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Abstract

We show that there is no logéfE M approximation for the undirected Edge-Disjoint Paths
problem unless NP C ZPTIM E(nP¥108(")) where M is the size of the graph and ¢ is any
positive constant. This hardness result also applies to the undirected All-or-Nothing Multicom-
modity Flow problem and the undirected Node-Disjoint Paths problem.

1 Introduction

Consider an undirected graph G and a set {(s;,t;)} of source-sink pairs. In the undirected Edge-
Disjoint Paths problem (EDP) we wish to connect as many of these pairs as possible using edge-
disjoint paths. EDP is generally regarded as one of the “classic” NP-hard problems. Past work on
EDP and the more general Unsplittable Flow! (USF) problem includes [2, 3, 4, 6, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 21].

Suppose that G has N nodes and M edges. The best known approximation ratio for EDP is
O(min(N?/3, M/?)) [11, 21, 17, 4, 23]. In [10], Guruswami et al. presented an almost matching
lower bound for directed graphs. They showed that there is no M 37€ approximation algorithm for
any € > 0 unless P = NP.

In this paper we show a hardness result for the undirected problem. In particular we show that
there is no log%_E M-approximation for EDP unless NP C ZPTIM E(nP°¥1°8(") 2 Our reduction
is via a reduction from Maximum-Independent-Set (MIS) on bounded degree graphs [22] and is
motivated by the result of Guruswami et al. [10] that Bounded-Length EDP is hard to approximate
to within M2~ for any € > 0. This is a version of EDP in which all paths are restricted to be of
length at most L, for some parameter L that is given as input. At a high level, our construction
involves embedding multiple copies of the instance of [10] into a graph that “almost” has high girth.

n the USF problem each source-sink pair has a demand d; and a profit p; and each edge has a capacity. If we
route all the demand d; on a single path then we gain the profit p;. The aim is to maximize the profit gained while
respecting the edge capacities. In the case that the demands, profits and capacities are all 1, USF reduces to EDP.
Since in this paper we are concerned with hardness results, all our results will apply directly to USF as well as EDP.

2Recall that ZPTIM E(np01ylog(">) is the set of languages that have randomized algorithms that always give the

correct answer and have expected running time nPolylog(n),



Outline. We prove our hardness result via a reduction from Maximum-Independent-Set in bounded-

degree graphs. In [22], Trevisan showed that for fized A, there is no poly-nomial-time A /20(V1og2)_
approximation for MIS on graphs of bounded degree A unless P = N P. Unfortunately, we cannot
apply Trevisan’s result directly since we need the degree bound A to grow with the size of the
graph. We therefore use the following theorem. The proof is almost identical to Trevisan’s proof
and so we defer it to the Appendix.

Theorem 1 Let f(-) be a polylogarithmic function. For any constant o > 0 there is a randomized
|qp|@Uoglogl¥]) time reduction from a 3CNF formula 1 to a graph F with n = [p|®U1egloglv) pnodes
and mazimum degree at most A = f(n) such that for two parameters Z1 and Zy < Zy /A4

o [f the 1 is satisfiable then F has an independent set of size Z1.

o If 1 is not satisfiable then with probability 1 — 1/poly(|v)|) the mazimum independent set in
F has size at most Zs.

This result immediately implies that MIS in n-node graphs of bounded-degree A = f(n) is hard to
approximate to within a factor of A™® unless NP C ZPTIM E(n®(oglogn)),

In the remainder of the paper we show how this implies that EDP is hard to approximate in
undirected graphs. In Sections 2.1 and 2.2 we show how to translate an instance F of MIS into a
randomized instance H of EDP for which we are able to show our hardness result. This instance
has two important features. First, for each demand there is a special short path that we call the
canonical path for the demand. Second, with high probability H is almost a high-girth graph and so
for most demands, any non-canonical path for the demand is much longer than the canonical path.
Therefore, it is impossible to route many demands on non-canonical paths. The idea of high-girth
graph resembles that in [1] in which polylogarithmic lower bounds are shown for the buy-at-bulk
problem.

In Section 3 we present an algorithm that takes a solution to the EDP problem in H and maps
it back into an independent set in F. We then analyze how the size of the MIS solution relates
to the size of the EDP solution. For this purpose, in Section 3.2 we count how many demands
can be routed on edge-disjoint non-canonical paths. As mentioned above, this number is small.
In Section 3.3 we count how many demands can be routed on edge-disjoint canonical paths. This
number depends on the size of the maximum independent set in F. We tie all the analysis together
in Section 4. In Section 5 we show how our analysis can be extended to give hardness results for the
undirected All-or-Nothing Multicommodity Flow problem and the undirected Node-Disjoint Paths
problem.

2 Construction

2.1 Construction of basic instance

Consider an n-node graph F of degree A. We convert it into a basic instance G of EDP as follows.
We do not define G using the convention of specifying its node set and edge set. Instead, we specify
the set of paths that G supports.

For each edge ij in F we create a path segment S;; in G, which consists of ¢ = polylog(n) edges
eijk, 0 < k < c. (The exact value of ¢ will be given later.) Two adjacent edges e;j and e;;x4+1 in
the segment are connected by two disjoint paths; one via an auxiliary node for ¢ and the other via
an auxiliary node for j. (See Figure 2, Left.) Once we have created these segments in G we create a
canonical path P; in G for every node 7 in F. The path P; strings together segments S;j,, Sij,, ... in
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Figure 1: Graph F, A = 2.

an arbitrary order, where jg, j1,... are the (at most A) neighbors of ¢ in . Within each segment,
P; follows the auxiliary nodes for i. We add a path of length 2 to connect the end of segment S;;,
and the beginning of segment S;j, . We also attach a source node s; to the beginning of the first
segment and attach a destination node ¢; to the end of the last segment. Our edge-disjoint paths
problem has terminal pairs (s;,t;) for all i. (See Figure 2, Right.) The canonical paths have the
following two key properties:

e G-1: Path P; has length at most £ = 3cA.

e G-2: Path P; is disjoint from path P; if and only if 7 is not a neighbor of j in F.

2.2 Construction of expanded instance

We now create an expanded instance H for which we can show that EDP is hard to approximate.
The graph H is created randomly and is simple to describe. For each node v in G we create
X = O(np°1ylog(”)) nodes v;, 0 < x < X. If v and v’ are non-adjacent then there are no edges
between v, and v/, for any z,2’. If v and v’ are adjacent then we place a random matching between
the set of nodes v, and the set of nodes v/,. Therefore, there are X edges in H that correspond to
every edge in G. The first important property of this construction is:

e H-1: For any path w,v,w,... in G, there are X paths of the form w,, vy, wyr, ... in H that
are both node disjoint and edge disjoint.

The above property means that there are X paths corresponding to the canonical path P;. We
use P;; to denote the canonical path corresponding to P; that starts at node s; ;. If t; ;s is the
endpoint of this canonical path then we let (s;.,%; /) be a terminal pair in our new EDP instance.

We now consider a canonical path P; , corresponding to node i in F and a canonical path P;,
corresponding to a neighbor j of 7 in . We say that path P;, meets path P;, at level k if and
only if they both pass through the same edge in H that corresponds to edge €;;; in G. We have
two important properties with respect to two neighboring nodes 7 and j in F.

e H-2: For each path P;, there exists exactly one y such that path P;, meets P;, at level k,
i.e. the relationship “meets at level k” induces a matching between the X canonical paths for
node ¢ and the X canonical paths for node j.

e H-3: The event that two paths meet at level k is independent of the event that they meet at
level k' # k. Hence the matchings induced between paths at level k are independent of the
matchings induced between paths at level &k’ # k.

Lemma 2 The size of the EDP instance on H is quasipolynomial, i.e. O(np°1y1°g(")). In particular
the number of edges M is at most Xnl and the number of terminal pairs is equal to nX.
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Figure 2: Graph G constructed from F in Figure 1, ¢ = 2. (Top) Two segments S;; and Sj.
(Bottom) Creation of canonical paths from the segments.

3 From EDP to MIS

Suppose that the solution to our EDP instance H has size Y. We propose the following algorithm
which we call EDP2MIS to construct an independent set S for F. We partition the Y edge
disjoint paths into two pieces, the set of terminals that are routed on canonical paths and the set
of terminals that are routed on non-canonical paths. For parameter A defined in (5), if node i in F
corresponds to more than A canonical paths chosen by the EDP solution instance, then we include
1 in S. We show later that the set S produced by EDP2MIS is indeed an independent set with
high probability.

EDP2MIS allows us to relate the size of the MIS solution to the size of the EDP solution.
Since for every node that is included in S at most X canonical paths can be included in the EDP
solution, and for every node not included in S at most A canonical paths can be included in the
solution, we have

Y < X|S| + (n — |S))A + N, (1)

where N, is the number of demands routed along non-canonical paths. We dedicate the rest of
this section to proving the following.



Figure 3: Graph H constructed from G in Figure 2, X = 2.

Theorem 3

1. With probability 2/3, in any solution to our EDP instance the number of demands that are
routed along non-canonical paths is at most X + Xnl/(g — ).

2. With a high probability, EDP2MIS finds an independent set S.

3.1 Overview and Parameter Definitions

Due to the randomness in the construction of H, we first show in Section 3.2 that not many terminal
pairs can be routed along non-canonical paths. Recall that the girth of a graph is the length of its
smallest cycle. In a random graph such as H, not many cycles have small (i.e. polylogarithmic)
size. We introduce a girth-related parameter g, and define X to be exponential in g. (This in turn
implies that the size of H is exponential in in g.) We then show that the number of demands that
are routed on short non-canonical paths is small since any short non-canonical path will form a
short cycle with the corresponding canonical path. In addition, the number of demands that are
routed on long non-canonical paths is small since any long non-canonical path will make use of
many edges in H. We therefore show that IV, is small.

We then focus on the demands that are routed on canonical paths in Section 3.3. In the extreme
case of A = X, if we include ¢ and j in the set S then ¢ and j cannot be neighbors in F. This is
because, as stated in property H-2, every canonical path of ¢ meets with some canonical path of j
at every level of H, and therefore any EDP solution cannot include all X canonical paths of ¢ and
X canonical paths of j. Under our choice of A which is a logarithmic fraction of X, we show that
for a fized set of A canonical paths of ¢ and a fized set of A canonical paths of j, the probability p
that none of these paths meet is small. Recall that in our construction we created c levels in the
graphs. This means that if two neighboring 7 and j are included in S, their canonical paths must
not meet at each of the ¢ levels. By the independence property H-3 this happens with probability
p°. We then apply a union bound to show that for any set of A canonical paths of ¢ and any set of
A canonical paths of j, the probability p that none of these 2A paths meet is small.

We now discuss our parameter choices. The relationship among the parameters is fairly intricate.
However, we attempt to give a high level idea of our choices here. We need X to be quasipolynomial
in n in order to keep the number of demands that can be routed on short non-canonical paths small.
For a given X, when A is close to X, the probability p as discussed in the previous section is desirably
small. However, the bound (1) on the EDP solution Y also gets loose. As we explain at the end of
Section 4, in order to get a logarithmic hardness of EDP, A needs to be a logarithmic fraction of
X or smaller.

Given A, we use the c¢ repetitions in the graph construction to make sure the probability p°©
is sufficiently small in the canonical path analysis. Meanwhile, although a larger ¢ favors the
probabilistic analysis, ¢ also lower bounds the girth parameter g we need Theorem 3, item 1 to hold



and so g > ¢ = 3Ac. Since X is exponential in g and the size of the EDP instance is polynomial in
X, g and therefore ¢ are polylog(n) in order to get a quasipolynomial reduction.

The value of A is constrained in a number of places. We need A to be large since the hardness
of the MIS instance depends on A. However, as mentioned above g > 3Ac and g is polylog(n).
Hence A cannot be larger that polylog(n). We expand on this discussion in Section 4.

We now define the parameters precisely.

g = log¢ n for some constant ¢ > 0 (2)

X = g(4ng)’™ (3)
o

_ 4

i 3(6+ 1) @
X

A= oAx )

¢ = 37y(loglog X)log” X (6)

. lo gn
A = min{log? X —1,,/g/(9c)} = © (m) (7)

3.2 Bounding the number of non-canonical paths

We now show that not many terminals can be routed on a non-canonical path. The key insight
is that by our random construction, H is almost a high-girth graph. In particular, we use the
following lemma whose proof is extremely similar to that of the Erdds-Sachs theorem [7] (which
states that high-girth graphs exist).

Lemma 4 Consider a random graph with v nodes and let {eg,e1,...,e.—1} represent a set of k < g
potential edges. If,
Prleg existsleq, ..., eq.—1 exist] < p,

for all such sets of edges then the expected number of cycles of fized length g’ < g is at most (I/p)g/.
This implies that with probability %, the number of cycles of length less than or equal to g is at most
3(vp)Itt.

v!

Proof: The total number of potential cycles of length ¢’ is at most %ym' Fach such cycle

occurs with probability at most p9. Therefore, the expected number of cycles of length ¢’ is at
most,
vlpd /
[ 9.
29'(v —g')! — o)
This implies that the expected number of cycles of length less than or equal to g is at most,

9

> (wp)? < (vp)Tt.

g'=1

By Markov’s inequality, with probability % the number of cycles of length at most g is at most
3(vp)ot. O

Proof of Theorem 3, item 1: The number of nodes in the graph H is at most 2Xnf. The
probability that a potential edge in H exists equals 1/X since we construct H using matchings



of size X. Even if g edges are fixed in H, the probability that some other edge exists is at most
1/(X — g). Hence we can take v = 2Xnf and p = 1/(X — g). Since X is exponentially larger than
g, we can bound vp by 4nf. Therefore by Lemma 4, with probability 2/3, the number of cycles of
length less than or equal to g is at most 3(4nf)9+1!.

It is easy to verify that the graph H has maximum degree 3. Therefore, each node is within
distance g of at most 39 other nodes. This implies that with probability 2/3 the number of nodes
that are within distance g of a cycle of length less than or equal to g is at most g - 39 - 3(4nf)9+!,
which equals

g(12n0)9+L,

We are now ready to count the demands that are routed on non-canonical paths. Consider a
demand with source node s; ,, that has canonical path P; , but which is routed on a path Q # P; ;.
Since P;, and @ are two nonidentical paths between the same pair of nodes, it is clear that the
union of P;, and @ must contain a cycle. There are two cases to consider.

e Case 1. Node s;, is within distance g of a cycle of length less than or equal to g.

e Case 2. Node s;, is not within distance g of a cycle of length less than or equal to g. Note
that the union of P; ; and () must contain more than g edges; otherwise s; , would be within
distance g from a cycle of length less than or equal to g.

By our previous analysis, with probability 2/3, Case 1 can be true for at most g(12nf)9+! source
nodes. Since ¢ = 3cA by definition and 9cA < g due to (7), we have g(12nf)9T! < g(4ng)9+! which
equals X by definition (3). If Case 2 holds then since P;, has length at most ¢, path  must have
length at least g — ¢. Since the graph H has at most Xnf edges, the number of edge-disjoint paths
of length at least g — ¢ is at most Xnf/(g — ¢). Theorem 3, item 1 follows. O

3.3 Proving that S is an independent set with high probability

Let C; be the set of canonical paths corresponding to node i in F. For two nodes ¢ and j that are
neighbors in F let I be a subset of C; of size A and let J be a subset of C; of size A. Recall that
the relationship “meets at level k” induces a matching between C; and Cj;. If A is large enough
we would expect some path in I would meet a path in J at level k. More formally, we say that a
bad event B(i, j, I, J, k) occurs if and only if there do not exist paths in I and J that meet at level
k. We now analyze the probability of event B(i, 7,1, J, k) (where the probability is with respect to
the random construction of the graph H).

Lemma 5 ,
A
Pr(B(i,j,1I,J,k) occurs] < e” X .

Proof: The number of matchings between C; and C; at level £ is X!. The number of matchings
for which no path in I meets a path in J is equal to (X —A)(X —A—-1)... (X =24+ 1)(X - A)L
Hence,

Pr[B(i,j,1,J, k) occurs]
(X-—AX-A-1)... (X -24+1)
X(X-1)...(X-A+1)

(552
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Let B(i,j,1,J) be the bad event that B(i,j,I,J, k) occurs at all levels k. By property H-3, the
event that two paths meet at level k is independent of the event that they meet at level k' # k.

We immediately have,
2

Pr(B(i,j,I,J) occurs] < e

Let B(i,j) be the bad event that there exist sets I and J of size A such that B(i,j, I, J) occurs.
There are (§)2 choices for the sets I and J. Therefore,

A

€X2A_£
5(7) e ¥

A2
e2A(log X+1-log A)—% )

2
X ca?
Pr[B(i, j) occurs] < ( ) e %

Finally, let B be the bad event that B(i,j) happens for some pair of neighboring nodes (7, j). By
a union bound,

'A2
Pr[B occurs] < n2e?Alog Xt1-log )=

By the definitions of A in (5) and ¢ in (6) we can rewrite the above probability bound by

9 _ yXloglog X—2X
Pr[B occurs] < n®-e log7 X

By the definition of X in (3), % is w(logn). Hence,

Lemma 6 For the parameters chosen in (2)-(7), the bad event B does not happen with probability
1 —1/poly(n).

Recall our algorithm, EDP2MIS described in Section 3, for finding an independent set for F
from a set of edge-disjoint paths in H. We first verify that the set S defined by EDP2MIS is
indeed an independent set of F with high probability. If nodes ¢ and j are neighbors in F, the
probabilistic analysis in the previous section states with high probability, any set of A paths in C;
and any set of A paths in C; will intersect at some level £ in the graph H. Therefore, it is unlikely
that both 7 and j have at least A paths in a solution to the EDP instance on H. As a result, it is
unlikely that both ¢ and j belong to the set S. Therefore, Lemma 6 is a restatement of Theorem 3,
item 2.

4 From EDP to 3SAT

Finally, we define an algorithm for satisfiability, which we call EDP2SAT, as follows. Given a
3CNF formula 1, we first use the reduction from Theorem 1 to create an instance of MIS, namely



F, with polylogarithmic node degree A, as defined in (7). We then use the construction described
in Sections 2.1 and 2.2 to create an instance of EDP, namely H. Suppose that the optimal solution
to the EDP instance is Y,,; and we have a B-approximation algorithm that produces a solution of
size Y. From Y, the algorithm EDP2MIS defines a set S.

e We declare v unsatisfiable if S is an independent set and Y < X Z; /3, where Z; was one of
the parameters defined in Theorem 1 and X is defined in (3).

e We declare 1) satisfiable otherwise, i.e. if S is an independent set and Y > X7, /f, or if S is
not an independent set.

Theorem 7 For any constant a > 0, there is no A'=%/3 approzimation for EDP unless NP C
ZPTIM E(nPoW!oe(),

Proof: Suppose there is a 3 approximation for EDP where 3 < A'~%/3, and this approximation
algorithm finds Y edge-disjoint paths in H. If the 3CNF formula v is satisfiable, then F has an
independent set of size at least Z; by Theorem 1. Since the canonical paths corresponding to
this independent set are edge disjoint by property H-1, we have Y,,; > Z;X. A [-approximation
algorithm for EDP guarantees Y > Y,/ > Z;X/3. Hence we always declare 1 to be satisfiable.

If v is unsatisfiable, then by Theorem 1 the graph F has an independent set of size more than
Zy with probability at most 1/poly(|1]). Therefore by Theorem 3, with probability more than 1/2
the following two events both occur:

e S is an independent set with size at most Z,.
e At most X +Xnl/(g—¥) demands are routed along non-canonical paths in the EDP solution.

Now suppose 1 is unsatisfiable and the above two events both occur. We now show that we always
declare v to be unsatisfiable. From (1) we have,

Y < X|S|+(n—|S)A+ X+ Xnl/(g—¥)
< (X —A)Zy+nA+ X1 +nl/(g—1))

= XZ5(1—-log7 7 X)+ Xlog7™7 Xn
+X(1+nl/(g—1)). (8)

The second inequality follows from the fact that |S| < Zs and the equality follows from the definition
of A in (5). We proceed to show that every term in the above is at most XZs. One simple
algorithm for finding an independent set for a graph with degree A is to iteratively choose any
remaining node and eliminate all its neighbors. This algorithm guarantees an independent set
of size at least n/(A + 1). Hence, Z3 > n/(A + 1). In addition, A < log” X-1 due to (7).
We therefore have Zy > nlog™" X. Since A < +/g/(9¢) due to (7) and ¢ = 3Ac, we also have
Ty > AL—H 21—1—%:1—1—@% 21+g"—_2. Therefore,

33Xz, X7y
Y X7y <
<3 2 < Al—a < 3

Hence we declare 1 to be unsatisfiable.
Note that the size of H is nPoWos() — |ypolvloe(Wl)  If 3 < A'=®/3 we have described a
coRTIM E(nP¥1°8(")) procedure® that solves 3SAT. By a standard result, if NP C coRTIM E(nPolos(n)

3When we write complexity classes such as coRTIME (7”LpO1ylog<"))7 n simply denotes a parameter. It is not meant
to refer to the number of nodes in F.



then NP C ZPTIME(nP°Y°s("))  Therefore, unless NP C ZPTIM E(nP°Y1°8(")) there is no
A'=%/3-approximation for EDP. O

Finally, let us express A'~%/3 in terms of M, where M < Xn/ is the number of edges in H.

Since g = log?n, we have log X = @(10g¢>+1 n) and log M = O(log‘z’Jrl n). Since v = 3(#%, the

definition of A implies A = min{log” X — 1,/¢/(9¢)} = Q(log% n/v/loglogn). Hence, Al=% =
a _¢ __ _2¢a
Q ((log n)%_%), which is €2 <(log M)30+D 730+ ) By choosing ¢ large and « small we have,

Theorem 8 For any constant € > 0, there is no O(logé_6 M) approximation algorithm for the
undirected Edge-Disjoint Paths problem unless NP C ZPTIM E(nP°¥le(®)),

Now that we have completed our proof let us look at the parameter choices again, in particular
how A and A are chosen. We require A < % — 1 when upper bounding the second term of (8).
We also require A < /g/(9¢) when upper bounding the third term of (8). Since g is polylog(X),
A can be at most polylog(X). Since the inapproximability of EDP is A®PM g larger A is better.
Therefore we choose A and A so that both % and A are polylog(X).

5 Related problems

In this section we discuss the extent to which our result applies to other routing problems.

5.1 All-or-Nothing Multicommodity Flow

All-or-nothing multicommodity flow is a relaxation of EDP in which each demand is allowed to
be routed on fractional paths subject to the constraint that the total demand routed through an
edge is at most 1. The objective is to maximize the number of demands for which the entire
demand is routed. Our hardness result is easy to adapt to this relaxed problem. Recall that for
the algorithm EDP2MIS we partition the routed demands according to whether or not they were
routed on canonical paths. For the All-or-Nothing problem we partition the demands according to
whether or not strictly more than half of the demand is routed along the canonical path. Clearly,
if two demands have strictly more than half of their demand routed along their canonical paths
then these paths are edge-disjoint. Therefore, if 1 is not satisfiable our analysis in Section 3.3
immediately implies that with high probability there are at most X Z5 + (n — Z3) A demands of this
type. Moreover, the analysis of Section 3.2 implies that with high probability, the total amount
of demand that can be routed along non-canonical paths is at most X + Xnl/(g — £), even if this
demand is routed fractionally. Therefore, the total number of demands for which at least half the
demand is routed along non-canonical paths is at most 2(X + Xnl/(g—¥)). It is now easy to adapt
the arguments of Section 4 to obtain,

Theorem 9 For any constant € > 0, there is no O(log%_‘E M) approximation algorithm for All-or-
Nothing Multicommodity Flow unless NP C ZPTIM E(nPoWloe(),

We remark that Chekuri et al. presented a polylogarithmic approximation for this problem in [5].

5.2 Node-Disjoint Paths

In the undirected Node-Disjoint Paths (NDP) problem we wish to route as many demands as
possible on node-disjoint paths. Our reduction for EDP applies directly to NDP. Note that any set

10



of node-disjoint paths is also edge-disjoint. Therefore, for any node-disjoint solution in H, we can
apply the algorithm EDP2SAT to determine if the 3CNF formula ) is satisfiable. If 1) is satisfiable
then there are Z;X demands that can be routed on canonical paths. It is easy to see that in
our construction these canonical paths are node-disjoint as well as being edge-disjoint. If ¢ is not
satisfiable then the maximum number of demands that can be routed using node-disjoint paths is
no bigger than the maximum number of demands that can be routed using edge-disjoint paths.
Therefore, our analysis shows,

Theorem 10 For any constant € > 0, there is no O(log%_6 M) approximation algorithm for the
undirected Node-Disjoint Paths problem unless NP C Z PTIM E(nP°¥log()),
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A Hardness of Maximum Independent Set on Bounded-Degree
Instances

In this section we prove Theorem 1 which states that the Maximum Independent Set problem is
hard to approximate to within A~ in graphs of degree A = f(n) where f(-) is a polylogarithmic
function and « is an arbitrarily small constant. Our proof is a minor extension of the result in [22]
which shows a similar result for graphs of fixed degree A.

The reduction uses a PCP characterization of NP. We consider a verifier that is given a 3CNF
instance v and oracle access to an alleged proof P that v is satisfiable. After examining v the verifier
tosses O(log |¢|) random bits and makes a series of queries into the oracle proof. On receiving the
answers to these queries the verifier decides whether or not to accept. The completeness of the PCP
is the minimum probability that the verifier accepts when ) is satisfiable. The soundness of the
PCP is the maximum probability that the verifier accepts when 1 is not satisfiable. A configuration
of the PCP is the specification of the random string together with the values of the bits of the proof
that are read by the verifier when using that random string. We make use of the following result
from [20].

Lemma 11 For every p > 0 and every k > 0 there is a PCP characterization of NP with the
following properties:

o The verifier has completeness 1 — u, soundness 2k 4 w and queries 2k + k2 bits.

22k

e For each random string there are satisfying configurations.

e For each random string and for each bit that is read, the number of accepting configurations
where the bit is zero equals the number of accepting configurations where the bit is one.

In the following we let 7 = O(log |¢|) be the number of random bits used in the PCP and we set
w= 27k We use % as a lower bound on the completeness.

We now consider A\ independent repetitions of the above PCP. In this case the number of
random bits is Ar, the number of bits queried is A\(2k + k?), the completeness is reduced to 2% and
the soundness is reduced to 2* - 27 7.

We now apply the well-known FGLSS [8] reduction to this PCP. This reduction creates a graph
with one node for each accepting configuration. Two vertices are connected by an edge if and only
if the configurations are inconsistent (i.e. they assign different values to the same bit in the proof).
In our case, when we apply the FGLSS reduction we obtain a graph F with n = 22 (r+2k) nodes such
that if v is satisfiable then F has an independent set of size 2% - 22 whereas if 1 is not satisfiable
then F has no independent set of size greater than 2* - 9 Ak A,

For each index ¢ in the proof let O; be the set of vertices in F where index ¢ is queried and
the answer is 1 and let Z; be the set of vertices in F where index 7 is queried and the answer is 0.
Let n; = |O;|. By the third property of Lemma 11 we also have n; = |Z;|. The graph F contains
a complete bipartite graph between the nodes in O; and the nodes in Z;. It is easy to see that F
consists of precisely the union of these complete bipartite graphs.

We now replace each of these bipartite graphs with a low-degree expander. In particular, by a

simple probabilistic argument that is similar to the analysis in Section 3.3 we have,

Lemma 12 Consider a random 0-reqular bipartite graph with n; nodes in each partition. (Such a
graph can be constructed by taking 6 random bipartite matchings). We say that this graph is bad
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if there exist sets A, B such |A| > cng, |B| > cn; and A and B are not connected by an edge. If
6= %log% then the probability that the graph is bad is at most,

e—nic(log %—2) )
We replace every bipartite graph between sets O; and Z; with a random d-regular graph. Recall
that the number of bits that are queried for each random string is A(2k + k2). Therefore the total
number of bits that could be queried is at most 22" \(2k + k?). We can also assume without loss
of generality that n; > 2/2 since if not the verifier could always toss additional random bits and
then not use them in its computation.

Lemma 13 The probability that one of the bipartite graphs is bad is at most,
2VN(2k + k2)emH Pellor =),

Suppose now that for all ¢ the bipartite graph between O; and Z; is good. Note that the
maximum independent set in the new graph can only be bigger. Moreover, for each 7 an independent
set either contains at most cn; nodes from O; or at most ¢n; nodes from Z;. Therefore we can remove
at most ), cn; nodes from the independent set in the new graph to get an independent set in the
original graph which used complete bipartite graphs. Since each accepting configuration belongs
to at most A(2k + k?) sets of the form O; or Z;, we have 3, cn; < cA\(2k + k?)n.

We set ¢ = 2’\(1_k2+r)/)\(2k+k2)n. The above argument shows that it is hard to decide whether
the new graph has an independent set of size 2%2’\7’ or whether all independent sets have size less

than 2% . 27X .2 | cA\(2k + k?)n. The latter expression is at most 2M2-F*+7) The “gap” between

these two quantities is given by,
H =23,

Our other important parameters are:
¢ = 22F=2k) \ (9 4 k?)
= 3A(2k + KH)2F 21 L\ (k2 4 2k — 1) + log(A (2K + &2)))

n oA(r+2k)

Since each accepting configuration involves A(2k + k2) queries the maximum degree in the graph
G is at most A := A\(2k + k?)§. For sufficiently large k and for any A we have,

A < 3N3(2k + k2)2AFHED (12 4 ok — 1+ log(A(2k + k2)))
< 420 (3(2k 4+ K)H)2AFHRD (X 4 k2 4 2k — 1+ log(2k + k2))
< 2A2k2,\(k2+2k—1)2,\2k
< 2)\(k2+6k—1)‘

For any fixed o > 0 we choose k such that k> —3 > (1 — a)(k? + 6k — 1). Now consider an
increasing function f(-). If we can choose A such that,

_ A(r+2k)
A= e log(F(2NF), )
then,
A < f(n)
H > Al7e
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If f(-) is a polylogarithmic function then Equation 9 is satisfied for A = ©(loglog|i|). For this
choice of X\ the error probability from Lemma 13 is at most 1/poly(|1)|) and the number of nodes
in the graph G is n = 2X\("F2k) — || Ooglog[¥]),

Theorem 1 Let f(-) be a polylogarithmic function. For any constant o« > 0 there is a ran-
domized |¢|®(1°g1°g|¢|) time reduction from a SCNF formula ¢ to a graph F with n = |¢|®(1°g1°g|¢|)
nodes and maximum degree at most A = f(n) such that for two parameters Zy and Zy < Z1 /A9

o [f the v is satisfiable then F has an independent set of size Z1.

e If 1 is not satisfiable then with probability 1 — 1/poly(|Y)|) the maximum independent set in
F has size at most Zs.
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