
Discrete Mathematics and Theoretical Computer Science (subm.), by the authors, 26–rev

The Master Ring Problem

Hadas Shachnai1 and Lisa Zhang2

1Computer Science Dept., Technion, Haifa 32000, Israel.
2Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.

received 20 Feb 2005, revised 25th April 2005, accepted tomorrow.

We consider the master ring problem (MRP) which often arises in optical network design. Given a network which
consists of a collection of interconnected rings R1, . . ., RK , with n1, . . ., nK distinct nodes, respectively, we need to
find an ordering of the nodes in the network that respects the ordering of every individual ring, if one exists. Our main
result is an exact algorithm for MRP whose running time approaches Q ·∏K

k=1(nk/
√

2) for some polynomial Q, as the
nk values become large. For the ring clearance problem, a special case of practical interest, our algorithm achieves this
running time for rings of any size nk ≥ 2. This yields the first nontrivial improvement, by factor of (2

√
2)K ≈(2.82)K ,

over the running time of the naive algorithm, which exhaustively enumerates all ∏K
k=1(2nk) possible solutions.

Keywords: Master ring, shortest common supersequence, optical networks, exact algorithms.

Contents

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Main Result . 3

2 Algorithm 4

3 Analysis 6

4 Relation to Other Problems 10
4.1 Shortest Common Supersequence . 10
4.2 Feedback Arc Set . 11

5 Open Problems 11

1 Introduction
1.1 Problem Statement and Motivation
The prevalence of SONET (Synchronous Optical NETwork) technology has made the ring a popular net-
work topology (13). To carry a demand between two nodes on a SONET ring, traffic is routed simultane-
ously clockwise and counter-clockwise, one as the primary path and the other as the backup path. Often

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

2 Hadas Shachnai and Lisa Zhang

an optical network consists of a collection of interconnected SONET rings. A master ring contains every
node in the network exactly once and respects the node ordering of every individual SONET ring. The
master ring problem (MRP) is to find such a ring, whenever it exists.

Formally, the master ring problem is defined as follows. Suppose that a network consists of K rings,
R1, . . ., RK , with n1, . . ., nK distinct nodes, respectively. Each ring has two orientations, clockwise and
counter-clockwise. We say that R is a subring of M (or M is a master ring of R) if either the clockwise
or the counter-clockwise orientation of R can be obtained from M by erasing zero or more nodes from M.
The goal is to find a master ring whenever it exists. Consider an instance of MRP as shown in Figure 1.
The network consists of 3 rings. R1 has the nodes abcde f , R2 has the nodes achg, and R3 has the nodes
ghcdi. A possible master ring is abghcde f i.

c

b

a

d

i

h

g

f

e

Fig. 1: An instance of MRP.

There are a number of reasons for finding master rings. For example, as a network evolves with growing
traffic, it expands from an initially small number of SONET rings, to include a large collection of rings.
Unfortunately, such expansion is often carried out in an ad-hoc manner, with circuits added and torn
down over time. As a result, the network may have unnecessarily complex topology that makes network
management a nightmare. To replace a spaghetti-like network, one simple topology is a master ring. Since
a master ring respects the node ordering of every existing SONET ring, it has the advantage of preserving
the routing label of every demand intra to an existing SONET ring. Indeed, a demand may traverse more
nodes around the master ring than around its original SONET ring; however, preserving the order in which
the SONET nodes are traversed allows to efficiently update the routing tables, rather than redefine from
scratch the Label Switched paths. (Such paths are used, e.g., in MPLS (14).) Even if the network is not
sought to be rebuilt, it still needs to handle the routine downtime, for purposes such as software upgrade.
A master ring can then serve as a simple backup topology. Providing a master ring (whenever possible)
to a network management system simplifies its operation and is therefore valuable (12; 1; 2).

We emphasize that the master ring can be viewed as a “logic” ring. That is, two neighboring nodes in
the ring do not need to be physically connected by links already existing in the network. (Such links can
be added once the master ring is set as a new/backup topology.) In addition, if two SONET rings Ri and
R j intersect then they have at least two nodes in common. This is because two common nodes can tolerate
one node failure when supporting a demand between a node in Ri and a node in R j.

One convenient way to represent the rings is to use sequences. Each orientation of a ring with n
nodes corresponds to n sequences, depending on the node with which the sequence starts. Figure 2
shows the sequence representation of the instance in Figure 1. For example, the ring R1 in Figure 2
has 6 clockwise sequences: abcde f , bcde f a, cde f ab, de f abc, e f abcd, f abcde and 6 counter-clockwise

Master ring 3

sequences: f edcba, edcba f , dcba f e, cba f ed, ba f edc, a f edcb. We also refer to each sequence as an
opening of a ring. We say that S is a subsequence of T (or T is a supersequence of S) if S can be obtained
from T by erasing zero or more symbols from T . Therefore, R is a subring of M (or M is a master ring
of R) if some sequence that corresponds to R is a subsequence of a sequence that corresponds to M (see
Figure 2).

c

d

e

f

h

g

b

a

R2 R3R1

Master ring

a

c
h

cd

e

f

i

g

g

i

dc

h

b

a

Fig. 2: (Left) Three rings R1, R2 and R3. (Right) A possible master ring. For example, R1 is a subring since its
clockwise sequence abcde f is a subsequence of the sequence abghcde f i corresponding to the master ring; R2 is a
subring since its clockwise sequence aghc is a subsequence; R3’s counter-clockwise sequence ghcdi is a subsequence.

Given K sequences, each with any symbol appearing at most once, we note that it is easy to find a
supersequence that contains each symbol once, if one exists. We construct a directed graph G = (V,E),
whose vertex set consists of the symbols in the K sequences and whose edge set consists of directed edges
of the form (a,b), where a appears immediately before b in a sequence. Recall that a topological sort of
a digraph is any linear order on the vertices respecting the graph’s partial order. Hence, if G is acyclic
then a topological sort of G is a (minimum possible length) supersequence of all K sequences. Deciding
whether a digraph is acyclic and finding a topological sort are polynomially solvable (see e.g. (4)). Thus,
our main task is to determine a set of sequences which can be represented as an acyclic digraph (whenever
such a set exists). This is the focus of the paper.

1.2 Main Result

Our main result (in Section 2) is an exact algorithm for MRP, whose running time approaches Q ·∏K
k=1(nk/

√
2)

for some Q that is polynomial in the input size, as the nk values become large. For the ring clearance
problem, a special case of practical interest, our algorithm achieves this running time for rings of any size
nk ≥ 2 (see in Section 3). This yields the first non-trivial improvement, by factor of (2

√
2)K ≈ 2.82K, over

the naive algorithm which exhaustively enumerates all ∏K
k=1(2nk) possible solutions (see, e.g., in (2)).

Our algorithm applies enumeration guided by an intersection graph of the network, which represents
the interconnections among the rings. The graph is used for identifying subsets of rings whose openings
leave only a few consistent openings for all other rings, thereby decreasing the remaining number of
enumeration steps. While enumeration alone is inefficient, and using the intersection graph alone may
result in a false solution for our problem (see in Section 2), we show that combining the two yields a
significant improvement in running time, and guarantees that a master ring will be found, if one exists.

4 Hadas Shachnai and Lisa Zhang

We believe that similar techniques can be used in solving exactly other related problems, such as shortest
common supersequence (SCS) and feedback arc set (FAS) and their variants. (See in Section 4.)

e

f

b

c
d

u

w

v

a

Ru

e

f

d
Rw

Rv

a

b

c

Fig. 3: (Left) An instance of MRP: Ru consists of nodes abcd, Rv consists of cde f and Rw consists of be f a. (Middle)
The intersection graph H. (Right) Ru, Rv and Rw induce a large ring.

2 Algorithm
A naive solution for MRP is to enumerate all possible sequences for each ring and find if there is a topo-
logical sort for each resulting directed graph. Obviously, trying the total of ∏1≤k≤K(2nk) possibilities
suffices to solve the problem; the running time is P · ∏1≤k≤K(2nk), where P is the polynomial time re-
quired for topological sort. We describe below an algorithm which avoids enumerating some of these
possibilities, by using the intersection graph of the network.

Before we apply our algorithm, we first eliminate all singleton nodes from each ring, i.e. those nodes
that appear only in one ring. If node a is a singleton, then a can be ignored when constructing the master
ring. Indeed, if a master ring exists without a, then a may always be added to the master ring. From now
on we may assume without of loss of generality that every node appears in at least 2 rings.

We construct an undirected intersection graph H that shows how the rings are interconnected. The
graph H consists of K vertices, each corresponding to one of the K rings. If two rings share common
nodes, then there is an edge between their corresponding vertices in H. For clarity, we use vertices and
edges when referring to the elements in the graph H and nodes and links – when referring to the elements
of a ring. We also use letters near the beginning of the alphabet (such as a, b, c and d) when referring to
nodes in a ring and letters near the end of the alphabet (such as u, v and w) when referring to vertices in
H. For a vertex u in H, we use Ru to represent the corresponding ring. (See Figure 3 for an example.)

Our algorithm is motivated by observations that we detail later. Consider a vertex u in H. If Rv is
already opened, and v is a neighbor of u, then the number of consistent openings of Ru is limited. (We say
that a set of sequences are consistent if they have a supersequence.) For example, suppose that Ru and Rv

have in common the nodes a and b, and Rv orders a before b; then, Ru would have to as well.
We note, however, that even if any two neighboring rings have consistent openings, it does not nec-

essarily imply consistent openings for all rings. Consider the instance of Figure 3. When Ru is oriented
clockwise, and Rv, Rw are oriented counter-clockwise, they induce a large ring abcde f . If Ru corresponds

Master ring 5

Algorithm AMR

0 Eliminate singleton nodes from R1, . . . ,RK . Construct the graph H with vertex set V .

Phase 1. Low-degree vertices
1 N = L = /0.
2 While there is a low-degree vertex v ∈V −L−N

add vertex v to set L and its neighbors to set N.
3 For u ∈ N, try all possible sequences for Ru.
4 For v ∈ L with x neighbors, try at most x possible sequences for Rv.

(See Lemma 1.)

Phase 2. Dominating set
5 Find a dominating vertex set D for the vertices v ∈ H such that v ∈V −L−N.
6 For u ∈ D, try all possible sequences for Ru.

Phase 3. Remaining vertices
7 Let C = V −L−N−D.
8 For u ∈C, try a total of y|C| combinations of sequences for Ru,

where y is given in Lemma 5.
9 For each combination of sequences for vertices in N ∪L∪D∪C,

find a supersequence T using topological sort.
10 If T exists, a master ring is found. Algorithm terminates.

11 Output no master ring exists.

Fig. 4: The master ring algorithm AMR.

to the sequence abcd, Rv corresponds to cde f , and Rw corresponds to e f ab then no opening of this induced
ring contains the three sequences as subsequences. Therefore, these three openings cannot be consistent
with one another. However, any two of these openings are consistent. (See Figure 3, Right). If, instead, Rw

has the opening abe f , then the three openings are consistent and have a master ring abcde f . The example
in Figure 3 shows that we cannot use the graph H alone for determining good openings for all rings, since
this graph indicates only the ‘local’ dependencies among the rings. To guarantee that no induced rings
remain in the network after we open R1, . . . ,RK , we use the properties of the graph H only as guidance for
the algorithm.

In our algorithm, AMR, we identify a low-degree vertex u in H and enumerate all possible openings of
u’s neighbors. Since u has low degree, relatively few rings are opened, but this dramatically limits the
number of consistent openings of Ru. (See Lemma 1.) When H has only high-degree vertices, we find a
dominating set, where a dominating set consists of vertices that are neighbors to every vertex not in the
set. We can find a small dominating set in a graph with high degree vertices. By enumerating all possible
openings for the (small number of) vertices in the dominating set, we can reduce the number of consistent

6 Hadas Shachnai and Lisa Zhang

openings for each remaining vertex by a constant factor. (See Lemma 5.) In our algorithm we define low
and high degree vertices through a parameter δ; we set δ = logn/c, where c ≥ 3 is some constant. If a
vertex u ∈ H has degree lower than δ then u is a low-degree vertex. A pseudocode of algorithm AMR is
given in Figure 4.

3 Analysis
For simplicity of exposition, we assume throughout the analysis that all of the rings are of the same size,
n. Later, we show how the analysis extends to rings of arbitrary sizes.

In the following we show the correctness of algorithm AMR. Certainly, if the algorithm finds a sequence
T that is a supersequence for some opening of every ring Rk, where 1 ≤ k ≤ K, the master ring can be
defined by T . However, since our algorithm does not exhaustively enumerate all of the 2n openings of
each ring, if it does not find a supersequence we need to verify that we have not missed any opening that
could have lead to a supersequence. We start by analyzing the first phase.

Lemma 1 If a vertex v ∈ L has x neighbors in H, and each neighbor is opened (i.e. is given a sequence),
then at most x sequences of v can be consistent with the x neighboring sequences.

Proof: Let u be a neighbor of v and Su be the sequence representing the opening of the ring Ru. Consider
the subsequence Tu of Su that consists of the nodes common to Ru and Rv. Let au be the first symbol in
Tu. Since we have no singleton nodes, we know that

�
u Tu contains all the nodes in Rv. Therefore, if

Sv begins with a node in Tu for some neighbor u, then Sv has to begin with au; otherwise, Sv cannot be
consistent with Su. Furthermore, if Sv starts with au it has to follow the direction dictated by Tu. If Tu

consists of 3 or more nodes, then this direction is unique. If Tu consists of 2 nodes, then either clockwise
or counter-clockwise direction could be consistent. We examine the two neighboring nodes b and c of au

on ring Ru that are not in Tu. For Sv to start at au and continue with b, b has to be the first node in some
other subsequence Tu′ for some neighbor u′, or Sv cannot be consistent with Su′ . In addition, if both b and
c are the first nodes of some subsequences, no matter which direction Sv takes, Sv cannot be consistent
with both. Therefore, Sv can only start with one of at most x nodes and for each starting node there is only
one possible direction. 2

From Lemma 1, in Line 4 of the algorithm we try at most δ sequences for any ring Rv, such that v is a
low-degree vertex in H. This allows us to bound the running time of Phase 1.

Lemma 2 The running time of Phase 1 is at most (1 + o(1))
nk̂

2k̂(c−2)
where k̂ = |L|+ |N| is the total

number of vertices dealt with in this phase.

Proof: It is easy to see that the number of combinations that Phase 1 tries is bounded by (2n)|N|x|L|,
where x ≤ δ. However, to execute Line 4 we need to determine the orientation for each of the x potential
openings of a ring. This can be done in time O(αx|L|) for some constant α using the procedure described
in Lemma 1. Therefore, the outer loop in our algorithm, Phase 1, takes at most (2n)|N|(αx|L|+ x|L|),
which is (1+o(1))(2n)|N|δ|L|. Note that the o(1) term is a function of the ring size n and c,

Let us look at the running time more closely. Let k̂ = |L|+ |N| be the total number of vertices handled
in Phase 1. Since L consists of vertices with degree lower than δ, we have |L| ≥ k̂/δ and |N| ≤ k̂(1−1/δ).

Master ring 7

Therefore,

(2n)|N|δ|L| = n|L|+|N|
(

δ
n

)|L|
2|N| ≤ nk̂

(

δ
n

)k̂/δ
2k̂(1− 1

δ) = nk̂2k̂(logδ
δ −c)2k̂(1− 1

δ) ≤ nk̂

2k̂(c−2)
.

2

Let us bound the size of the dominating set D in Phase 2.

Lemma 3 |D| ≤ |V −L−N| · 1+ln(1+δ)
1+δ .

Proof: We first prove the next claim, which generalizes a result in (3). Let G = (V,E) be a graph, such
that all the vertices in V ′ ⊆V have degree at least s. Then there exists a subset of vertices V ′′ ⊆V ′ of size
at most |V ′| 1+ln(1+s)

1+s , such that U = (V \V ′)
�

V ′′ is a dominating set for G.
Consider the following Greedy algorithm. (i) We start by adding all the vertices in V \V ′ to U . (ii) Let

W be the set of vertices in V ′ that are not in U and do not have a neighbor in U; While |W | > |V ′|/(s+1)
do: Find a vertex v ∈ W such that v has a maximal number of neighbors in W ; add v to U . (iii) Add the
vertices in W to U .

Clearly, U is a dominating set for G. To bound the size of V ′′, we first note that, by an averaging
argument, since all the vertices in V \V ′ are added to U , the number of iterations until |W | ≤ |V ′|/(s+1)
is at most |V ′| ln(s+1)/(s+1). (A similar argument is given in the analysis of the deterministic algorithm
for the dominating set problem in (3); we omit the details.) Hence, we get that |V ′′| ≤ |V ′| ln(s+1)/(s+
1)+ |V ′|/(s+1). If we set V ′ = V −N −L and s = δ, our lemma follows directly. 2

The greedy algorithm in Lemma 3 takes time at most quadratic in K, the number of vertices in H. Hence,

Lemma 4 The running time of Phase 2 is poly(K)+(2n)|D|.

We now discuss how to efficiently find openings for the remaining vertices in C during Phase 3.

Lemma 5 The running time of Phase 3 is at most poly(K)y|C|, where y ≤
√

2(3 + n/2). Hence, the
running time of phase 3 is poly(K)(n/

√
2)|C|.

Proof: During Phase 3, every vertex u ∈C has some neighbor v in the dominating set D. By assumption,
Ru and Rv have at least 2 nodes, say a and b, in common. Any sequence of Rv defines an ordering of a
and b, i.e. a appears before b or after b. Among the 2n sequences of Ru, exactly n respect this ordering of
a and b. Any of the other n sequences that disrespect the ordering cannot produce a topological sort and
therefore need not be considered. We get that it suffices to enumerate at most n sequences for the ring Ru,
for any u ∈C.

We can further reduce the number of enumerations using the pairing algorithm described below. Instead
of directly enumerating n possible sequences for Ru where u ∈ C, we pair up the sequences so that one
sequence in a pair begins with a node, say a, and the other sequence in the pair ends with the node a. We
refer to a as the pivot of the pair. (At most 3 out of the n sequences cannot be paired up with another
sequence.) More concretely, let us consider the following example. For u ∈ C, suppose the ring Ru has
6 nodes abcde f clockwise. Suppose that u’s neighbor v ∈ D has chosen a sequence for Rv in which b
precedes e. Therefore, any sequence for Ru needs to have b before e, else there is no topological sort.
Among the 12 possible sequences for Ru, the following 6 have b before e.

abcde f bcde f a f abcde dcba f e cba f ed ba f edc

8 Hadas Shachnai and Lisa Zhang

We pair up the 1st and 2nd sequences, abcde f and bcde f a, with pivot a, and pair up the 4th and 5th
sequences, dcba f e and cba f ed with pivot d. The 3rd sequence, f abcde, and the 6th sequence, ba f edc,
remain singletons.

We first enumerate the 3+n/2 groups (at most n/2 pairs and at most 3 unpaired singletons) for every
u∈C. This gives a total of at most (3+n/2)|C| possibilities. In the following we show that to determine the
actual sequence within each pair for any u ∈C, we do not need to try both possibilities. In fact, a total of
2|C|/2 trials suffices. Hence, the total number of trials is (3+n/2)|C|2|C|/2, which implies y≤

√
2(3+n/2).

For example, suppose ring Ru where u ∈ C has the above 6 possibilities and we are considering the
first pair with pivot a. Since a is not a singleton node, a necessarily appears in another ring, say Rw. If
the sequence for Rw is decided, then we necessarily know which sequence, abcde f or bcde f a, would be
good. This is because Ru and Rw must share a node other than a and let’s call this node c. Since a is a
pivot for Ru, if a appears before c for Rw then only the first sequence abcde f can be good; if a appears
after c for Rw then only the second sequence bcde f a can be good.

v

u

u

Fig. 5: Examples of the graph F . One possible solution for the graph on the left (right) is to circle the vertex u and
mark all other vertices cross. If vertex v in the middle graph is not in C then neither vertex is circled.

In general, we construct a directed graph F where each vertex corresponds to a vertex in C. We put a
directed edge from u to w if the pivot of u is a vertex in the ring Rw. If there are multiple such rings Rw for
u we choose an arbitrary one. As argued above, if there is a directed edge from u to w, then we only need
to enumerate the two choices in a chosen pair for Rw and and the choice for Ru is implied. We determine
which rings to enumerate as follows. We mark a cross on a vertex to indicate that the choice is implied
and we mark a circle on a vertex to indicate that we enumerate both possibilities. Initially, we mark a
cross on a vertex u if it has no outgoing edges. This means the pivot of u appears in some ring Rw that
belongs to L∪N ∪D. Hence, the sequence for Rw is already chosen and therefore the sequence for Ru is
implied. For each vertex u in F that is not yet marked, we follow the directed edges, starting from u, until
(i) we have reached a marked vertex (either with a circle or with a cross), or (ii) we stop right before the
path from u intersects itself, i.e., in a vertex z such that there is an edge (z,u). In the latter case, we circle
the vertex where we stop. In both cases, we also mark a cross on every (unmarked) vertex along the path.
(See Figure 5.)

It is easy to verify that the choice for each vertex with a cross can be implied from the choice for
some vertex with a circle. In terms of the running time, we observe that at most half of the vertices in
F can be circled, since each circled vertex needs at least one distinct vertex that has a cross. To mark
each vertex in F with a circle or cross requires visiting each vertex once. Hence, the time requirement is
linear in |C|. It follows that the running time of Phase 3 is at most poly(|C|)(3+n/2)|C| ·2|C|/2, which is

Master ring 9

poly(K)(n/
√

2))|C|. 2

From Lemmas 1 and 5 we see that although algorithm AMR does not enumerate all possibilities for the
vertices in L and C we do not miss out any potentially good opening. Our algorithm is therefore correct.
We bound the running time as follows.

Theorem 6 When the ring sizes n gets large, the running time of our algorithm AMR is (1+o(1))(n/
√

2)K ·
P ·Q, where P is the time needed for topological sort of K sequences of length n, and Q is a polynomial
in K.

Proof: It is easy to see that the overall running time is the product of the running times of the three phases
and P, the time for each topological sort. From Lemmas 2, 4 and 5, the overall running time is,

(1+o(1))
n|L|+|N|

2(|L|+|N|)(c−2)
· (poly(K)+(2n)|D|) · (poly(K)(n/

√
2)|C|) ·P.

We have,

n|L|+|N|

2(|L|+|N|)(c−2)
· (2n)|D| · (n/

√
2)|C| ≤ nK

2K/2
· 1

2(|L|+|N|)(c−2.5)2−3|D|/2
.

When the ring size n gets large, the value of δ is large and hence the size of the dominating set D ap-
proaches a small constant. When c > 2.5, the exponent of the second term in the above denominator
is positive. Hence, the above expression approaches (n/

√
2)K . Therefore the overall running time of

algorithm AMR is (1+o(1))(n/
√

2)K ·P ·Q. 2

We note that the naive algorithm that enumerates all 2n possibilities for each ring takes (2n)K ·P time.
Our algorithm essentially improves the term (2n)K to (n/

√
2)K .

Our algorithm achieves better running time for two important subclasses of inputs. Consider the sub-
class of sparse inputs: in the intersection graph of the rings, H, all the vertices are of low-degree. Thus,
our algorithm terminates after Phase 1. The following comes directly from Lemma 2.

Corollary 7 For any c ≥ 3, if the maximal degree in H is smaller than logn/c then the running time of
the algorithm is at most (1 + o(1))(n

2c−2)K . In particular, if the maximal degree in H is some constant

d ≥ 1 then the running time of AMR is (1+o(1))(n1− 1
d)K .

Consider now the subclass of dense inputs, where each node in the network appears in at least m rings,
for some m ≥ 2; then, in Phase 3 of our algorithm, we get that the remaining rings can be grouped to
‘clusters’ of size at least m. In each cluster we need to try the two possible openings of a single ring. (We
use as before the algorithm of Phase 3, with slight modifications. We give the details in the full version of

the paper.) This reduces the running time of Phase 3 to poly(K)(3+ n
2)|C| ·2

|C|
m .

Corollary 8 If each node in the network appears in at least m rings, for some m ≥ 2, then the running
time of the algorithm is at most (1+o(1))(n

2(1− 1
m)

)K .

10 Hadas Shachnai and Lisa Zhang

Ring Clearance. In the ring clearance problem, we need to “clear” R1 and reroute all the traffic through
the other rings. In order for such transition to occur, it is assumed that R1 intersects with each of the other
rings. In other words in the intersection graph H every vertex is a neighbor of the vertex w corresponding
to R1. Hence, {w} is a dominating set for all vertices in H. We only need to apply Phase 3 of our
algorithm. Using the simple analysis in Lemma 3, it is easy to see that any opening of R1 limits the
number of openings of any other ring to at most n. If we follow the more sophisticated pairing argument
in Lemma 3 we only need to try a total of (n/

√
2)K possibilities.

Corollary 9 The algorithm solves the ring clearance problem in at most (n/
√

2)K ·P ·Q steps, for rings
of any length n ≥ 2.

Rings of distinct lengths. The analysis for the case where each ring Ru has a distinct size, nu, is similar.
We remove the singleton nodes and create the intersection graph H as before. For Phase 1, we say that
a vertex u has low degree if it has fewer than δu = lognu/c neighbors. The running time of Phase 1 is at
most (1+o(1))∏u∈N(2nu)∏u∈L δu. Similar to Lemma 2 we deduce,

∏
u∈N

(2nu)∏
u∈L

δu ≤ ∏u∈L∪N nu

2(|L|+|N|)(c−2)
.

In Phase 2, we find again a dominating set D and we can bound |D| by |V − L−N| · 1+ln(1+δ)
1+δ , where

δ = minu δu. When all ring sizes nu get large, the size of D approaches a small constant. The running time
for Phase 2 is poly(K) + ∏u∈D(2nu). Finally, for Phase 3 we use the pairing algorithm as described in
Lemma 5 for the vertices in C, and the running time is poly(K)∏u∈C(nu/

√
2).

Theorem 10 For rings with distinct sizes, when the ring sizes get large the running time of algorithm
AMR is (1+o(1))∏u(nu/

√
2) ·P ·Q, where the o(1) term is a function of the ring sizes and c, P is the time

needed for topological sort of K sequences, and Q is a polynomial in K.

4 Relation to Other Problems
We briefly discuss how MRP relates to the shortest common supersequence (SCS) and feedback arc set
(FAS) problems. We defer the details of this section to the full version.

4.1 Shortest Common Supersequence
In SCS we are given K strings, S = {S1, . . . ,SK}, of lengths n1, . . . ,nK , over an alphabet Σ, where |Σ|= N .
We seek a supersequence T for S of minimum length. MRP defines the following natural variant of SCS.
A two-way cyclic permutation of a string allows cyclic shifts of the string in the forward and reverse
directions. For example, the string abcd has 4 forward shifts, abcd, bcda, cdab and dabc, and 4 reverse
shifts, dcba, cbad, badc and adcb. In the two-way cyclic SCS (2Cyclic-SCS) problem, we seek a string T
of minimum length, such that there exists a two-way cyclic permutation of each string S1, . . . ,SK in S that
is a subsequence of T . We say that T is a 2cyclic supersequence for S. A supersequence T of length N
corresponds to a master ring for the set of rings defined by S1, . . . ,SK .

The SCS problem is known to be hard to approximate. In particular, Jiang and Li (10) showed that there
exists a constant ε > 0 such that if SCS has a polynomial time approximation algorithm with ratio logε K,
then NP is contained in DTIME(2polylog(K)). The best known approximation ratio is K+3

4 , due to Fraser
and Irving (7). Middendorf considered in (11) a number of variants of SCS. This includes the Cyclic-SCS

Master ring 11

problem, in which the strings in S can be cyclically permuted in the same direction. The paper shows that
this problem is NP-hard. (Cyclic-SCS solves MRP in the case where each ring has a fixed orientation.) On
the other hand, Permutation-SCS, where each string Sk can be permuted to any one of the nk! possibilities,
is shown in (11) to be polynomially solvable for strings of any length. This implies that MRP can be
solved in polynomial time for inputs where nk ≤ 3, for 1 ≤ k ≤ K.

The hardness of 2Cyclic-SCS can be shown via a reduction from the vertex cover problem.

Theorem 11 Given m, it is NP-hard to determine if 2Cyclic-SCS has a solution at most m.

Our algorithm, AMR, can be combined with a dynamic programming algorithm for SCS (6; 9; 5) to yield
an optimal solution for 2Cyclic-SCS with a running time of O(N 2K ∏K

k=1 n2
k). Alternatively, we can find

a supersequence T of minimum length by guessing first the cyclic shift of each string in T ; we can then
solve the SCS problem using dynamic programming (see, e.g. (6)). The best known DP algorithm has
running time O(∏K

k=1 nk). Thus, we have,

Theorem 12 The 2Cyclic-SCS problem can be solved in O(
∏K

k=1 n2
k

2K/2
) steps.

4.2 Feedback Arc Set
MRP relates also to the feedback arc set (FAS) problem in directed graphs, which is known to be NP-
hard (8). Consider the special case of MRP in which the orientation for each of the rings is given. We
denote this oriented version MRPO . We can view MRPO as the following variant of FAS, that we call exact
subset FAS. We have a directed graph G = (V,E), and a set of K (directed) cycles in G, R = {R1, . . . ,RK}.
Let G′ = (V ′,E ′) be the subgraph induced by the vertices and edges in R. We seek a subset of K edges in
E ′ whose deletion leaves G′ acyclic, such that in each of the cycles R1, . . . ,RK we omit exactly one edge.
Such a subset of vertices exists iff we have a solution for the corresponding MRPO instance. Since we are
given the orientation for each of the rings, we can apply only Phase 3 of algorithm AMR. By finding a
master ring, we solve the exact subset FAS problem. Hence, we have

Corollary 13 For any K ≥ 1 and nk ≥ 2, for all 1 ≤ k ≤ K, exact subset FAS on the subgraph G′ induced
by K cycles of the lengths n1, . . . ,nK can be solved in P · (∏K

k=1 nk/(
√

2)K) steps, where P is a polynomial
of K.

5 Open Problems
Consider the following parameterized version of the Permutation-SCS. Each string Sk, 1 ≤ k ≤ K, is
associated with a subset of permutations, Πk, and we seek a supersequence T of minimum length, such
that there exists a permutation of Sk in Πk that is a subsequence of T . We call this problem Perm-SCS(Πk).
Indeed, the Cyclic-SCS problem is a special case of this problem, in which Πk is the set of nk cyclic shifts
of Sk, in a single direction. As shown in (11), this special case of the problem is NP-hard. We have shown
(in Theorem 11) that if we extend the permutation sets in the Cyclic-SCS, so that Πk is the set of cyclic
shifts in two directions (2Cyclic-SCS), the problem remains NP-hard. On the other hand, when Πk is the
set of all possible permutations of Sk (Permutation-SCS), the problem is solvable in polynomial time (11).
Determining whether Perm-SCS(Πk) is polynomially solvable on other classes of inputs remains an open
problem.

Finally, a natural variant of MRP which is of practical interest, is to identify a maximum subset of rings
for which we can find a master ring, in any given network.

12 Hadas Shachnai and Lisa Zhang

Acknowledgements
We thank an anonymous referee for helpful comments on the paper.

References
[1] S. Acharya, B. Gupta, P. Risbood, A. Srivastava. Hitless Network Engineering of SONET Rings, Globecom 2003.

[2] S. Acharya, B. Gupta, P. Risbood, A. Srivastava. In-service Optimization of stacked SONET Rings, submitted.

[3] N. Alon and J. H. Spencer. The Probabilistic Method, Second Edition. Wiley-Interscience, 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press and
McGraw-Hill, 2002.

[5] D. E. Foulser, M. Li and Q. Yang, A Theory of Plan Merging, Artificial Intelligence, 57, 1992, pp. 143–181.

[6] C. B. Fraser, subsequences and Supersequences of Strings. Ph.D. Thesis, Dept. of Computer Science, University
of Glasgow, 1995.

[7] C. B. Fraser and R. W. Irving , Approximation algorithms for the shortest common supersequence, Nordic J.
Comp. 2, 1995, pp. 303–325.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979.

[9] S.Y. Itoga, The String Merging Problem, BIT, 21, 1981, pp.20–30.

[10] T. Jiang and M. Li, On the Approximation of Shortest Common Supersequences and Longest Common Subse-
quences, SIAM Journal on Computing, 24(5), October 1995, pp. 1122–1139.

[11] M. Middendorf, More on the complexity of common superstring and supersequence problems, Theoretical
Computer Science 125 (1994), 205-228.

[12] Mobius network management and optimization systems. Lucent Technologies Proprietary. Internal website:
http://www-zoo.research.bell-labs.com/∼mobius/.

[13] R. Ramaswami and K. Sivarajan. Optical networks: a practical perspective. (Morgan Kaufmann Publishers
Inc., San Francisco, 1998).

[14] E. Rosen and A. Viswanathan Internet Standards for Multi Protocol Label Switching. In
http://www.ietf.org/rfc/rfc3031.txt

