wavelets, one can no longer use the Fourier transform. Instead,
we use average-interpolation, an idea of David Donoho to construct biorthogonal
wavelets [79]. His construction builds upon a subdivision scheme and does not
make use of the Fourier transform.

In this section, we consider a simple example on how to adapt the Donoho
average-interpolation scheme for the construction of weighted wavelets. The rea-
soning goes as follows. First we outline the properties we want the scaling functions
to have. We show what the subdivision scheme looks like, assuming the scaling
functions satisfy those properties. In the next section, we reverse the reasoning.
We give the subdivision scheme for the general case and prove that it indeed yields
scaling functions with the desired properties.

In our example we assume that the scaling functions satisfy the following prop-
erties:

1. 'j;k is continuous,

2. h'j;k; e'j;k0 iw = �k�k0 ,

3. supp'j;k = [(k � 2) 2�j; (k + 3) 2�j],

4. N = 2.

The relationship between the width of the support and N is inspired by the
biorthogonal algebraic wavelets of [45]. We show how to calculate the coe�cients



128 CHAPTER 5. WEIGHTED WAVELETS

hj;k;l. For notational simplicity we consider the case j = k = 0 and omit these
indices in the notation of the coe�cients. The function '0;0 is supported on [�2; 3]
and we look for 6 coe�cients h�2; : : : ; h3 so that

'0;0 =
3X

l=�2

hl '1;l;

where we know that

hl = h'0;0; e'1;l iw for � 2 6 l 6 3:

Construct a second degree polynomial P (x) so that

hP; e'0;�1 iw = 0

hP; e'0;0 iw = 1

hP; e'0;1 iw = 0:

This polynomial exists in general, as it is determined by three linear equations.
By assumption it can be written as a linear combination of the '0;k. Because of
the compact support (5.4), this summation only involves �ve terms on the interval
[0; 1],

P (x) =
2X

k=�2

ak '0;k(x) for x 2 [0; 1]:

By construction a�1 = a1 = 0 and a0 = 1. Again because of the compact support,
we have

hP; e'1;0 iw = a�2 h'0;�2; e'1;0 iw + h'0;0; e'1;0 iw + a2 h'0;2; e'1;0 iw
= h'0;0; e'1;0 iw
= h0;

and similarly
h1 = hP; e'1;1 iw :

The coe�cients h�2 and h�1 can be found by constructing P (x) so that

hP; e'0;�2 iw = 0

hP; e'0;�1 iw = 0

hP; e'0;0 iw = 1;

and then taking the inner products with e'1;�2 and e'1;�1. The construction for
h2 and h3 again is similar. By repeating this construction for all j and k we can
calculate all coe�cients hj;k;l. These coe�cients can then be used to construct the
scaling functions in a subdivision scheme.

Note: This construction in case w � 1, results in a biorthogonal algebraic
scaling function from [45]. Its coe�cients fhkg are equal to

f�1=16; 1=16; 1=2; 1=2; 1=16; �1=16g:
We refer to the case w � 1 as the unweighted case.
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5.4 The subdivision scheme

We describe the subdivision scheme for general N . From symmetry arguments one
can understand that N has to be odd. We let N = 2D+1. Suppose one wants to
synthesize a function of Vi,

f =
X
k

�i;k 'i;k: (5.8)

The idea of a subdivision scheme is to write this function in the basis of a �ner
scale space Vj with j > i,

f =
X
k

�j;k 'j;k;

and to let j tend to in�nity. Note that these two formulas at this moment only
hold formally, as we haven't given a meaning to the symbol 'j;k yet. The only
thing we know is that we are looking for an f with

�i;k = h f; e'i;k iw :
One step of the subdivision scheme consists of, given the coe�cients �j;k on

one level, calculating the coe�cients on the next �ner level �j+1;k. For each group
of N coe�cients f�j;k�D; : : : ; �j;k; : : : ; �j;k+Dg, it involves two steps:

1. Construct a polynomial P of degree N so that

hP; e'j;k+l iw = �j;k+l for �D 6 l 6 D:

2. Calculate two coe�cients on the next �ner level as

�j+1;2k = hP; e'j+1;2k iw and �j+1;2k+1 = hP; e'j+1;2k+1 iw :

To write the subdivision scheme in detail, we de�ne the local moments as

Mp
j;k = hxp; e'j;k iw for 0 6 p < N:

Note that

M
p
j;k = M

p
j+1;2k +M

p
j+1;2k+1:

De�ne the 2�N matrix

Hj;k =

24 M0
j+1;2k � � � MN�1

j+1;2k

M0
j+1;2k+1 � � � MN�1

j+1;2k+1

35
2666666664

M0
j;k�D M1

j;k�D � � � MN�1
j;k�D

� � � � � � � � � � � �
M0

j;k M1
j;k � � � MN�1

j;k

� � � � � � � � � � � �
M0

j;k+D M1
j;k+D � � � MN�1

j;k+D

3777777775

�1

;
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where we assume that the second matrix is invertible. It follows that the subdivi-
sion scheme can be written as

8k 2 Z :

"
�j+1;2k

�j+1;2k+1

#
= Hj;k

2664
�j;k�D

...
�j;k+D

3775 :
This de�nes a subdivision operator Uj so that

f�j+1;kgk = Uj f�j;kgk:

It also immediately follows that

�j;k = �j+1;2k + �j+1;2k+1;

and thus X
k

�j;k =
X
k

�j+1;k: (5.9)

One now �nds the coe�cients hj;k;l by letting one of the �j;k be equal to one and
all others equal to zero, or, more precisely

fhj;k;lgl = Uj f�k�lgl:

For each j and k, there are 2N non-zero coe�cients hj;k;l, namely the ones with
l = �N + 1; : : : ; N . The relationship between the Hj;k and hj;k;l is given by

Hj;k =

24 hj;k�D;2D � � � hj;k�1;2 hj;k;0 hj;k+1;�2 � � � hj;k+D;�2D

hj;k�D;2D+1 � � � hj;k�1;3 hj;k;1 hj;k+1;�1 � � � hj;k+D;�2D+1

35 :
In order to synthesize f , de�ne the following series of functions (j > i),

f (j) =
X
k

�j;k e'j;k=M0
j;k:

The superscript is not to be confused with the derivative. Note that

�i;k = h f (i); e'i;k iw ;
and also that

h f (j); e'i;k iw =
X
l

�j;l h e'j;l; e'i;k iw =M0
j;l

=
(k+1)2j�1X
l=k2j�i

�j;l

= �i;k: (5.10)



5.5. CONVERGENCE AND REGULARITY 131

In the next section we study when

lim
j!1

f (j)

converges uniformly. We then de�ne f to be the limit function. In order to
construct the scaling function 'i;k, we start from the Kronecker sequence f�i;lgl =
f�k�lgl. This way we give meaning to the formal expression (5.8).

Note: In the unweighted case, the matrix Hj;k is independent of j and k.
Such a subdivision scheme is called a stationary subdivision, see [32], or a cascade

algorithm, see [65]. The scheme then converges to an algebraic biorthogonal scaling
function from the family described in [45]. The convergence of the subdivision
scheme and the regularity of the solution is already studied extensively in case of
stationary subdivision, see Section 2.6. In the next section we use some of these
techniques to show the properties of the non-stationary scheme.

5.5 Convergence and regularity

5.5.1 De�nitions

In this section we study the convergence of the subdivision scheme and the regu-
larity of the limit function. De�ne

�j;k =
�j;k

M0
j;k

so that
f (j) =

X
l

�j;k e'j;k:
Since

�j;k = h f; e'j;k iw ;
we see that if f is continuous, then

lim
j!1

�j;k 2j�m+l = f(k 2�m);

for any �xed l. On the other hand, if for all k,

lim
j!1

�j;k = lim
j!1

�j;k+l

with l arbitrary but �xed, then a continuous limit function exists.
In order to study the convergence, we write the subdivision scheme in terms of

the �j;k. De�ne therefore the normalized local moments as

Np
j;k =

Mp
j;k

M0
j;k

;
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so that "
�j+1;2k

�j+1;2k+1

#
= Cj;k

2664
�j;k�D

...
�j;k+D

3775 ;
where

Cj;k =

24 1 N1
j+1;2k � � � NN�1

j+1;2k

1 N1
j+1;2k+1 � � � NN�1

j+1;2k+1

35
2666666664

1 N1
j;k�D � � � NN�1

j;k�D

� � � � � � � � � � � �
1 N1

j;k � � � NN�1
j;k

� � � � � � � � � � � �
1 N1

j;k+D � � � NN�1
j;k+D

3777777775

�1

:

Note that

Cj;k

2664
1
...
1

3775 =

"
1
1

#
: (5.11)

This follows from the fact that if on level j all coe�cients �j;k are equal to one,
the polynomial P (x) in the subdivision is always a constant equal to one.

Concentrate on what happens in the neighborhood of a point x 2 R. De�ne a
series of vectors, each with 2N � 1 components,

�j = [�j;k�2D � � � �j;k � � � �j;k+2D]
t 2 C2N�1;

where k depends on j in the following way:

k = k(j) = b2j xc such that x 2 [k2�j; (k + 1)2�j):

It is then easy to see that
�j+1 = Tj �j ;

where Tj is a (2N � 1) � (2N � 1) matrix that can be found as follows. In case
k(j + 1) = 2k(j), Tj contains Cj;k�D, : : :, Cj;k+D�1 and the top row of Cj;k+D, see
Figure 5.1 (left). In case k(j + 1) = 2k(j) + 1, Tj consists of the bottom row of
Cj;k�D, and Cj;k�D+1, : : :, Cj;k+D, see Figure 5.1 (right). It follows from (5.11) that
Tj has an eigenvalue equal to one with the corresponding eigenvector a constant
vector. The function f is continuous at x in case the �j converge to a constant
vector �.

5.5.2 Unweighted case

In the unweighted case we use similar notation, but just switch to lowercase (i.e.
n, c, h and t, with the proper sub- and superscripts). We immediately see that

n
p
j;k = 2�jp ((k + 1)(p+1) � k(p+1))=(p+ 1):
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k(j + 1) even

Cj;k�2

Cj;k�1

Cj;k

Cj;k+1

Cj;k+2

k(j + 1) odd

Cj;k�2

Cj;k�1

Cj;k

Cj;k+1

Cj;k+2

Figure 5.1: Structure of Tj in case D = 2.

One can understand that the matrix cj;k is independent of j and k. For example,
if D = 1, we have

cj;k =

"
1=16 1=2 �1=16
�1=16 1=2 1=16

#
:

As we already pointed out, also the coe�cients hj;k;l are independent of j and k.
For the matrix tj we only have two possibilities, t

0 and t1, depending on the parity
of k(j). We state the main result from [79].

Theorem 5.1 (Donoho, 1993) Let N be an odd integer greater than one. Start

the subdivision scheme from the Kronecker sequence f�i;lgl = f�k�lgl. Then the

functions f (j) converge uniformly to a function 'i;k. This function is uniformly

continuous, compactly supported, and H�older continuous of order R, with R =
R(N) > 0. For an arbitrary initial sequence f�i;lg, the functions f (j) converge

locally uniformly to a continuous function of the form

f =
X
k

�i;k 'i;k:

One can show that R(3) > :678, R(5) > 1:272, R(7) > 1:826, R(9) > 2:354,
and asymptotically R(N) � :2075N [79]. More accurate and local results can be
obtained using the joint spectral radius of the matrices t0 and t1, restricted to the
subspace orthogonal to the constant eigenvector.

5.5.3 Weighted case

We consider the di�erence between the weighted and unweighted case. We outline
the main ideas of the reasoning. For a detailed treatment, we refer to [172].
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We �rst note that on a su�ciently �ne scale we come arbitrarily close to the
unweighted case, since

lim
j!1

N
p
j;k

n
p
j;k

= 1:

Consequently, the coe�cients hj;k;l converge to the coe�cients hl from the un-
weighted case if j tends to in�nity. Next, we look for a condition on the weight
that will allow us to characterize how fast this convergence is. It turns out that
with a very mild condition on the weight function, along the lines of a bounded
oscillation condition, one can assure that

kCj;k � cj;kk = O(2�j) and kTj � tjk = O(2�j):

This answers the question of the invertibility of the matrices in the subdivision
scheme. We know that the matrices cj;k in the unweighted case are invertible.
Since the determinant depends continuously on the entries of the matrix, a level
j0 exists so that all matrices Cj;k on levels j > j0 are invertible. This tells us
that we can only construct \half" a multiresolution analysis, as the matrices on
the levels j < j0 are not necessarily invertible. One can then show that a result
along the lines of Theorem 5.1 holds for the weighted case, provided i > j0. In
order to get exactly the same H�older regularity as in the unweighted case, we need
more restrictive conditions on the weight, which ensure faster convergence to the
weighted case.

5.6 Basis functions

In the previous sections we saw how the scaling functions are de�ned as the limit
of a uniformly convergent series. In this section we study the properties of these
scaling functions and con�rm that they correspond with our expectations. We also
show how to construct the wavelets.

Theorem 5.2 The weighted scaling functions satisfy

1. supp'j;k = 2�j[�N + 1 + k;N + k];

2.
Z +1

�1

w(x)'j;k(x) dx = 1;

3. h'j;k; e'j;k0 iw = �k�k0 ;

4.
X
k

Mp
j;k 'j;k = xp for 0 6 p < N:

Proof : Consider again the series f (j), starting from �i;l = �k�l, that converges
to 'i;k. Most of the properties of 'i;k then follow from the properties of f (j)

and the uniform convergence.
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1. supp f (j) = 2�i[�s+ k; s+ 1 + k], where s = (N � 1)(1� 2i�j).

2. Because of (5.9), we haveZ +1

�1

w(x) f (j)(x) dx =
X
l

�j;l =
X
l

�i;l = 1:

3. From (5.10), it follows that

h f (j); e'j;k0 iw = �k�k0 :

4. We �rst take p = 0. Start a subdivision scheme from �i;k =M0
i;k. Then

f (j) = 1 and thus f = 1. The case p > 0 is a little di�erent. One way
to prove it would be to use higher order splines to construct the f (j),
so that f (j)(x) = xp. It can also be understood as follows. Start the
subdivision from �i;k =Mp

i;k. We then see that

lim
j!1

f (j)(x) = xp;

if x is not dyadic. The result for all x follows from the fact that the
limit function is continuous.

2

The next problem is how to �nd the wavelets and dual wavelets. The answer
is given in the following theorem.

Theorem 5.3 Assume that the scaling functions and the dual scaling functions

are given as above. Choose the wavelet and dual wavelet as

 j;k = 'j+1;2k � 'j+1;2k+1;

and e j;k =
X
l

gj;k;l e'j+1;2k+l with gj;k;l = (�1)l hj;k+bl=2c;1�l:

Then

1. h e'j;k;  j;k0 iw = 0;

2. h'j;k; e j;k0 iw = 0;

3. h j;k; e j0;k0 iw = �j�j0 �k�k0 ;

4.
Z +1

�1

w(x) j;k(x) dx = 0;

5.
Z +1

�1

w(x)xp e j;k(x) dx = 0; for 0 6 p < N ,
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6. supp j;k = supp e j;k = 2�j[�D + k;D + 1 + k].

Proof : The biorthogonality follows from writing out the re�nement equations
and then using (5.7).

1. This case is the easiest.

h e'j;k;  j;k0 iw = h e'j+1;2k + e'j+1;2k+1; 'j+1;2k � e'j+1;2k+1 iw = 0:

2. From the re�nement relations, it follows that

h'j;k; e j;k�m iw =
X
l

gj;k;l hj;k�m;l+2m:

Substitution yields X
l

(�1)l hj;k+bl=2c;1�l hj;k�m;l+2m;

or, after splitting even and odd,X
l

(hj;k+l;1�2l hj;k�m;2l+2m� hj;k+l;�2l hj;k�m;2l+2m+1) :

This is trivially zero in case jmj > 2D because of the �niteness of the
sequences. In case m = 0, all terms except the one with l = 0 cancel
because of (5.7), while the term with l = 0 is equal to

hj;k;1 hj;k;0 � hj;k;0 hj;k;1 = 0:

In case m 6= 0, all terms cancel because of (5.7), except the ones with
l = 0 or l = �m. These terms are equal to

hj;k;1hj;k�m;2m�hj;k;0hj;k�m;2m+1+hj;k�m;1+2mhj;k�m;0�hj;k�m;2mhj;k�m;1;
which is equal to

hj;k�m;2m � hj;k�m;2m:
3. We �rst consider j = j 0.

h j;k; e j;k+l iw = gj;k;2l � gj;k;2l+1 = hj;k+l;1�2l + hj;k+l;�2l = �l:

The case j 6= j 0 now follows from combining this with (1) and (2).

4. Follows immediately from the de�nition.

5. Follows from the biorthogonality and the polynomial reproduction of
the scaling functions.

6. Exercise.

2

The vanishing moment property implies that if a function f belongs to CN , then
the weighted wavelet coe�cients decay as

h f; e j;k iw = O(2�j(N+1)):
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Figure 5.2: Weighted scaling functions '1;2 and '1;3.
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Figure 5.3: Weighted scaling functions '1;4 and '1;5.
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Figure 5.4: Weighted wavelets  0;1 and  0;2.
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5.7 Example

We consider an example with the following weight function:

w(x) = x (�(�1;�] + 103�(�;1)) with � = 5=
p
8:

This is a linear function with a jump of 3 magnitudes at � � 1:77. The point �
is chosen so that is doesn't coincide with a dyadic. Figures 5.2 and 5.3 show the
weighted scaling functions '1;2; : : : ; '1;5. Figure 5.4 shows the weighted wavelets
 0;1 and  0;1. We see that the wavelets and scaling functions are smooth in the
neighborhood of � even though the weight has a large jump. Note that the basis
functions on the left of � are much smaller, because of the normalization. All the
matrices Cj;k here are invertible.

5.8 Applications and future research

In the next chapter we will show how the weighted functions can be used for
the solution of di�erential equations. Here we mention just one application. In
Chapter 8 we will mention others.

Consider equally spaced points fxkg, data fykg, and positive weights fwkg.
Try to �nd a function y(x) that is smooth and minimizesX

k

wk (y(xk)� yk)2:

One can do this by building the weighted wavelets and using algorithms similar
to the ones described in Section 2.12.1. The algorithm (including the calculation
of the transform coe�cients) is linear for any set of weights fwkg. Also, the
smoothness of y(x) can easily be controlled by the decay of its weighted wavelet
coe�cients.

An initial direction for future research involves the study of the functional
analytic properties of the weighted wavelets. It involves addressing the problem
of when the weighted wavelets form a Riesz basis for Lw2 . One way would be to
put extra conditions on the weight function, such as boundedness from above and
below which implies that Lw2 = L2. In that case, it is shown that the unbalanced
Haar wavelets provide an unconditional basis [51]. This is highly non-trivial. An
interesting problem is to �nd the mildest condition on the weight function for the
weighted wavelets to form a basis. In the theory of weighted spaces one typically
uses weight functions that belong to a Muckenhoupt class [163]. A natural problem
that arises is how conditions on the weight function relate to these Muckenhoupt
classes.

The construction of this chapter generates wavelets with only one vanishing
moment and dual wavelets with several vanishing moments. One way to construct
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Figure 5.5: Mitrea wavelets.

wavelets with more vanishing moments is to use higher order B-splines as dual
scaling functions.

A third direction involves the generalization to the multivariate case. There-
fore, one �rst needs to design a multivariate average-interpolation scheme. Sec-
ondly, one has to construct compactly supported wavelets. This is highly non-
trivial. In the case of the unbalanced Haar wavelet, it was solved only recently by
Marius Mitrea [144]. His idea is simple, but extremely clever. We explain it in
two dimensions. On each dyadic square, construct three unbalanced Haar wave-
lets, each of them constant and positive on one subset of the square, negative and
constant on another, and zero elsewhere. These subsets are shown in Figure 5.5. If
the values on these subsets are chosen so that the integral of the wavelets against
the weight function vanishes, the Mitrea wavelets form an orthogonal set. The
construction of smooth weighted wavelets from smooth weighted scaling functions
could be inspired by this idea.

Finally, a drawback of the construction in this chapter is that it does not give
a complete multiresolution analysis. Instead, one only �nds the basis functions for
levels bigger than j0. A way to solve this is to give up on the dyadic structure of the
dual scaling functions. Instead of letting them be indicator functions on dyadic
intervals, one can use much more general partitionings. This implies relaxing
condition (5.4). The extra exibility can be used to ensure that the matrices of
the subdivision scheme are invertible on every level.
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Chapter 6

Wavelets for the Fast Solution of

Ordinary Di�erential Equations

\�!�� �����o�"

|Socrates, (� 420 B.C.).

6.1 Introduction

As we saw in the previous chapters, wavelets have shown to be a powerful tool and
a potential substitute for the Fourier transform in many problems. It is natural to
use them for the solution of di�erential equations. In this chapter, we show how
to use wavelets in the numerical solution of boundary value ordinary di�erential
equations. Rather than using algebraic wavelets, we adapt the wavelets to the
speci�c operator at hand. We want their construction to be easy to implement
and computationally inexpensive in order to build a general solver. We show how
to do this using the weighted wavelets of the previous chapter.

The chapter is organized as follows. In Section 6.2, we give a short outline of
existing methods and their properties. We discuss the general idea of our con-
struction in Section 6.3. We describe the construction and algorithm in detail
for harmonic operators in Section 6.4, for the Helmholtz operator in Section 6.5,
and for general variable coe�cient operators in Section 6.6. Finally, we give some
examples and discuss directions for future research.

6.2 Existing methods

Consider a linear ordinary di�erential equation of the form

Lu(x) = f(x) for x 2 [0; 1]; where L =
mX
j=0

aj(x)D
j;

143
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with the boundary conditions

(B0 u) (0) = g0 and (B1 u) (1) = g1;

where

Bi =
mX
j=0

bi;jD
j:

Presently, two major numerical solution techniques exist. First, if the coe�-
cients aj(x) are independent of x, the Fourier transform is best suited for solving
the equation. The underlying reason is that the complex exponentials are eigen-
functions of a constant coe�cient operator. In the Fourier basis, the operator
becomes diagonal and can thus trivially be inverted. The algorithm consists of
calculating the Fourier transform of the right-hand side, dividing the coe�cient
of each basis function by the corresponding eigenvalue and taking the inverse
Fourier transform. This can be implemented using the FFT with a complexity of
O(M logM), where M is the number of discretization points.

If the coe�cients aj(x) are not constant, one typically uses �nite element or
�nite di�erence methods. We focus here on the former and de�ne the operator

inner product associated with a self-adjoint operator L as

hhu; v ii = h Lu; v i :

In a Galerkin method, one considers two spaces S and S�, and looks for an ap-
proximate solution �u 2 S so that

8v 2 S� : hh �u; v ii = h f; v i :

If S and S� are �nite dimensional spaces with the same dimension, this leads to a
linear system of equations. The matrix of this system is called the sti�ness matrix .
Its elements are the operator inner products of the basis functions of S and S�.

Traditionally, one uses local �nite elements which lead to a banded sti�ness
matrix. Since the matrix is sparse, the linear system is traditionally solved with
an iterative method. Local �nite elements, however, have the disadvantage that
the sti�ness matrix becomes ill-conditioned as the problem size grows. Typically,
its condition number grows as a power of the number of elements. This slows down
the convergence rate of the iterative algorithm dramatically.

This problem can be solved by using multiresolution techniques such as multi-
grid or hierarchical basis functions [100, 199]. Multiresolution �nite element bases
can provide preconditioners that result in a bounded condition number, see e.g.
[29, 60, 145]. The convergence rate of the iterative solver is then independent of
the problem size.

One possible way of using wavelets is to take (bi)orthogonal algebraic wavelets
as basis functions in a Galerkin method. This was proposed by several researchers
[10, 11, 92, 150]. It results in a linear system that is sparse because of the compact
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support of the wavelets, and that, after preconditioning, has a condition number
independent of problem size because of the multiresolution structure. However, in
this setting the wavelets do not provide signi�cantly better results than the other
multiresolution techniques. In fact, one of their major properties, namely their
(bi)orthogonality, is not fully exploited.

Three questions are addressed in this chapter:

1. How can one make use of the (bi)-orthogonality property of the wavelets?

2. Can wavelets diagonalize di�erential operators?

3. Can one construct fast algorithms?

6.3 General idea

We assume that L is self-adjoint and positive de�nite. Now write

L = V� V;

where V� is the adjoint of V. We call V the square root operator of L. Note that
it is not unique.

Suppose that the functions f	j;kg and f	�
j;kg, for an appropriate range of

indices, are bases for S and S� respectively. The entries of the sti�ness matrix are
then given by

hh	j;k;	
�

j0;k0 ii = h L	j;k;	
�

j0;k0 i = h V 	j;k;V 	�

j0;k0 i :

The idea is to let

	j;k = V�1  j;k and 	�

j;k = V�1 e j;k ;
where  j;k and e j;k are biorthogonal wavelets. Because of the biorthogonality,
the sti�ness matrix becomes a diagonal matrix and thus can trivially be inverted.
This avoids the use of an iterative algorithm. We call the 	j;k and 	�

j;k functions

the operator wavelets and the  j;k and e j;k functions the original wavelets. The
operator wavelets are biorthogonal with respect to the operator inner product, a
property we refer to as operator biorthogonality. When using the operator wavelets
as basis functions in a Galerkin method, the sti�ness matrix becomes diagonal.
Note that one can obtain diagonalization even though the operator wavelets are
not eigenfunctions. This is not always a \true" diagonalization, as the operator
wavelets and dual operator wavelets can di�er. However, computationally the
di�erence is irrelevant.

This idea has potential provided one can �nd a fast numerical algorithm to
compute the operator wavelets. Therefore, the operator wavelets need to generate
an operator multiresolution analysis with an associated fast wavelet transform.
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This implies compactly supported operator wavelets and operator scaling functions
�j;k. We will see that the latter cannot be constructed by simply applying V�1 to
the original scaling functions.

The analysis is relatively straightforward for simple constant coe�cient oper-
ators such as the Laplace and polyharmonic operator. The reason is that these
operators preserve the algebraic structure of wavelets. The construction of the
operator wavelets can thus rely on the Fourier transform. The situation becomes
di�erent for more general constant coe�cient and for variable coe�cient operators.
We show how one then can use weighted wavelets.

The idea to adapt wavelets to a di�erential operator is also suggested else-
where. In [57, 58], Stefan Dahlke and Ilona Weinreich construct wavelets that
are operator semiorthogonal. As a result, one does not obtain a full diagonal-
ization, but rather a decoupling of equations corresponding to di�erent levels. In
[128, 197], antiderivates of wavelets are used in a Galerkin method. This parallels
our construction in the case of the Laplace or polyharmonic operator.

Our idea also is di�erent from the technique Gregory Beylkin presents in [22].
He uses algebraic wavelets for the rapid calculation of the inverse of the matrix
coming from a �nite di�erence discretization. He also shows that the wavelets pro-
vide a diagonal preconditioner that yields uniformly bounded condition numbers.

6.4 Harmonic operators

The one-dimensional Laplace operator and a possible square root are

L = �D2 and V = D:

The associated operator inner product is therefore the homogeneous Sobolev inner
product,

hhu; v ii = hu0; v0 i :
Since the action of V�1 is simply taking the antiderivative, the operator mother
wavelets are given by

	(x) =
Z x

�1

 (t) dt; and 	�(x) =
Z x

�1

e (t) dt:
Here  and e are compactly supported biorthogonal algebraic wavelets. The op-
erator wavelets are also compactly supported because the integral of the original
wavelets vanishes. Since translation and dilation is preserved, we de�ne the oper-
ator wavelets as

	j;k(x) = 	(2jx� k) and 	�

j;k(x) = 	�(2jx� k):
It immediately follows that

hh	�

j;k;	j0;k0 ii = 2j �j�j0 �k�k0 :
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Consequently, the sti�ness matrix is diagonal with powers of 2 on its diagonal.
We now de�ne the spaces

Wj = span f	j;k j k 2 Zg:

We want to �nd the associated multiresolution analysis. In other words, we need
spaces Vj so that

Vj+1 = Vj �Wj ;

and operator scaling functions �j;k so that

Vj = span f�j;k j k 2 Zg:

These spaces are closed as they are �nite dimensional.
The antiderivative of the original scaling function is not compactly supported

and hence cannot be used as an operator scaling function. We instead construct
the operator scaling function � by taking the convolution of the original scaling
function with the indicator function on [0; 1],

� = ' � �[0;1];

and let
�j;k(x) = �(2jx� k):

Note that
�0(x) = '(x)� '(x+ 1):

We next show that the Vj spaces are nested and that Wj complements Vj in
Vj+1.

In the Fourier domain we have

b�(!) =
1� e�i!
i!

b'(!);
and b	(!) =

1

i!
b (!): (6.1)

A simple calculation shows that the operator scaling function satis�es a re�nement
equation

b�(!) = b�(!=2)H(!=2) with H(!) =
1 + e�i!

2
h(!):

Consequently, the Vj spaces are nested. The space Wj is a subset of Vj+1 if a
trigonometric polynomial G exists so that

b	(!) = b�(!=2)G(!=2):
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Substituting this in (6.1) yields,

G(!=2) b�(!=2) =
1

i!
g(!=2) b'(!=2):

It then follows that

G(!) b'(!)1� e�i!
i!

=
1

2i!
g(!) b'(!)

G(!)(1 � e�i!) = g(!)=2

G(!) =
1=2

1� e�i! g(!):

This function is a trigonometric polynomial, because g is a trigonometric polyno-
mial with g(0) = 0.

The space Wj complements Vj in Vj+1 if

�(!) = det

"
H(!) H(! + �)
G(!) G(! + �)

#

does not vanish, see Section 2.5. We readily see that

�(!) = �(!)=4;

and �(!) doesn't vanish since ' and  generate a multiresolution analysis. The
construction of the dual functions �� and 	� from e' and e is completely similar.
The coe�cients of the trigonometric polynomials H, H�, G and G� now de�ne the
fast wavelet transform associated with the operator inner product.

Note that there is no reason why the operator scaling functions should be
operator biorthogonal. One can even prove that this is impossible [110]. Note also
that if true, this property would make the use of wavelets superuous.

We have proven the following theorem, which we state informally:

Theorem 6.1 Given an algebraic multiresolution analysis, one can construct a

new multiresolution analysis adapted to the homogeneous Sobolev inner product by

taking the antiderivate of the wavelets and convolving the scaling function with a

box function. If the old basis and dual functions are compactly supported, so are

the new ones.

The idea to construct a new multiresolution analysis this way was also sug-
gested independently elsewhere. Ingrid Daubechies mentioned it in [62] and David
Donoho in [79]. Pierre-Gilles Lemari�e-Rieusset used it in his \Formule de Commu-
tation" [127], and it is also related to the di�erence subdivision schemes described
in [32, pp. 150-151].
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6.4.1 Algorithm

We describe the algorithm in the case of periodic boundary conditions. This
implies that the basis functions on the interval [0; 1] are the periodization of the
basis functions on the real line, see Section 2.9.

Let S = Vn (respectively S� = V�
n) and consider a basis f�n;k j 0 6 k < 2ng

(respectively ��
n;k). Let M = 2n. De�ne a vector b 2 CM as

bk = h f;��

n;k i with 0 6 k < M;

and a vector x 2 CM so that we can write �u 2 S as

�u =
M�1X
k=0

xk �n;k:

The Galerkin method with these bases then yields a linear system

Ax = b with Ak;l = hh��

n;l;�n;k ii :

As we mentioned earlier, the matrix A cannot be diagonal. Also, its condition
number grows as O(M2). Consider the decomposition

Vn = V0 �W0 � � � � �Wn�1;

and the corresponding wavelet basis. The spaceV0 has dimension one and contains
constant functions. We switch to a one index notation so that the sets

f1;	j;k j 0 6 j < n; 0 6 k < 2jg and f	k j 0 6 k < 2ng

coincide and similarly for the dual functions. De�ne the vectors b0 and x0 of CM

so that

b0k = h f;	�

k i and �u =
M�1X
k=0

x0k	k:

We know that matrices T and T � exists so that

b0 = T � b and x = T x0:

The action of the matrix T (respectively T �) can be implemented using the fast
wavelet transform decomposition with �lters H and G (respectively H� and G�).
The complexity of the matrix vector multiplication is O(M). In the wavelet basis
the system becomes

A0 x0 = b0 with A0 = T �AT;

where
A0

k;l = hh	�

n;l;	n;k ii :
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Figure 6.1: Basis for Dirichlet problem.

Since A0 is diagonal, it can be trivially inverted. The coe�cients of the solution
in the scaling function basis are given by

x = T A0�1 T � b:

The algorithm consists of calculating the wavelet decomposition of the right-hand
side, dividing each coe�cient by its corresponding diagonal element and recon-
structing to �nd the solution. The complexity is O(M).

The constant basis function of V0 has a zero as corresponding diagonal element
and its coe�cient is thus undetermined. Indeed, the solution is only de�ned up
to a constant. This does not lead to a division by zero as the integral of f has to
vanish, Z 1

0
f(x) dx = u0(1)� u0(0) = 0:

In the next section we will discuss how to deal with other boundary conditions.

6.4.2 Example

In this section we take a look at a simple example, namely the basis we get starting
from the Haar wavelets. Remember that

'(x) = �[0;1](x) and  (x) = '(2x)� '(2x� 1):

It immediately follows that both the operator wavelet and scaling functions are
B-splines of order 2 (hat functions),

�(x) = �(x) and 	(x) = �(2x):
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Figure 6.2: Basis for Neumann problem.

The original wavelets are orthogonal and as a consequence the basis functions and
dual functions coincide.

The operator scaling functions satisfy the Strang-Fix condition with N = 2
and the convergence thus is of order h2. One can prove that higher order wavelets
with more vanishing moments (N) will, in general, not yield faster convergence
because the solution u is not smooth enough. The underlying reason is that if
f 2 L2([0; 1]), the solution u belongs to the Sobolev space H2;2([0; 1]). One can get
faster convergence only by imposing extra regularity conditions on the right-hand
side. In a way this basis seems to be the most natural one to work with. Note
that these piecewise linear basis functions are local solutions of the homogeneous
equation. Hence the operator scaling functions and wavelets are V-splines. This
basis also coincides with Yserentant's hierarchical basis [199].

The idea to deal with boundary conditions is to let the operator wavelets satisfy
the homogeneous boundary conditions and to let the component in the V0 space
satisfy the imposed boundary conditions. Figure 6.1 shows the basis functions
in the case of Dirichlet boundary conditions and n = 3. All operator wavelets
vanish at the boundary. The coe�cients of the two functions in the V0 space are
determined by the boundary conditions. The fast wavelet transform di�ers from
the periodic algorithm in the sense that di�erent �lter coe�cients are used for the
wavelets at the boundary. Note the \half hat" functions at the boundary.

The basis in case of the Neumann problem is shown in Figure 6.2. All operator
wavelets have derivative zero at the boundary. The boundary conditions are han-
dled by the two functions in the V1 space. Again the coe�cient of the constant is
undetermined. The integral of f is now equal to u0(1)� u0(0).

6.4.3 The polyharmonic operator

The polyharmonic equation is de�ned as

�D2m u = f;
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and we take the square root operator to be

V = Dm:

The operator scaling function � is now m times the convolution of the original
scaling function ' with the box function, and the operator wavelet 	 is m times
the antiderivative of the original wavelet  . In order to get a compactly supported
wavelet, the original wavelet needs to have at least m vanishing moments, a prop-
erty that can be satis�ed by all known wavelet families. The construction and
algorithm are then completely similar to the case of the Laplace operator.

6.5 The Helmholtz operator

The one-dimensional Helmholtz operator is given by

L = �D2 + k2

so that we can take

V = D + k:

We assume that k = 1, which can always be obtained from a linear transformation.
Observe that

V = D + I = e�xD ex

and thus

V�1 = e�xD�1 ex:

Applying V�1 to a wavelet does not necessarily yield a compactly supported func-
tion, since ex j;k does not have a vanishing integral. Therefore, we let 	j;k =
V�1e�x j;k = e�xD�1 j;k. If  j;k has a vanishing integral, then 	j;k is compactly
supported.

In order to diagonalize the sti�ness matrix, the original wavelets now need to
be orthogonal with respect to a weighted inner product with weight function e�2x

because

hh	j;k;	
�

j0;k0 ii = h V 	j;k;V 	�

j0;k0 i
= h e�x j;k; e�x e j0;k0 i
=

Z +1

�1

e�2x  j;k(x) e j0;k0(x) dx:
We see that the original wavelets need to be weighted wavelets. In this sec-
tion we only use the unbalanced Haar wavelets as weighted wavelets. For a
general treatment we refer to Section 6.6. The orthogonality of the unbalanced
Haar wavelets on each level immediately follows from their disjoint support, since
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supp j;k = [2�jk; 2�j(k + 1)]. To get orthogonality between the di�erent levels,
Vj has to be orthogonal to Wj0 for j

0 > j orZ +1

�1

e�2x 'j;k(x) e j0;k0(x) dx = 0 for j 0 > j:

We let the scaling function coincide with e2x on the support of the �ner scale
wavelets,

'j;k = e2x �j;k;

where �j;k is the indicator function on the interval [2�jl; 2�j(l+1)], normalized so
that the integral of the scaling functions is a constant. We choose the wavelets as

 j;k = 'j+1;2k � 'j+1;2k+1;

so that they have a vanishing integral. The orthogonality between levels now
follows from the fact that the scaling functions coincide with e2x on the support
of the �ner scale wavelets, and from the vanishing integral of the waveletsZ +1

�1

e�2x 'j;k(x) e j0;k0(x) dx =
Z +1

�1

�j;k(x) e j0;k0(x) dx
= C

Z +1

�1

e j0;k0(x) dx = 0:

One can see that the operator wavelets are now piecewise hyperbolic functions
(piecewise combinations of ex and e�x). The operator scaling functions are chosen
as

�j;k = e�xD�1('j;k � 'j;k+1);

so that
	j;k = �j+1;2k:

With the right normalization, one gets

�j;k(x) =

8>>>>>>>>>><>>>>>>>>>>:

sinh(x� k2�j)
sinh(2�j)

for x 2 [k2�j; (k + 1)2�j]

sinh((k + 2)2�j � x)
sinh(2�j)

for x 2 [(k + 1)2�j; (k + 2)2�j]

0 elsewhere.

The operator scaling functions on one level are translates of each other but the
ones on di�erent levels are no longer dilates of each other. They are supported on
exactly the same sets as the ones in Figure 6.1 and they roughly look similar. The
operator scaling functions satisfy a re�nement relation

�j;k =
2X
l=0

Hj;l �j+1;2k+l;
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Figure 6.3: The re�nement relation for the operator scaling functions.

with

Hj;0 = Hj;2 = sinh(2�j�1)= sinh(2�j) and Hj;1 = 1:

Figure 6.3 shows the re�nement relation for the scaling functions. The three scaling
functions on the �ner scale are not the dilates of the one on the coarse scale, but
they still add up to it.

The Helmholtz operator in the basis of operator wavelets again is diagonal and
the algorithm is completely similar to the Laplace case. The only di�erence in
implementation is that the �lters in the fast wavelet transform now depend on the
level.

Note that these functions again are V-splines and, in a way, are the most
natural to work with. Also note that

lim
j!1

�j;0(2
�jx) = �(x):

Despite the fact that the Strang-Fix conditions are not satis�ed, one can prove
that the convergence is still of order h2 [110].

We conclude that a wavelet transform can diagonalize constant coe�cient op-
erators similarly to the Fourier transform. The resulting algorithm is faster (O(M)
instead of O(M logM)). This gain in speed is a consequence of the subsampling
on the coarser levels in the wavelet transform (the ones that correspond to the
low frequency components of the solution), which is not present in the Fourier
transform.
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6.6 Variable coe�cients

Naturally, the next question is how to use wavelets for variable coe�cient op-
erators. Wavelets can diagonalize constant coe�cient operators because of their
locality in the frequency domain. We want to understand if we can exploit the
localization in space to diagonalize variable coe�cient operators. The answer is
(perhaps quite surprisingly) yes, and this really justi�es the use of wavelets for
di�erential equations. No other technique (to our knowledge) has been able to
accomplish this with a linear algorithm.

We take a closer look at the following operator

L = �Dp(x)D;

where p is su�ciently smooth and positive. The construction is based on the
following observation:

hh f; g ii = h�DpDf; g i
= h pD f;D g i
= h pD f; pD g iw ;

where the weight is taken to be

w = 1=p:

Now consider biorthogonal, compactly supported, weighted wavelets  j;k and e j;k.
In Chapter 5 we showed how to construct such wavelets. De�ne the operator
wavelets as

	j;k = D�1  j;k=p;

and similarly for the dual wavelets. The operator wavelets are compactly sup-
ported, since the weighted wavelets have at least one vanishing weighted moment
(remember w = 1=p). It also follows that

hh	j;k;	
�

j0;k0 ii = h pD	j;k; pD	�

j0;k0 iw
= h j;k; e j0;k0 iw
= �j�j0;k�k0 :

Again we have diagonalization. The scaling functions now need to be chosen as

�j;k = D�1 ('j;k � 'j;k+1)=p:

This is a compactly supported function because the scaling functions have a con-
stant weighted integral. The derivation of the operator fast wavelet transform now
is straightforward.
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In the case of the unbalanced Haar wavelets, the operator wavelets are piecewise
functions where each piece looks like AP + B with P the antiderivative of 1=p.
The operator wavelets again are V-splines. Their support also coincides with the
support of the functions of Figure 6.1, and they converge to hat functions as the
level goes to in�nity. The coe�cients in the fast wavelet transform depend in
a simple way on the Haar wavelet transform of 1=p. The entries of the diagonal
sti�ness matrix can be calculated from the wavelet transform of 1=p. The algorithm
is completely similar to previous cases. Boundary conditions are as easy to handle
as in the case of the Laplace operator. Note that the operator scaling functions do
not satisfy the Strang-Fix conditions. It is possible to prove that the method has
a convergence of order h2. As mentioned earlier, higher convergence orders cannot
be obtained in general.

6.7 Numerical example

We solve the equation

�Dex
2

Du(x) = ex
2
�
sin(x)(3x2 � 2) + cos(x)(2x� 2x3)

�
=x3;

with
u(0) = 1 and u(1) = sin(1):

The exact solution is given by

u(x) = sin(x)=x:

The L1 error of the numerically computed solution as a function of the number
of levels (n) is shown in Table 6.1. Each time the number of levels is increased,
the error is divided almost exactly by a factor of 4, which agrees with the O(h2)
convergence.

6.8 Conclusion and future research

In this chapter we showed how wavelets can be adapted to be useful in the solution
of di�erential equations. Like the Fourier transform, wavelets can diagonalize
constant coe�cient operators. The resulting algorithm is slightly faster. The main
result, however, is that even non-constant coe�cient operators can be diagonalized
with the right choice of basis. This evidently yields a much faster algorithm than
the classic iterative methods.

An initial direction for future work is a careful analysis of when the operator
wavelets provide unconditional bases for the Sobolev spaces. One can then use
this to prove that �u converges to the exact solution u as n goes to in�nity.

The algorithm for the variable coe�cient operators consists of �rst constructing
the weighted wavelets using the subdivision scheme of the previous chapter and
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Table 6.1: Error in function of level.

n L1 error

1 1.22e-02
2 3.37e-03
3 8.66e-04
4 2.18e-04
5 5.45e-05
6 1.36e-05
7 3.41e-06
8 8.52e-07
9 2.13e-07

then taking the antiderivative in the proper way. It would be very useful to build a
subdivision scheme that immediately yields the operator wavelets. This would be
most helpful in cases where the operator cannot easily be split into explicit square
root factors, e.g. when L = �DpD+q, and in case L is not self-adjoint. Also, the
subdivision scheme allows an easy incorporation of general boundary conditions.

Another idea is to use this technique for the solution of parabolic di�erential
equations of the form

@u=@t = Lu+ f;

using implicit time stepping discretizations. For example, a discretization in the
time direction using the trapezoidal rule results in a Crank-Nicolson scheme. In
every time step linear di�erential equations need to be solved. Using linearization,
this can still be used when L is non-linear, e.g. Burgers' equation. One of the
advantages is that it is very simple to work adaptively, i.e. only using particular
wavelets on each level.

A third idea involves the study of the possible generalization of these ideas
to partial di�erential equations. One of the problems here is how to split the
operator. Already in the Laplace case it is not immediately clear what the right
splitting is.
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\Horace Walpole once said that the world is

comic to those who think

and tragic to those who feel."

|John Irving, The World According to Garp (1976).



Chapter 7

Data Compression with Smooth

Local Trigonometric Functions

\To gild re�ned gold, to paint the lily,

To throw a perfume on the violet,

To smooth the ice, or add another hue

Unto the rainbow, or with taper light

To seek the beauteous eye of heaven to garnish,

Is wasteful and ridiculous excess."

|Shakespeare, King John (1623).

In this chapter we discuss bases formed by smooth local trigonometric func-
tions. These can be seen as the Fourier transform of the wavelet or wavelet packets
bases. Approximating of a function with smooth local trigonometric functions is
thus equivalent with approximating its Fourier transform with wavelets. We are
here mainly interested in applications to data compression. We present and com-
pare two generalizations of the orthogonal basis of Coifman and Meyer: biorthog-
onal and equal parity folding bases. They have the advantage to allow an easy
representation of constant and linear components. We show that they improve
the error vs. compression ratio and reduce the blocking e�ect, a typical artifact in
image compression.

7.1 Introduction

The general idea behind compression is to remove the redundancy in the data to
�nd more compact representations. We consider lossy compression, i.e. we allow
representations that, in some sense, are \close" to the original data to achieve
higher compression ratios.

A popular method for lossy compression is so-called transform coding, i.e. repre-
sent the data in a di�erent basis so that its coe�cients show further decorrelation.
The more decorrelated the coe�cients, the more e�cient the representation. An

159
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approximation of the original data, which we refer to as the compressed data, can
be obtained by retaining the coe�cients with the highest information content and
then performing the inverse transform. Karhunen and Lo�eve showed that the op-
timal decorrelation is obtained by using the basis formed by the eigenvectors of
the correlation matrix. However, the construction of this basis is computationally
expensive. Moreover, in many situations the correlation matrix is not known.

The most commonly used transform is the Fourier transform or some variant
of it. It has advantages such as analytic expressions for the basis functions, or-
thogonality and fast numerical algorithms. Its main disadvantage is that the basis
functions (essentially sine and cosine functions) are non-local, while the correlation
in the data often is local. In other words, the Fourier basis looks for correlation over
the whole data set, which is usually small. For example, in an image, neighboring
pixels usually are more correlated then ones that are far from each other.

We can solve this by splitting the data into parts and performing the Fourier
transform on each part separately. Evidently, this leads to an orthogonal basis
that is more local. We refer to this basis as the local trigonometric basis. It is
the basic idea of JPEG, a standard still image compression algorithm [193]. The
image here is divided into blocks of eight by eight pixels, after which the discrete
cosine transform is used on each block.

The local trigonometric basis, however, has some disadvantages:

1. Fourier series are best suited for e�ciently representing periodic data. Each
part of the data is not necessarily periodic. This slows down the convergence
and hinders high compression ratios.

2. Since each part is processed individually, the compressed data can reveal the
splitting locations, cf. the blocking e�ect in JPEG.

3. Correlation among the parts is not exploited.

An improvement was proposed by Ronald Coifman and Yves Meyer in [49], and
by Henrique Malvar in [138, 139]. The idea is to use smooth cuto� functions to split
the data and to \fold" overlapping parts in a clever way so that the orthogonality
is preserved. Moreover, the folded data are well-suited for representation by a
trigonometric basis. We refer to such a basis as a smooth local trigonometric basis.
This approach essentially addresses the �rst two disadvantages described above.
An expository paper can be found in [17]. In [14], a connection between this
basis and the Wilson basis of [68] was pointed out. Smooth local trigonometric
bases were used successfully for image compression in [2, 3], where it is shown that
blocking e�ect can be reduced signi�cantly.

The third disadvantage can be resolved by using an adaptive algorithm where
the splitting locations can depend on the data. An algorithm was presented by
Ronald Coifman and Victor Wickerhauser in [54, 196]. An alternative was pro-
posed in [84].
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The basis of Coifman and Meyer has the disadvantage that the resolution of the
constant is lost, i.e. on each interval the constant function is not a basis function.
Consequently, representing smooth data becomes less e�cient.

In this chapter we present two generalizations that preserve the resolution of
the constant. The �rst one is based on a construction of so-called biorthogonal
folding operators, while the second employs equal parity folding (EPF), an idea
already suggested in [2]. We also show how to adapt the construction for bounded
domains.

The chapter is organized as follows. In the �rst section we discuss trigonometric
bases and their properties. Next (Section 7.3) we consider the basis of Coifman and
Meyer. We present their construction from a di�erent angle and with a di�erent
notation than in the original paper. This will facilitate the presentation of the
biorthogonal construction in Section 7.5. Smooth local trigonometric functions
are closely related to wavelets. We study this in detail in Section 7.4. In Section 7.6,
we address the construction on an interval. Section 7.7 then contains a discussion
of the EPF basis. Finally, we give some implementation issues and results.

7.2 Trigonometric bases

The classic trigonometric basis is the Fourier series basis. Consider the interval
I = [0; 1] for simplicity. The basis functions are given by

ek(x) = exp(i2�kx);

and we know that the set fekg is an orthonormal basis for L2([0; 1]). The Fourier
series of a function is given by

f =
X
k

ck ek; with ck =
Z 1

0
f(x) ek(x) dx:

The decay of the coe�cients, and thus the convergence rate, depends on the
smoothness of f when I is identi�ed with the circle � (i.e. the smoothness of
the periodic extension of f). More precisely, if f 2 Lip�(�), then [201]

ck = O(jkj��):

However, the restriction of a smooth function de�ned on the real line to an interval
is not necessarily a smooth function when extended periodically. This is due to
the fact that the behavior of a function on the left end of the interval does not
necessarily match the behavior on the right end. In that case the convergence is
slow and the Gibbs phenomenon occurs. Basically this happens because the basis
functions are all periodic, while the function we try to represent is not.

From the Fourier series, one can easily derive other orthonormal bases that
only have sines or cosines as basis functions. One of them is the sine IV basis



162 CHAPTER 7. LOCAL TRIGONOMETRIC FUNCTIONS

where

sk(x) = sin
2k + 1

2
�x;

and the set f
p
2 sk j k 2 Ng is an orthonormal basis for L2([0; 1]). It is called

the sine IV basis because it uses basis functions that have quarter wavelengths as
compared to the Fourier series. The functions sk all are odd and smooth around
the left endpoint and even and smooth around the right endpoint. This means
that the convergence is fast whenever the function, extended as an odd function
around the left endpoint and as an even function around the right endpoint, is
smooth. (By extending as an even (resp. odd) function we mean applying the
operator 1 +M (resp. 1�M), see below.) Other bases and their parity are: sine
II (odd and odd),

Sk(x) = sin k�x;

cosine II (even and even),
Ck(x) = cosk�x;

and cosine IV (even and odd),

ck(x) = cos
2k + 1

2
�x:

For each basis a discrete transform and a fast (linear) algorithm, inspired on the
Fast Fourier Transform (FFT), exist, see [149, 192].

Whenever the data shows some special behavior such as periodicity or parity
around an endpoint, it is important to pick the basis that reects this property
in order to obtain rapid decay of the coe�cients. Note that this is the key to
compression as it implies that only few coe�cients are needed to represent the
data within a certain accuracy.

7.3 Local trigonometric bases of Coifman and

Meyer

7.3.1 The folding operator

The mirror operatorM� around a point � is de�ned as

M� f(x) = f(2�� x):
It essentially ips the function around �. Note that it is self-adjoint and unitary.
Consider an interval of length 2�� around � and a continuous cuto� function l so
that

l�(x) =

8<: 1 if x < � � ��
0 if x > � + ��;

and let r� =M� l�. This allows us to de�ne the folding operator.
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Figure 7.1: The cuto� functions l0 and r0 (dashed) with �0 = 1=2.

De�nition 7.1 The folding operator around a point � is de�ned as

F� = �l� (1 +M�) l� + �r� (1�M�) r�;

where �l� = �(�1;�] and �
r
� =M� �

l
�.

One can check that the adjoint of the folding operator is given by,

F�

� = l� (1 +M�)�
l
� + r� (1�M�)�

r
�

= �l� (1�M�) l� + �r� (1 +M�) r�:

Lemma 7.2 The folding operator is unitary if and only if l2� + r2� = 1.

Proof : Follows from the fact that

F�

�F� = l� (1 +M�)�
l
� (1 +M�) l� + r� (1�M�)�

r
� (1�M�) r�

= l2� �
l
� + l2� �

r
� + l� �

r
� r�M� + l� �

l
� r�M�

+ r2� �
r
� + r2� �

l
� � l� �r� r�M� � l� �l� r�M�

= l2� + r2� = F�F�

�:

2

Figure 7.1 shows an example of cuto� functions that satisfy this condition. For
the remainder of this section we assume it is satis�ed.

Let us discuss what the action of the folding operator is. Multiplication with
l� lets the function die o� smoothly to the left of � + ��. The operator 1 +M�
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Figure 7.2: The folding of a function where � = 0 and �� = 0:5.

then adds the function and its mirrored version. This results in a function even
around �, which is then cut o� by �l�. The right part is similar and creates an odd
function. Consequently, if f is smooth, then �l�F� f is a function that is smooth
when extended \even" to the right and �r�F� f is a function that is smooth when
extended \odd" to the left. Note that even when f is smooth, F� f , in general, is
discontinuous at �. The adjoint (or inverse) operator does exactly the same but
switches even and odd. Figure 7.2 shows the folding of an exponential function
around � = 0.

7.3.2 The total folding operator

Consider a partition of the real line into a countable set of intervals I = (�; �], so
that

R =
[
I

�I ;

and
� � � > �� + ��:

We can use I, � and � as indices since they belong to countable sets. The operators
F� and F� commute because F� = 1 on R n (� � ��; � + ��). This allows the
following de�nition.

De�nition 7.3 The total folding operator is de�ned as

T =
Y
�

F�:

Being a product of unitary operators, it too is unitary.
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Figure 7.3: The bell function for (1; 3].

We write the total folding operator as a sum of operators GI , each valid with
one interval I, or

T =
X
I

�I GI :

One can understand that GI is given by

GI = (1�M� +M�) bI ;

where bI is the bell function associated with the interval I,

bI = r� l� :

This follows from the fact that in both representations,

T =

8>>><>>>:
1 on (� + ��; � � ��)

(1�M�) r� on (�; � + ��]

(1 +M�) l� on [� � �� ; �]:

Note that
G�I = bI (1�M� +M�)

and X
I

b2I = 1:

Figure 7.3 shows an example of the bell function for I = (1; 3] and �0 = �1 = 1.
We next study the properties of GI .
De�nition 7.4 A function f is locally even (resp. odd) around a point � if f(x) =
M�f(x) (resp. �M�f(x)) for x 2 [� � ��; � + ��].
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Lemma 7.5 The function GI f is locally odd around � and locally even around �.

Proof : On the interval [�� ��; �+ ��], GI f = (1�M�) r� f , so thatM� GI f =
�GI f . 2

Lemma 7.6 If a function s is locally odd around � and locally even around �,

then

�I GI bI s = �I s and G�I �I s = bI s:

Proof : We prove the �rst equation. On the interval (� + ��; � � ��), left and
right-hand side are equal to s. On the interval (�; �+ ��], the left-hand side
is equal to (1 �M�) r

2
� s, which is equal to s because s is locally odd and

r2�+ l2� = 1. The right side and the second equation are proven similarly. 2

7.3.3 Splitting into subspaces

The idea is to split L2(R) into subspaces so that each subspace contains functions
localized around one of the intervals I. Moreover, we want a basis that is suited
for representation of smooth functions on that interval. The easiest would be to
let

L2(R) =
M
I

L2(I):

This obviously is an orthogonal decomposition and �I is the orthogonal projection
associated with it. Unfortunately, the trigonometric basis on each interval is not
suited for representations of smooth functions, cf. the discussion in Section 7.2.
But, applying the total folding operator to a smooth function results in a function
with speci�c parity properties at the endpoints of each interval and we then can
use the right trigonometric basis. The orthogonality is preserved because the total
folding operator is unitary. The orthogonal projection operator associated with an
interval is given by

PI = T � �I T :
We decompose L2(R) into orthogonal subspaces as

L2(R) =
M
I

VI with VI = PI L2(R):

It is immediately clear that

T VI = L2(I) and T � L2(I) = VI :

So the total folding operator maps one subspace splitting into the other. If we use
folding operators associated with an interval, we see that the projection operator
also can be written as

PI = G�I �I GI :
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Lemma 7.7 Each element of VI is of the form bI s, where s is locally odd around

� and locally even around �, and every function of this form belongs to VI .

Proof : The �rst part follows from the fact that

PI = bI GI ;
which is a consequence of Lemmas 7.5 and 7.6.

The second part follows from the fact that

PI bI s = G�I �I GI bI s = bI s;

which is a consequence of Lemma 7.6. 2

The fact that the projection operators are orthogonal can also be understood
as follows. Let I and J be two intervals. In case they are not neighbors, the
supports of PIf and PJg do not intersect. In the case that I and J meet at
a point �, PIf PJg is only supported on [� � ��; � + ��], where it is equal to
bI s bJ t = l� r� s t, where s is locally odd and t is locally even around �. As l� r�
is locally even, the integral vanishes.

The previous lemma tells us which is the right trigonometric basis to use. The
orthonormal basis for L2(I) that matches the parity is given by

�I sI;k;

where

sI;k =

s
2

jIj sin
2k + 1

2

�

jIj(x� �):

This immediately corresponds to an orthogonal basis for VI given by

T � �I sI;k = G�I �I sI;k = bI sI;k; with k 2 N:
Consequently,

f =
X
I

PIf =
X
I;k

cI;k bI sI;k;

where the coe�cients are given by

cI;k = h f; bI sI;k i = h T f; �I sI;k i : (7.1)

If we look at the operators from a practical point of view, we see that F� (and
thus T ), �I and their adjoints are easy to discretize and implement. This means
we always use the second expression of (7.1) for the coe�cients of a function. Also
the machinery for local trigonometric bases on an interval then becomes readily
available.

We can summarize the results from this section in the following theorem.

Theorem 7.8 With the assumptions made in this section, the functions fbI sI;kg
form an orthogonal basis for L2. Moreover, if f and the cuto� functions belong to

Lip�, the coe�cients of f decay as

cI;k = O(k��):
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7.4 Connection with wavelets

There is a close connection between local trigonometric functions and wavelets.
To understand this, we take a look at the following example. Consider the mul-
tiresolution analysis formed by the Shannon wavelet. Since

b (!) = �I(!) with I = [�2�;��] [ [�; 2�];

we see that

Wj = ff 2 L2 j supp bf � 2j Ig:
The splitting of L2 into the wavelet spaces thus corresponds on to splitting the
frequency axis into logarithmic intervals and letting

L2 =
[
j

L2(2
j I):

On each interval we use the Fourier series basis as,

b j;l =
p
2�je�i!l2

�j

�2j I :

These wavelets have slow decay. Remember that decay in the spatial domain
corresponds to smoothness in the frequency domain. side. Indeed, b j;l is not

continuous. We see that the b j;l form a local trigonometric basis.
It immediately follows that using the smooth local trigonometric basis on these

intervals of the frequency domain leads to wavelets with rapid decay in the spatial
domain. In case the cuto� functions belong to C1, the wavelets have faster than
polynomial decay. The Meyer wavelet was constructed this way, and its generaliza-
tion was the motivation for the work of Coifman and Meyer. These wavelets have
an in�nite number of vanishing moments since their Fourier transform vanishes in
a neighborhood of the origin.

Note that a splitting into intervals of equal size corresponds to a certain set of
wavelet packets. We can say that wavelet bases and smooth local trigonometric
bases are two instances of the same idea.

7.5 Biorthogonal local trigonometric bases

An important property of a transform coding scheme is the so-called resolution of

the constant , which concerns how constant functions are represented in the basis.
We say that a basis has a resolution of the constant if, on a �nite domain, the
constant is represented with a �nite number of basis functions. Since a smooth
function locally resembles a constant, it is important to represent a constant on
each interval with as few coe�cients as possible (preferably only one). We adapt
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the construction so that the constant is one of the basis functions. From the
previous section we see that,

�I GI 1 =

8>>><>>>:
r� � l� on (�; � + ��]

1 on (� + ��; � � ��)
r� + l� on [� � �� ; �]:

We want cuto� functions so that this function coincides with the �rst basis function
sI;0. This is evidently only possible if � + �� = � � ��. We therefore from now
on only work with intervals of equal size and let � = jIj=2. In order to achieve a
resolution of the constant and still have an orthogonal basis, the cuto� function
needs to be chosen as l� = l((x � �)=�), where

l(x) =

1 for x < �1
cos(�x=4)� sin(�x=4)p

2
for x 2 [�1; 1]

0 for 1 < x:

This cuto� function is continuous but it not di�erentiable. Consequently, the fold-
ing operator introduces discontinuities in derivatives that slow down convergence
and thus hinder compression. What we need is a resolution of the constant with
smoother cuto� functions.

In order to solve this problem, we add some exibility to the construction, by
abandoning the orthogonality requirement. In the remainder we let l� and r� =
M�l� be continuous cuto� functions that do not necessarily satisfy l2� + r2� = 1.

Lemma 7.9 In case l2�+ r
2
� is bounded from below and above, the folding operator

is bounded and invertible. More precisely,

A kfk 6 kF�fk 6 B kfk;

where

A = min
x

q
l2� + r2� and B = max

x

q
l2� + r2�;

and these constants are sharp.

Proof : Follows from the fact thatZ +1

�1

(F�f)2 dx =
Z +1

�1

(l2� + r2�) f
2 dx;

which is the result from simple algebraic manipulations similar to the ones
in the previous section. 2

Lemma 7.10 The inverse of an invertible folding operator F� again is a folding

operator.
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Proof : The equation g = F�f can be written in matrix form as

�l�

"
g

M� g

#
=

"
l� r�
�r� l�

#
�l�

"
f

M� f

#
:

From this we see immediately that the inverse of F� is given by eF�
�, whereeF� = �l� (1 +M�) ~l� + �r� (1�M�) ~r�;

~l� =
l�

l2� + r2�
; and ~r� =

r�

l2� + r2�
:

2

Note that
l� ~l� + r� ~r� = 1:

We call F� andgF� biorthogonal folding operators and more speci�cally refer togF�
as the dual folding operator .

This does not solve the problem completely. Indeed, if the cuto� functions
belong to C1, the folded constant has derivative zero at � + � and never coincides
with the �rst basis function sI;0. We therefore generalize the construction further
by allowing di�erent parities. We want to have a folding operator that takes a
smooth function into a function that is either odd at the left and right endpoint of
an interval or even at both endpoints. One way to do so would be to use folding
operators with the same parity left and right of the folding point. Unfortunately,
these operators are not invertible.

Lemma 7.11 A folding operator with the same parity left and right of the folding

point is not invertible.

Proof : Consider the twice even case and let

F� = �l� (1 +M�) l� + �r� (1 +M�) r�:

The matrix representation leads to a matrix with determinant l2�� r2�, which
vanishes at the folding point. 2

This basically tells us that the only way to get the same parity at both endpoints
of an interval is to alternate the parity of folding operators. In other words, we
need to change the parity from : : : (odd even) (odd even) (odd even) : : : to : : :
(even even) (odd odd) (even even) (odd odd) : : :. This implies de�ning the total
folding operator by alternating F� and F�

�. In the intervals with (even even) parity
we use the cosine II basis and in the intervals with (odd odd) parity the sine II
basis. To write this down in more detail we let

�l = l jIj;
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and, in order to simplify notation, we replace every subscript �l or I by the integer
subscript l. Thus �l = �(ljIj;(l+1)jIj]. The total folding operator is given by

T =
Y
l

F2l F�

2l+1;

where the factors commute. Again this operator is invertible, and since the indi-
vidual folding operators do not interact spatially, it also satis�es

A kfk 6 kT fk 6 B kfk;
with the same constants as above. The dual total folding operator is de�ned
similarly (just add the tildes) and again T �1 = eT �. The condition number of the
total folding operator is B=A.

Following a reasoning similar to the orthogonal case, we understand that the
total folding operator can also be written as a sum of folding operators associated
with an interval,

T =
X
l

�l Gl;

where
G2l = (1�M� �M�) b2l;

and
G2l+1 = (1 +M� +M�) b2l+1:

We de�ne the operators Pl and the subspaces Vl similar to the orthogonal case.
The projection operator associated with an interval is given by

Pl = eT � �l T :
We decompose L2(R) into complementary subspaces as

L2(R) =
M
l

Vl with Vl = Pl L2(R);

where
T Vl = L2(I) and eT � L2(I) = Vl:

Again the projection operator also can be written as

Pl = eG�l �l Gl = ~bl Gl:
If l is odd (resp. even), an element of Vl can be written as ~bl times a function that
is locally even (resp. odd) around � and �.

We use the basis functions with the right parity on each interval:

t2l;k =

s
2

jIj sin(k + 1)
�

jIj(x� 2l) for k > 0;

t2l+1;k =

s
2

jIj cosk
�

jIj(x� 2l � 1) for k > 1;
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and

t2l+1;0 =
1q
jIj
:

Obviously, the tl;k with l 2 Z and k 2 N form an orthonormal basis for L2(R).
This implies that the basis formed by the eT � �l tl;k is a Riesz basis for L2(R).
These functions are given by

eT � �l tl;k = eG�l �l tl;k = ~bl tl;k:

Consequently,
f =

X
l

Plf =
X
l;k

cl;k ~bl tl;k;

where the coe�cients are given by

cl;k = h T f; �l tl;k i = h f; T � �l tl;k i = h f; bl tl;k i ; (7.2)

and

A kfk 6
sX

l;k

c2l;k 6 B kfk;

with the same constants as above. We say that fbl tl;kg is the dual basis corre-
sponding to the basis f~bl tl;kg. The �rst expression of (7.2) for the coe�cients is
the easiest to implement. We summarize the results in a theorem.

Theorem 7.12 The sets of functions fbl tl;kg and f~bl tl;kg both are Riesz bases of

L2. Moreover, they are biorthogonal in the sense that

h bl tl;k;~bl0 tl0;k0 i = �l�l0 �k�k0 :

The coe�cients of a Lipschitz continuous function have the typical rapid rate of

decay. More precisely, if f and the cuto� functions belong to Lip�, then the coef-

�cients of f decay as

cl;k = O(k��):
The only thing left is to �nd cuto� functions so that �l T 1 coincides (up to a

constant factor) with �l tl;0. This can be done by letting l� = l((x� �)=��) where

l(x) =
1� sin(�x=2)

2
for x 2 [�1; 1]:

This cuto� function belongs to C1. It is easy to check that on I,

G2l 1 = sin

 
x� 2l

jIj

!
and G2l+1 1 = 1:

In this case the constants A and B used in the comparison of norms are 1=
p
2

and 1 respectively. The condition number of the folding operator is thus
p
2. We
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Figure 7.4: The biorthogonal cuto� functions.

have chosen this normalization because it is natural for the cuto� functions to
have value 1=2 at �. This means that folding a function does not make it grow
on the even side of a folding point. The cuto� functions are shown in Figure 7.4
and the biorthogonal total folding of an exponential function is shown in Figure
7.5. The folded function on each interval closely resembles the �rst basis function.
Figure 7.6 shows two basis functions, eb2 t2;4 and eb5 t5;9. The shape of the bell
functions is drawn dotted. Note the parity of the basis functions at the endpoints.

7.6 Folding operators on an interval

So far the discussion has only concerned functions de�ned on the real line. In
this section, we focus on folding operators on an interval. Since we can treat each
boundary point independently we consider the case of the interval I = [�;1). We
introduce an extension operator X that takes a function de�ned on the interval to
a function de�ned on the whole real line, and a restriction operator R that does
the opposite. We want them to satisfy X = 1 on I, and RX = 1. Also, in case f
is smooth, we want X f to have some smoothness too. For notational simplicity,
we omit the subscript � and introduce a superscript b for cuto� functions and
operators associated with the boundary of the interval. We de�ne the folding
operator at the boundary as

F b = RF X :
Let lb = R l (similarly for r), and letMb be a mirror operator that maps a function
de�ned on I to a function de�ned on R n I. One can understand that

F b f = rb f � lbRMX f:
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Figure 7.6: Biorthogonal basis functions.
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The second term has a plus sign in the case of F�b = RF�X (i.e. the even case).
Assuming that f is continuous, we propose to choose the extension operator in

the odd case as
X f = 2f(�) �Mb f on R n I:

This guarantees that if f 2 C1, so is X f . The folding operator is given by

F b f = (lb + rb) f � 2f(�) lb:

We can retrieve f from F b f by

f =
F b f + 2f(�) lb

lb + rb
:

It also shows that we need to separately \store" the value f(�). This is no surprise
as the folding operator can never \grasp" this information since F bf(�) = 0 in
case f is continuous. The reconstruction step is stable.

If we use the same extension operator in the even case, the reconstruction
becomes unstable since it has lb � rb in the denominator. We therefore introduce
the following extension operator in the even case,

X f = Mb f + 2f 0(�) (x � �) on R n I;

where we assume that f 2 C1. Consequently, X f 2 C1. The folding operator is
given by

F�b = (lb + rb) f + 2f 0(�) (x � �) lb;
from which we see that the inverse operator again is stable. Here one needs to
separately \store" the value f 0(�).

The construction on the right boundary of an interval is completely similar.
Also, it is possible to construct extension operators that preserve more smoothness
at a cost of having to store more information separately.

7.7 Equal parity folding

In this section, we take a closer look at the folding operator that takes a smooth
function into a function with the same parity left and right of the folding point. We
call such a folding operator an equal parity folding (EPF) operator. In Section 7.5,
we proved that they are not invertible in L2(R), see Lemma 7.11. Nevertheless
they were used successfully for image compression, see [2]. In this section, we
study their behavior more carefully and try to understand why they sometimes
are useful.

We start by introducing two new operators as,

E = 1 +M and D = 1�M;
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which map any function into an even (resp. odd) function so that

E +D
2

= 1:

Note that they are both self-adjoint and provide an orthogonal splitting of L2 into
E L2 �D L2. We again take � = 0 and omit the subscript �. We assume that the
cuto� functions are continuous and that they satisfy

lim
x!�1

l(x) = 1; lim
x!+1

l(x) = 0;

and r =M l. The EPF operator with (even { even) parity can be written as

F = �l E l + �r E r: (7.3)

We immediately see that the EPF operator is self-adjoint. Also, it commutes with
M and maps even (resp. odd) functions into even (resp. odd) functions. We �rst
study how the EPF operator behaves on these subspaces of even or odd functions.

Lemma 7.13 On E L2, F coincides with l + r. On D L2, F coincides with (�l �
�r) (l � r).

Proof : In the even case we have,

F f = �l E l f + �r E rM f = �l E l f + �r E M l f = E l f;

while in the odd case

F f = �l E l f � �r E rM f = �l E l f � �r E l f = (�l � �r) (l � r) f:

2

We introduce two new functions e and d as

e = E l and d = D l:

The lemma implies that we can write F as

F = e E + d (�l � �r)D: (7.4)

This helps us to formulate the following lemmas.

Lemma 7.14 The EPF operator is bounded.

Proof : Follows immediately from the representation (7.4), the fact that the cuto�
functions are continuous and from their limit conditions. 2

Lemma 7.15 kerF = f0g.
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Proof : From (7.3) we see that F f = 0 implies that both lf and rf are odd.
Consequently ef and d f are odd. The former implies that f is odd, the
latter that f is even. Thus f = 0. 2

We know that the kernel and the closure of the range of a self-adjoint operator
form an orthogonal splitting of L2. The former two lemmas thus imply that the
range of F is dense in L2. We show later that the range of F is actually smaller
than L2. From the representation (7.4) it also follows that the spectrum of F is
equal to [m;M ] with

m = min
x
fe; dg < 0 and M = max

x
fe; dg > 0:

Lemma 7.16 The EPF operator is not invertible on its range.

Proof : Remember that an operator is invertible when its inverse exists and when
the inverse is bounded. We prove that F is not invertible by constructing an
odd function w with norm one so that F w can have arbitrarily small norm.
Let

w =
1

2
p
�

�
�[��;0] � �[0;�]

�
:

Then
kF wk = kdwk 6 max

x2[��;�]
d:

Since the cuto� functions are continuous this can be made arbitrarily small.
2

It is easy to see what the inverse operator, at least formally, looks like. It again
is an EPF operator with the parity (even { even). We denote it with eF where

eF = ee E + ed (�l � �r)D;
with ee = 1=e and ed = 1=d:

It immediately follows that formally eF F = 1. The inverse operator can also be
written in a form similar to (7.3), where

eF = �l E ~l + �r E ~r;

with el =
l

l2 � r2 and er =
r

r2 � l2 :

The fact that F is not invertible shows here in the fact that ed has a singularity at
x = 0. This also tells us that eF can take a function out of L2, since this singularity
is not necessarily square integrable.
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We understand that F is bounded and invertible on the subspace of even
functions in case e is bounded away from 0 and 1. For the odd functions we
cannot make a similar statement as d always vanishes in the origin.

We can characterize the range of F as

rangeF = ff 2 L2 j D f=d 2 L2g:
If we also assume that the cuto� functions belong to C1, we see that ed = O(1=x).
This means that a function belongs to the range of F in case it behaves like
O(x1=2��) in a neighborhood of the origin. A typical function that does not belong
to the range of F is a function with a discontinuity at the folding point. Similarly
we can write the range of eF as

range eF = ff 2 L2 j dD f 2 L2g;
and we note that L2 � range eF . Again, a function that eF typically takes out of
L2 is a function with a discontinuity across the folding point.

Under the assumption that the cuto� functions belong to C1, a function of the
range of eF behaves like O(x�3=2��) in a neighborhood of the origin.

We can also understand that F has some smoothing properties, i.e. it maps a
function with a discontinuity at the origin into a continuous function as

F �l = l:

However, it doesn't smooth out discontinuities in the derivative as

F x�l = jxj l:
Let us discuss how these operators can be used in data compression. The

idea again is to construct a total folding operator and then use a trigonometric
basis with the right parity on each interval. In this case it is the cosine II basis.
The compression is done in this basis, after which we use the inverse total folding
operator to reconstruct the data. If we think of F as a kind of smoothing operator
and of eF as an operator that can blow up discontinuous functions, it makes sense
to use eF to construct the total folding operator and F for its inverse. This has
the following advantages:

� The error introduced by the compression in the trigonometric basis cannot
get blown up, as F is bounded.

� Discontinuities across the folding points get smoothed by F . In other words,
the blocking e�ect is reduced.

Note: the idea to switch the two operators around was also suggested in [2].
This approach works well as long as the function is smooth at the folding point.

This can be understood as follows. If a function is smooth, we can write a local
�rst order approximation as

f(x) � f(0) + f 0(0)x+O(x2):
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The �rst term is even and thus does not pose a problem as the folding operators
are bounded and invertible on the space of even functions. The second term is
odd, but (locally) belongs to the range of F , and thus does not cause any trouble.
Problems, however, occur when the function is discontinuous at a folding point.
We illustrate this with an example in a later section.

The construction of the total folding operators is completely similar to the
biorthogonal case and we adopt the same notation (i.e. the integer subscripts).
Evidently, there is no need to alternate the parities. On each interval we use the
cosine II basis or the functions �lCl;k where

Cl;k =

s
2

jIj cosk
�

jIj(x� 2l � 1):

It should be clear from the discussion above that the F �l Cl;k cannot generate a
basis for L2, but merely form a set whose linear span is dense. Out of curiosity we
remark that still

F �lCk;l = blCk;l;

where bl is the usual bell function.
One gets a resolution of the unity in case e = 1. One degree of freedom is still

left in the choice of d. We can use this to also obtain a resolution of the linear ,
i.e. a representation of each linear function by two basis functions on an interval
after folding by letting

d =
x

1� 2=� cos(�x=2)
for x 2 [�1; 1];

and consequently

l = (1 + d)=2 and r = (1� d)=2:

Figure 7.7 shows the equal parity folding of the function x with folding points 0
and 1. We see that on the interval [0,1] it coincides with a function of the form A+
B cos(�x) (dashed). The resolution of the constant implies that for each interval
the constant and linear component of the function can be represented e�ciently.
If we eliminate these components from the function, what is left typically looks
like a waveform, which in turn can be represented by the higher frequency basis
functions.

7.8 Implementation and results

So far the discussion only handled functions of a continuous variable. In appli-
cations the construction needs to be discretized. A function f is then given as a
sequence ffng where the \samples" fn can be seen as pointwise evaluations on a
regular grid in case f is continuous, or as average values of f in a neighborhood of
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Figure 7.7: Equal parity folding of a linear function

the grid point if not. For each local trigonometric basis, a discrete implementation
is available, which is based on the FFT. We know that the implementation of the
FFT is most straightforward in case the number of samples is a power of two.

We �rst need to decide whether we want to use a staggered or non-staggered
discretization. In a non-staggered discretization, the boundaries of the interval
coincide with a grid point, while in a staggered discretization the boundaries of
the interval fall between grid points.

In the orthogonal construction both discretizations are possible. The fact that
a folded function is discontinuous at the folding point does not pose a problem in
the non-staggered discretization. At the folding point we only need the value of
the \even" part as we know that the \odd" part vanishes. In the biorthogonal case
still both options can be used. In this case the non-staggered discretization has
the disadvantage that the \even-even" intervals contain two more samples than
the \odd-odd" intervals. This makes implementation harder.

In the EPF case one has to use the staggered implementation as some of the
cuto� functions have a singularity at the folding point. This makes it possible to
implement operators that in the L2 sense are unbounded or not invertible. The
fact that the range of F is dense in L2 ensures that these discrete operators are
invertible. However, this unavoidably results in ill-conditioned discrete operators.
We always use the staggered discretization.

A transform coding scheme does not only involve a transform, but also a quan-
tization and encoding step. However, we will not go into these issues. Instead, we
include some results obtained by simply retaining the coe�cients above a certain
threshold and setting the others to zero (\clipping"). The compression ratio is
then de�ned as the number of data samples divided by the number of transform
coe�cients that were retained.
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The �rst example involves a function that has discontinuities at the folding
points. We work on the interval [0; 1] where we assume that the functions are
extended periodically to the real line. Take the function

f = 2�[1=4;3=4)� 1;

which generates a square wave. We take 1=4 and 3=4 as folding points, each with
� = 1=4. We use the staggered discretization with grid size h = 1=100. After the
appropriate local trigonometric transform on each interval, we retain the largest
15% of the coe�cients and set the others to zero. We then perform the inverse
trigonometric transform and unfolding. Figures 7.8 and 7.9 show the folding of
f in the biorthogonal and EPF case and these functions after the clipping of the
trigonometric coe�cients (dashed). Figures 7.10 and 7.11 then show the unfolding
of these functions versus the original function (dashed). As we predicted, the EPF
performs badly in this case.

In a second example we consider a smooth function,

f(x) = e�(4x�2)
4

;

and use the same folding points. Figure 7.12 gives the norm of the di�erence
between the compressed and the original function as a function of the percentage
of the coe�cients that were retained. As we expected, the EPF behaves better
here. If the percentage of coe�cients kept is less than 15, its error is about 10
times smaller than in the biorthogonal case.

Next we consider an example involving image compression. As we mentioned,
a standard here is JPEG, which uses a local cosine basis on 8 � 8 blocks. We
compare it with the biorthogonal and EPF basis on the same size of blocks. Figure
7.13 and 7.14 give the mean square error (MSE) in function of the compression
ratio, for two 512� 512 gray value images (Lena and Peppers). We see that the
two new folding techniques are better than JPEG. For small compression ratios
biorthogonal is better, while for higher compression EPF is better. In Figures 7.15
and 7.16 (detail) we show the original and compressed (18:1) images for Lena. We
see that the biorthogonal basis is the best at reducing the blocking e�ect.
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Figure 7.8: Biorthogonal folding of the block wave before and after clipping.
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Figure 7.9: Equal parity folding of the block wave before and after clipping.
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Figure 7.10: Reconstructed block wave (biorthogonal case).
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Figure 7.11: Reconstructed block wave (EPF case).
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Figure 7.12: Error (logarithmic) as a function of percentage of coe�cients.
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Figure 7.13: Mean square error for Lena image.
(JPEG = dotted, biorthogonal = full, EPF = dashed)
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Figure 7.14: Mean square error for Peppers image.
(JPEG = dotted, biorthogonal = full, EPF = dashed)
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Figure 7.15: Original and compressed images for Lena.

(top left: original, top right: JPEG,
bottom left: EPF, bottom right: biorthogonal)
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Figure 7.16: Original and compressed images for Lena (detail of the shoulder).

(top left: original, top right: JPEG,
bottom left: EPF, bottom right: biorthogonal)
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7.9 Conclusion and future research

As we pointed out, the next stage in a transform coding scheme involves the quan-
tization and encoding of the coe�cients. The quantization step consists of only
allowing a �nite number of possible values for the coe�cients. Every coe�cient
value that falls inside a certain interval is replaced by the same number accord-
ing to a quantization table. Coe�cients below a certain threshold are mapped to
zero. The table needs to be designed in such a way that the coe�cients can be
represented with a minimal amount of bits without introducing too big an error in
the compressed data. The encoding step consists of representing the values of the
coe�cients together with their position (essentially their index) by a bit stream.

One direction for future research is the design of a quantizer and encoder
adapted to the smooth local trigonometric bases. This requires a careful study of
the statistical behavior of the coe�cients for a large set of possible data. Tech-
niques that can be used here are vector quantization, run-length encoding, and
arithmetic encoding.

Another direction is the application of smooth local trigonometric bases to the
numerical solution of integral equations. We already pointed out in Chapter 2 how
the discretization of a Calder�on-Zygmund operator in the wavelet basis yielded
a sparse matrix. However, operators arising in acoustic and electric scattering
problems typically have oscillating kernels, and do not necessarily lead to sparse
matrices. A simple example is an operator resulting from the Helmholtz equation,
which looks like

Tkf(x) =
Z +1

�1

eikjz(x)�z(y)j

jz(x) � z(y)jf(y) dy;

where z(x) 2 C is the parametrization of a curve. We can discretize these operators
in the smooth local trigonometric basis. First results [28] indicate that this yields
a sparse matrix and thus allows fast computations.

A third direction involves the use of the folding operators for the design of other,
not necessarily trigonometric based, smooth local bases. We know that the folding
operator maps a smooth function into a function with speci�c parity properties.
Any basis that matches these parities leads, after unfolding, to a smooth local
basis. One idea is to use polynomials to generate the basis. This leads to a kind
of spline basis. (It is not exactly a spline as the cuto� functions need not be
polynomials). Building an orthogonal basis should be straightforward. This idea,
combined with the construction of the Alpert wavelets (see Chapter 8) could result
in a smooth wavelet basis based on polynomials.
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Chapter 8

Conclusions and Future Research

\There is always one moment in childhood

when the door opens and lets the future in."

|Graham Greene, The Power and the Glory (1940).

In this chapter we draw some conclusions. We de�ne a more general concept,
time-frequency basis, and relate it to wavelets and smooth local trigonometric
functions. We point out the shortcomings of the original constructions. We discuss
how the work in this thesis not only solves some of these problems, but also raises
directions for future research.

8.1 Time-frequency bases

8.1.1 General idea

Take a function f , de�ned over a time domain, and consider the following repre-
sentations:

f(t) =
Z +1

�1

f(s) �(t � s) ds;

and

f(t) =
1

2�

Z +1

�1

bf(!) ei!t d!:
In both cases the function is represented as the integral of a building block (Dirac
impulse or complex exponential) multiplied with a function. These representations
can be seen as two extremes. In the �rst case the building blocks are extremely
local in time, but loose all locality in frequency (since the Fourier transform of a
Dirac impulse is a constant). In the second, the situation is precisely the opposite.

The whole idea of time-frequency bases is to �nd a compromise between these
extremes. Let us be a little more precise. Consider a set of functions f �g, where
the general index � belongs to a countable set. We look for a representation of f

193
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as

f =
X
�

c�  �: (8.1)

We call a basis a time-frequency basis when it satis�es the following properties:

1. The basis functions form a \stable" basis for a general function space S. By
\stable" we mean that for each f 2 S, unique coe�cients c� exist, so that
the formal expression (8.1) converges in some sense. Typically, we consider
convergence in the norm of S. Unconditional convergence, where the order
of summation is irrelevant, is preferred. This is related to the fact that one
can estimate the norm of f in S using the modulus of its coe�cients fc�g,
cf. the de�nition of a Riesz basis.

We also want to have expressions for the coordinate functionals. These are
continuous linear operators  �� on S so that

c� =  ��(f):

2. The basis functions are local in time and frequency. This means that both  �
and b � are concentrated around their center, and die o� rapidly away from
it. The decay can be inverse polynomial or exponential, or the functions can
even be compactly supported. Of course, this can only be achieved within the
limitations of the Heisenberg uncertainty, cf. the discussion in Section 2.2.
Usually, we also want to impose localization on the coordinate functionals.

The localization implies that if f has some local behavior, either in time or
in frequency, only a limited amount of coe�cients will be large, while the
others are small. Consequently, we can represent f within a certain accuracy
using only a few basis functions. As we already saw on several occasions,
this is the key to most applications.

Note that localization of b � corresponds to smoothness of  � and vice versa.

3. The basis is easy to implement on a computer. This means that we need
explicit expressions for the coordinate functionals, so that given f , we can
compute the c�. Secondly, the functions  � need to be easy to evaluate so
that given the coe�cients c�, we can reconstruct f .

Moreover, we need a discrete equivalent of (8.1) and an associated fast trans-
form algorithm.

8.1.2 Examples

In this thesis, we encountered two main examples of time-frequency bases.
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Algebraic wavelets: In the case of algebraic wavelets, the basis functions are
the dyadic translates and dilates of one function. We saw that they can form a
Riesz basis for L2(R). The coordinate functionals are inner products with dual
wavelets, which also are the translates and dilates of one function. We have local-
ization in time domain through the compact support. Localization in frequency
domain follows from the smoothness and the vanishing moments.

Evidently, when f is local in time, only few wavelet coe�cients are large. When
f is smooth, and thus localized in frequency, the wavelet coe�cients decay rapidly.

The compact support of the basis and dual function, and the nestedness of the
multiresolution spaces, immediately result in a fast wavelet transform.

Smooth local trigonometric functions: In the case of smooth local trigono-
metric functions, localization in time is obtained by splitting the real line into
intervals with the use of smooth bell functions. Localization in frequency follows
from the use of a trigonometric basis on each interval. All basis functions and
dual functions are compactly supported. Again they give rise to Riesz bases. The
transform algorithm builds upon the folding operators and the FFT.

As we already pointed out, smooth local trigonometric functions and wavelets
are related through the Fourier transform. We call these functions �rst generation
wavelets. Their merit is to provide a computational tool for ideas that had been
used in abstract mathematics for a long time.

8.1.3 Shortcomings of �rst generation wavelets

Although they obviously are very useful, �rst generation wavelets have some short-
comings. In this section, we point out the main ones.

1. First generation wavelets form bases for functions de�ned on the real line.
Using tensor products, a generalization to the whole Euclidean space Rn

is possible. However, in many cases, we work with functions de�ned on
fairly arbitrary, possibly non-smooth, subsets of Rn. This is the case in
applications such as data segmentation and the solution of partial di�erential
equations.

Also, we sometimes need time-frequency bases for functions that live on
curves and surfaces. This is, for example, of use in the solution of di�erential
equations on non-smooth domains. Using layer potential techniques, the
di�erential equations are reformulated as integral equations on the boundary
of the domain.

2. First generation wavelets provide a Riesz basis for L2. This means that
the basis and dual functions are biorthogonal with respect to the L2 inner
product.
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However, often one needs basis adapted to di�erent inner products, such as
inner products that use a di�erent measure, operator inner products, or inner
products associated with a curve or surface.

3. A typical problem with the �rst generation wavelets is that they are not
invariant under geometric operations (G), such as translation, dilation and
rotation. In other words, there is often no \simple" relationship between
the coe�cients of f and those of Gf . A \simple" relationship leads to an
algorithm that is computationally far less expensive than the calculation of
the coe�cients.

Such invariance is useful in the analysis and compression of digital video.
One frame is often the image of the previous frame under such a geometric
operation.

8.1.4 Solutions

We de�ne second generation wavelets to be any functions forming a time-frequency
basis that overcomes some of the above problems. Using this de�nition, already
several instances of second generation wavelets exist, the most common example
being wavelets on an interval.

The motivation for this thesis was the use of time-frequency bases in numerical
analysis. It somehow reects the transition between �rst and second generation
wavelets. In the �rst part we studied how one can use �rst generation wavelets
in numerical analysis. More speci�cally, we developed two basic tools, quadrature
formula and error expansions. In the second part we showed how one can construct
second generation wavelets for use in numerical analysis. More precisely, we con-
structed weighted wavelets and operator wavelets which lead to a fast algorithm
for ordinary di�erential equations. We also generalized smooth local trigonometric
bases to the biorthogonal case and showed how they can be used in data compres-
sion.

8.2 Future Research

The results of this thesis are only a small step in the whole evolution of wavelets and
time-frequency bases. They provide answers to some of the open problems, and
perhaps more important, open new directions and raise new questions. Already
at the end of each chapter, we pointed out ideas for future research related to the
material of the chapter. In this section, we discuss ideas for future research related
to the thesis as a whole.

An initial direction involves the further exploration of the applicability of the
average-interpolation scheme for the construction of second generation wavelets.
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David Donoho already showed that it leads to an elegant construction of wave-
lets on an interval. This can easily be generalized to wavelets satisfying speci�c
boundary conditions. First experiments show that average interpolation can also
be used for the construction of wavelets on arbitrary domains and wavelets on
curves and surfaces. The latter are closely related to weighted wavelets. This can
be seen as follows. Consider a curve � in the complex plane C. An inner product
of two functions de�ned on this curve is given by

h f; g i� =
Z
z2�

f(z) g(z) dz:

Consider a parametrization of �, given by z(t) for t 2 R, and let f�(t) = f(z(t)).
Then

h f; g i� =
Z +1

�1

f�(t) g�(t) z0(t) dt:

This is a weighted inner product with w = z0. Note that the weight is complex
valued. With a simple condition of the curve (such as a \cord-arc" condition), it is
possible to ensure that the the local moments M0

j;l vanish. Another common inner
product on the curve uses jdzj as di�erential, which leads to the weight w = jz0j.
This weight is always positive.

A second direction involves the use of Alpert wavelets. In his thesis, Bradley
Alpert came up with an alternative construction of orthogonal wavelets, which
he called \multiwavelets" [7, 9]. His construction only relies on properties of
polynomials and on Gram-Schmidt orthogonalization. Their only disadvantage is
that they are non-smooth. Nevertheless they were used successfully in the solution
of integral equations [8] and in data compression [184].

Since the construction does not rely on the Fourier transform, it can be used
for second generation wavelets. First, Alpert wavelets can be generalized to the
biorthogonal case. Secondly, since the support of the wavelets on one level does not
intersect, one can build Alpert wavelets on very general geometries. For example,
using triangulations, one can build wavelets adapted to life on domains or on a
surface. For more details, we refer to [109, 114].

Several solutions dealing with the invariance problem already exist. One tech-
nique is to use overcomplete representations, or so-called frames. Beylkin presents
an algorithm for the calculation of all circular shift of a vector in [23]. Other in-
variant bases were presented in [162]. Mallat uses a di�erent technique. He uses
the zero crossings or maxima of the wavelet bands to represent general functions
[133, 137]. This, however, has the disadvantage that no explicit reconstruction
algorithm exists, and that the representation is not unique. A new idea for �nd-
ing shift invariant representation relies on a theorem of Bar-David. The theorem
states that every bandlimited function can be uniquely represented by its crossing
with a �xed cosine function. A simple reconstruction formula is available. For
more details we refer to [179, 198].
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Finally, once these second generation wavelets are available, we can return to
the techniques of Chapters 3 and 4, and design quadrature formulae and error
expansions for them.

\Who controls the past, ran the Party slogan, controls the future:

who controls the present controls the past."

|George Orwell, 1984 (1949).
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\The Art of Taking Time to Live"

To get the most out of life,
we must take time to live
as well as to make a living.

We must practice the art of �lling our moments
with enriching experiences that will

give new meaning and depth to our lives.

We should take time for good books;
time to absorb the thoughts of poets and

philosophers, seers and prophets.

Time for friendships; time for talks by
the �re and walks beneath the stars.

Time for travel; time for pilgrimage
and festival, for shrine and exhibit,
for rockbound cost and desert,

mountain and plain.

Time for nature; time for ower gardens,
trees, birds and sunsets.

Time to love and be loved, for love is the
greatest thing in the world.

Time for people; time for the interplay
of personalities and the interchange of

ideas.

Time for solitude; time to be quiet and
alone and to look within.

Time to give of ourselves, our talents,
abilities, devotions, convictions, that we
may contribute to the onward march

of man.

from \The Art of the Great Life" by Wilferd A. Peterson
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\This is the end : : : my only friend, the end."

|Jim Morrison, (1969).


