
Source Routing and Scheduling in Packet Networks

Matthew Andrews

Bell Laboratories, Lucent Technologies

and

Antonio Fernández

LADyR, GSyC, Universidad Rey Juan Carlos, Spain

and

Ashish Goel

Department of Management Science and Engineering and (by courtesy) Department of

Computer Science, Stanford University

and

Lisa Zhang

Bell Laboratories, Lucent Technologies

This work was partially supported by DIMACS funding.

A preliminary version of this paper appeared in the Proceedings of the 42th IEEE Annual Sym-

posium on Foundations of Computer Science, FOCS 2001.
The work of Antonio Fernández was partially supported by the Spanish MCyT under grant

TIC2001-1586-C03-01, the Comunidad de Madrid under grant 07T/0022/2003, and the Universi-

dad Rey Juan Carlos under grant PPR-2004-42.
The work of Ashish Goel was partially supported by an NSF Career Award and an Alfred P. Sloan

faculty fellowship.
Authors’ addresses: Matthew Andrews, Bell Laboratories, M. Andrews, Bell Laboratories, 600-

700 Mountain Avenue, Murray Hill, NJ 07974, e-mail: andrews@research.bell-labs.com; Antonio
Fernández, Universidad Rey Juan Carlos, C/ Tulipán S/N, 28933 Móstoles, Madrid, Spain, e-
mail: antonio.fernandez@urjc.es; Ashish Goel, Stanford University, Stanford CA 94305, e-mail:
ashishg@stanford.edu; Lisa Zhang, Bell Laboratories, 600-700 Mountain Avenue, Murray Hill, NJ

07974, e-mail: ylz@research.bell-labs.com.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–21.

2 · Andrews et al.

We study routing and scheduling in packet-switched networks. We assume an adversary that

controls the injection time, source, and destination for each packet injected. A set of paths for
these packets is admissible if no link in the network is overloaded. We present the first on-line

routing algorithm that finds a set of admissible paths whenever this is feasible. Our algorithm

calculates a path for each packet as soon as it is injected at its source using a simple shortest path
computation. The length of a link reflects its current congestion. We also show how our algorithm

can be implemented under today’s Internet routing paradigms.

When the paths are known (either given by the adversary or computed as above) our goal
is to schedule the packets along the given paths so that the packets experience small end-to-end

delays. The best previous delay bounds for deterministic and distributed scheduling protocols were
exponential in the path length. In this paper we present the first deterministic and distributed

scheduling protocol that guarantees a polynomial end-to-end delay for every packet.

Finally, we discuss the effects of combining routing with scheduling. We first show that some
unstable scheduling protocols remain unstable no matter how the paths are chosen. However, the

freedom to choose paths can make a difference. For example, we show that a ring with parallel

links is stable for all greedy scheduling protocols if paths are chosen intelligently, whereas this is
not the case if the adversary specifies the paths.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—packet-switching networks; store and forward networks; F.2.2 [Anal-

ysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—

sequencing and scheduling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adversarial queueing theory, end-to-end delay, packet routing,
packet scheduling, network stability

1. INTRODUCTION

Two of the most important problems in the control of packet-switched networks
are routing and scheduling. The goal of routing is to assign a path to a packet from
its source to its destination. The goal of scheduling is to deal with the contention
that occurs when two or more packets wish to cross a link simultaneously. Each
link must have a scheduler that resolves this contention by deciding which packet
to advance.

The scheduling problem typically assumes that the paths of the packets are given
as part of the input. The goal is then to schedule the packets along their paths in
such a way that they all reach their destinations in a short time. Much recent work
has focused on the Adversarial Queueing Model, e.g. [Borodin et al. 2001; Andrews
et al. 2001; Gamarnik 1998]. We follow their convention and assume that all packets
are unit size and each link processes one packet per time step. In this Adversarial
Queueing Model, the adversary chooses the injection time, source, destination, and
route for each packet injected. A sequence of injections is called (w, r)-admissible
for a window size w and injection rate r < 1, if in any time interval of length w
the total number of packets injected into the network whose paths pass through
any link e is at most wr. These paths are also called (w, r)-admissible. Previous
work has examined the performance of a number of simple scheduling protocols
in this model. A packet scheduling protocol is said to be universally stable if
it guarantees bounded buffer sizes and packet transmission delays for any (w, r)-
admissible injections. In [Andrews et al. 2001] it was proved that several natural
protocols (Longest-In-System, Shortest-In-System, Furthest-To-Go) are universally
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 3

stable, whereas several others (First-In-First-Out, Last-In-First-Out, Nearest-To-
Go) are not.

In this paper we study both routing and scheduling. The adversary no longer
specifies the route of each packet; it merely specifies the source and destination.
However, we are guaranteed that (w, r)-admissible paths for the injections do exist.
The problem is now two-fold. We first need to find some (W,R)-admissible paths,
possibly for a different window size W and a different R < 1. These admissible paths
combined with a universally stable scheduling scheme, such as the ones in [Andrews
et al. 2001] or the one presented in Section 3 of this paper, result in a universally
stable protocol for routing and scheduling.

1.1 Source Routing for Stability

1.1.1 Our result.. In Section 2 of the paper we present the first online algo-
rithm for assigning admissible routes to packets. If the adversary can assign (w, r)-
admissible routes, then our algorithm finds a set of (W,R)-admissible routes where
R ∈ (r, 1) is of our choice and W ≥ w is determined by the choice of R. The
algorithm makes use of the knowledge of w and r.

Hence, if the parameter of merit is the window size w, then our algorithm is a
W/w-approximation algorithm (modulo a small increase in the rate). Moreover, our
algorithm is online in that it assigns routes to packets as soon as they are injected
into the network. Hence it can also be regarded as a W/w-competitive algorithm
for this problem. This is the first approximation algorithm/competitive algorithm
for this problem. Once the routes are chosen, we can use any “good” scheduling
protocol in the Adversarial Queueing Model.

Our algorithm is based on the ε-approximation algorithm for fractional maxi-
mum multicommodity concurrent flow given by Garg and Könemann [Garg and
Könemann 1998], which in turn builds upon the work of Plotkin, Shmoys, and Tar-
dos [Plotkin et al. 1994] and Young [Young 1995]. In the maximum multicommodity
concurrent flow problem, the demands for each commodity remain constant as the
algorithm progresses. In our setting, the demands between source-destination pairs
correspond to the packets injected by the adversary, which can change over time.
Even though the algorithm of Garg and Könemann [Garg and Könemann 1998]
is an offline algorithm that assigns fractional paths to a fixed set of commodities,
in our setting we are able to convert it into an online algorithm that assigns an
integral path to each packet as soon as it is injected.

1.1.2 Implementation under Internet routing paradigms.. At a high level, our
algorithm works as follows. Each link maintains a measure of congestion that rep-
resents how many packets have been routed through it in the recent past. Packets
are then routed on shortest paths with respect to this congestion measure. Hence
we need a mechanism for distributing congestion information from the links to the
source nodes. We also need a mechanism by which a source node can inform a link
whenever it routes a packet through that link.

The first requirement could be satisfied by something akin to the OSPF (Open
Shortest Path First) link state flooding protocol. (See e.g. [Keshav 1997].) This is
a protocol that is used for flooding link state information to the nodes in a network
so that packets may be routed along shortest paths. The second requirement may

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · Andrews et al.

be satisfied by the MPLS (Multi-Protocol Label Switching) protocol that is gaining
increasing acceptance in the Internet. (See e.g. [Rosen et al. 2001].) With this
protocol a source node can compute an explicit route to each destination and then
distribute a label for the route to each of the links that comprise the route. In
combination with this label distribution the source can also specify how much traffic
it is going to send on the route.

In Section 2 we first assume that this control information is transmitted instan-
taneously and does not contribute to the congestion in the network. We then
consider a model in which the control information is transmitted in-band through
the network and must contend with the data traffic. The overhead due to the con-
trol information is negligible compared to the “slack” w(1− r) as the window size
increases, so the extra control information has no qualitative impact on our results.

1.1.3 Relation to previous work.. Routing and scheduling as a combined prob-
lem has been studied in the past. For example, Aiello et al. presented a distributed
algorithm [Aiello et al. 1998] motivated by the Awerbuch-Leighton multicommodity
flow algorithm [Awerbuch and Leighton 1994]. In [Gamarnik 1999] Gamarnik gave
a solution based on an approximation algorithm for static routing. Neither algo-
rithm requires knowledge of the system parameters (like ours do). However, both
these algorithms require a dependence between how a packet is routed and how
it is scheduled. Hence, their routing schemes only work in association with their
specific scheduling schemes, but not with generic scheduling algorithms. Neither
routing algorithm can be used to provide packets with admissible paths at injection
time. Using networking terminology, these routing algorithms correspond to active
routing [Tennenhouse et al. 1997], where intermediate routers need to actively par-
ticipate in determining routes for each individual packet. In contrast, our algorithm
corresponds to source routing, where the entire path of a packet is known at the
source.

1.2 Deterministic Distributed Scheduling with Polynomial Delays

In Section 3 of the paper we study the scheduling problem in isolation assuming that
(w, r)-admissible paths are given (and that w and r are known). In recent years,
a number of scheduling algorithms have been proposed that guarantee network
stability, i.e. the number of packets in the network remains bounded and the end-
to-end delay experienced by packets remains bounded. For example, the Longest-
In-System protocol that always gives priority to the packet injected into the system
earliest, was shown in [Andrews et al. 2001] to guarantee a delay bound of O(w/(1−
r)dmax), where dmax is the maximum length of a path assigned to any packet. Note
however, that this bound is exponential in dmax. It has been an open problem
whether or not any deterministic, distributed scheduling protocol has a polynomial
delay bound in the Adversarial Queueing Model. Indeed, [Andrews et al. 2001]
remarked that “it is of considerable interest to determine whether such a protocol
exists”.

A randomized protocol based on Longest-In-System can guarantee that each
packet experiences a delay of poly(w, 1/(1 − r), dmax, log m) with high probabil-
ity [Andrews et al. 2001], where m is the number of links in the network. (This
protocol, like ours, makes use of the knowledge of the system parameters.) In
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 5

essence, for most of the time the protocol is successful and keeps all delays small.
However, even if the failure probability is small, if the algorithm is run for an ex-
tended period of time then the algorithm is likely to make some random choices
that are bad. This causes packets to violate the delay bound. Moreover, if one
packet violates the delay bound then other packets injected along the same path
at similar times are also likely to violate the delay bound. Hence, all of the pack-
ets that make up a single file transfer could be excessively delayed. Although this
randomized protocol can be derandomized in a centralized manner it seems hard
to convert it into a deterministic, distributed protocol. This is because the “success
condition” involves packets injected at multiple source nodes and hence it cannot
be verified locally.

1.2.1 Our result.. In Section 3 we present the first deterministic, distributed
scheduling protocol with a polynomial delay bound. It guarantees that all packets
reach their destination within poly(w, 1/(1−r),m) steps of their injection. We start
by presenting a randomized protocol in which the “success condition” can be verified
at the source nodes independently. This allows us to derandomize the protocol in
a distributed fashion. Like the randomized protocol of [Andrews et al. 2001], our
deterministic distributed protocol makes use of the knowledge of (some bound on)
w and r. Removing this requirement remains an interesting open problem.

1.3 The Effects of Combining Source Routing with Scheduling

In the final part of the paper we consider the following question: Is it possible
for unstable scheduling protocols to become stable if paths can be chosen by a
routing algorithm as opposed to being dictated by the adversary? We first present
a network and a sequence of packet injections such that regardless of how the
routes for these packets are chosen, many greedy protocols (including FIFO) remain
unstable. Thus, we cannot hope to achieve stability using FIFO even if we have the
freedom to choose routes. However, we also present an example in which the ability
to select the routes does make a difference. We show that in a “ring” with multiple
parallel links, if we are allowed to choose the routes intelligently then we can ensure
that all greedy scheduling protocols are stable. However, if the adversary dictates
the routes then many scheduling protocols (including FIFO) are unstable.

1.4 Other Related Work

Much traditional work on routing focuses on the problem of routing flows online,
e.g. [Awerbuch et al. 1993; Awerbuch et al. 1994]. Each flow requests a bandwidth
from a source to a destination and we must choose a path for each accepted flow
without violating any link capacity. The goal is to maximize the on-line acceptance
rate. However, this work does not consider packet-level behavior.

The problem of choosing routes for a fixed set of packets was studied by Srinivasan
and Teo [Srinivasan and Teo 1997] and Bertsimas and Gamarnik [Bertsimas and
Gamarnik 1999]. For example, [Srinivasan and Teo 1997] presents an algorithm
that minimizes the congestion and dilation of the routes up to a constant factor.
This result complemented the paper of Leighton, Maggs and Rao [Leighton et al.
1994] which showed that packets could be scheduled along a set of paths in time
O(congestion+dilation).

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · Andrews et al.

2. SOURCE ROUTING FOR STABILITY

For convenience we use the following weaker notion of admissibility in this section.
We say that a set of packet paths is weakly (w, r)-admissible if we can partition
time into windows of length w such that for each window in the partition and each
link e, the number of paths that pass through e and correspond to packets injected
during the window is at most wr. However, this distinction is not important due to
Lemma 2.1. Moreover, all of the delay bounds that have been derived in the past
for the Adversarial Queueing Model apply to weakly (w, r)-admissible paths.

Lemma 2.1. If a set of paths is (w, r)-admissible then it is also weakly (w, r)-
admissible. Conversely, weak (w, r)-admissibility implies (w′, r′)-admissibility for
some w′ ≥ w and r′ ∈ [r, 1).

Proof. Suppose the injections are weakly (w, r)-admissible. We show that they
are (w′, r′)-admissible for r′ = (1 + r)/2 and w′ ≥ 4rw/(1 − r). Due to weak
admissibility and our choice of r′, the number of injections during w′ steps for any
link e is at most,

(
w′

w
+ 2)rw ≤ r′w′.

The other direction is trivial.

We assume an adversary that injects weakly (w, r)-admissible packets into the
network1. Our aim is to choose weakly (W,R)-admissible routes for these packets
where R ∈ (r, 1) is of our choice and W ≥ w is determined by the choice of R.

2.1 The Basic Routing Protocol

We first assume that control information is communicated instantaneously. When-
ever a source node chooses a route for a packet, this information is instantaneously
transmitted to all the links on the route. Whenever the congestion on a link changes,
this fact is instantaneously transmitted to all the source nodes. Later on we relax
these assumptions. As mentioned in the Introduction, the algorithm is based on
the Garg-Könemann offline approximation algorithm for fractional maximum con-
current flow. However, in our setting we can convert it into an online algorithm
that chooses integral paths for the packets.

Find routes.
1 Initialize c(e) = δ, ∀e
2 for the ith window, i = 1, . . . , t
3 for each packet injected during ith window
4 p← least congested route under c (i.e. shortest path wrt c)
5 c(e)← c(e)(1 + µ/w), ∀e ∈ p

Fig. 1. Procedure to find routes for packets injected during one phase.

1In fact, as will be seen later, we only need to assume that the adversary can choose fractional
paths that are weakly (w, r)-admissible.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 7

2.1.1 Protocol.. We route every packet injected along the path whose total con-
gestion is the smallest under the current congestion function c(·), i.e. we route along
shortest paths with respect to c(·). Initially, the congestion along every link is set
to δ where δ is defined in (2). For every link e along the chosen route, its congestion
c(e) is updated to c(e)(1 + µ/w) where µ is defined in (1). We reset the conges-
tion of every link to its initial value of δ at the beginning of each phase. A phase
terminates in t windows of w steps, where t is an integer defined in (3). Figure 1
illustrates the procedure for one phase. The values of µ, δ and t are defined as
follows. Let m be the number of links in the network. For any R ∈ (r, 1) of our
choice, let

µ = 1−
(r

R

)1/3

(1)

δ =
(

1− rµ

m

)1/rµ

(2)

t =
⌊

1− rµ

rµ
ln

1− rµ

mδ

⌋
+ 1. (3)

Clearly, this routing algorithm requires knowledge of (some bound on) the value of
the parameters w and r. Our objective is to show,

Theorem 2.2. For all packets injected during one phase, at most twR of their
routes chosen by our procedure go through the same link. In other words these
routes are weakly (tw,R)-admissible.

2.1.2 Analysis.. To prove Theorem 2.2 let us examine an integer program for-
mulation for routing the set of packets injected during a window of w time steps.
Let Pj be the set of possible routes for the jth packet, and let variable xj(p) ∈ {0, 1}
indicate whether or not route p ∈ Pj is chosen for packet j. The following linear
relaxation of the integer program (LP) has an optimal solution λ ≥ 1 since the
injections are weakly (w, r)-admissible. We present both the primal and the dual.

Primal
max λ

s.t. ∑
p∈Pj

xj(p) ≥ λ ∀j∑
j

∑
p:e∈p,p∈Pj

xj(p) ≤ rw ∀e
xj(p) ≥ 0 ∀j, ∀p ∈ Pj

Dual
min

∑
e rw · c(e)

s.t. ∑
e∈p c(e) ≥ z(j) ∀j, ∀p ∈ Pj∑

j z(j) ≥ 1
c(e) ≥ 0 ∀e
z(j) ≥ 0 ∀j

For any non-negative congestion function c(·), let D =
∑

e c(e) be the total conges-
tion of all links. For packet j let qj be the least congested path in terms of c. We

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · Andrews et al.

use α =
∑

j

∑
e∈qj

c(e) to represent the total congestion of these least congested
paths. It can be shown that the dual is equivalent to,

min
c

rw ·D/α.

The congestion found at the end of window i by our protocol (see Figure 1) defines
a valid solution to this reformulated dual for window i. We exploit this connection
to prove Theorem 2.2. The key here is to bound the total link congestion since
the link congestion increases only when a path goes through it. In particular, the
following three lemmas show that the total link congestion is no more than 1 at the
end of a phase. Let ci(e), Di and αi represent the values of c(e), D and α at the
end of the ith window.

Lemma 2.3. Di/αi ≥ 1/rw for 1 ≤ i ≤ t.

Proof. Since the injections are (w, r)-admissible, the primal LP for window
i has maxλ ≥ 1. Since the congestion ci found by our protocol defines a dual
solution, our lemma follows from duality.

Lemma 2.4. Di ≤ Di−1
1−rµ .

Proof. It suffices to show Di ≤ Di−1 + αi · µ/w since Di/αi ≥ 1/rw by
Lemma 2.3. Let cij be the congestion function after routing the jth packet in-
jected during the ith window and let Dij be defined in terms of cij . Suppose path
pj is chosen for the jth packet injected during the ith window. By definition we
have,

Dij =
∑

e

cij(e)

=
∑
e/∈pj

ci,j−1(e) +
∑
e∈pj

ci,j−1(e)(1 + µ/w)

= Di,j−1 +
∑
e∈pj

ci,j−1(e) · µ/w.

Now we repeatedly apply the recurrence above. We also observe that the congestion
function c only increases. Hence, if qj is the least congested path for j under ci

then
∑

e∈pj
ci,j−1(e) is necessarily no more than

∑
e∈qj

ci(e). (We emphasize that
pj and qj may be two different paths. The path pj is least congested with respect
to ci,j−1 and qj is least congested with respect to ci.) We have,

Di = Di−1 +
∑

j

∑
e∈pj

ci,j−1(e)µ/w

≤ Di−1 + αi · µ/w.

Lemma 2.5. Dt ≤ 1.

Proof. By definition D0 = mδ where m is the number of links in the network.
By applying Lemma 2.4, we have,

Dt ≤
mδ

(1− rµ)t

Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 9

=
mδ

1− rµ

(
1 +

rµ

1− rµ

)t−1

≤ mδ

1− rµ
e

rµ(t−1)
1−rµ

≤ 1.

The second inequality follows from 1+x ≤ ex for x ≥ 0. The last inequality follows
from the definition of t in (3).

We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2: Consider any link e. For every w paths routed through
e, the congestion of e is increased by a factor at least 1 + µ, since(

1 +
µ

w

)w

=
w∑

i=0

(w

i

) (µ

w

)i

= 1 + µ +
w∑

i=2

(w

i

) (µ

w

)i

≥ 1 + µ.

Initially, c0(e) = δ. Since Dt ≤ 1, ct(e) ≤ 1. Hence, the total number of paths that
are routed through e in a phase is at most w log1+µ 1/δ. It suffices to show that
this quantity is no more than wtR.

w log1+µ 1/δ

wtR
≤ ln 1/δ

ln(1 + µ)
· rµ

1− rµ
· 1
ln 1−rµ

mδ

· 1
R

=
r

R
· µ

ln(1 + µ)(1− rµ)2

≤ r

R
· (1− µ)−3

= 1.

The first inequality and the first equality follow from the definitions of t and δ
respectively. The second inequality follows from the fact that r < 1 and ln(1+µ) ≥
µ−µ2/2. The last equality follows from the definition of µ. Our proof is complete.

Find routes.
1 Initialize c(e) = δ, ∀e
2 for ith window, i = 1, . . . , t
3 for each packet injected during ith window
4 p← least congested route under c
5 c(e)← c(e)(1 + Ni(e) · µ/w).

Fig. 2. Procedure to find routes for packets injected during one phase with fewer
updates.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · Andrews et al.

2.2 Routing with Less Frequent Updates

In this section we show that Theorem 2.2 still holds even if the congestion function
c is updated less frequently. In particular, we only update the congestion at the end
of each window, not for each packet injection. Hence the source nodes only need to
communicate with the links at the end of each window. For this new protocol we
redefine µ to be

1
m

(
1−

(r

R

)1/3
)

. (4)

Suppose Ni(e) packets are routed through link e during the ith window, then we
update c(e) to c(e)(1 + Ni(e) · µ/w). See Figure 2.

We prove that Theorem 2.2 remains true. We first show that Lemma 2.4 still
holds. As before, we show Di ≤ Di−1 + αi · µ/w. For any packet j injected during
the ith window, let pj be the path chosen for j.

Di =
∑

e

ci(e)

=
∑

e

ci−1(e)(1 + Ni(e) · µ/w)

= Di−1 +
∑

e

ci−1(e)Ni(e) · µ/w

= Di−1 +
∑

j

∑
e∈pj

ci−1(e) · µ/w

≤ Di−1 + αi · µ/w

Hence Dt ≤ 1. Now, for every mw paths routed through e, the congestion on e is
increased by a factor at least 1 + mµ. Therefore the congestion on any link at the
end of a phase is at most,

mw log1+mµ 1/δ

wtR
≤ ln 1/δ

ln(1 + mµ)
· rµ

1− rµ
· 1
ln 1−rµ

mδ

· 1
R

=
r

R
· mµ

ln(1 + mµ)(1− rµ)2

≤ r

R
· (1−mµ)−3

= 1,

with the revised definition of µ in (4).

2.3 Implementation Using In-band Signaling

In the previous sections we assumed that sources can communicate with the links
on their chosen routes via instantaneous setup messages. In turn, we also assumed
that the links can instantaneously broadcast their congestion to the sources. In
this section, we first extend our result in Section 2.2 to the case where each of these
communications takes τ time steps. We then give an upper bound on τ for which
the communication may be carried out in-band using packets transmitted through
the network.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 11

Assume without loss of generality that w > 2τ (since admissibility for a small
window implies admissibility for a large window). Each source only updates the
link congestion at the end of every window. Since the congestion does not change
during a window, all the packets for a given source-destination pair (s, t) are routed
along the same path p. At the end of window [w(i− 1), wi) a control packet of unit
size is sent along path p that contains the number of (s, t)-packets injected during
window [w(i − 1), wi). This packet takes time τ to traverse the path. Hence, at
time wi + τ , each link can update its congestion due to all the packets injected
during [w(i− 1), wi). Then by time wi + 2τ ≤ w(i + 1) this new congestion can be
distributed via control packets to all the sources.

Note that at the end of window [wi, w(i+1)), every link has updated its congestion
according to the injections in window [w(i− 1), wi). The exact form of this update
is as follows. Let Ni(e) be the number of packets routed through e that were
injected during [w(i−1), wi). Let ci(e) be the congestion of e at the end of window
[w(i− 1), wi). We update ci(e) by,

ci+1(e) = ci(e) + ci−1(e)Ni(e) · µ/w,

for

µ =
1

2m

(
1−

(r

R

)1/3
)

. (5)

To show that Theorem 2.2 remains true, we observe,

Di+1 =
∑

e

ci+1(e)

=
∑

e

ci(e) + ci−1Ni(e) · µ/w

= Di +
∑

e

ci−1(e)Ni(e) · µ/w

= Di +
∑

j

∑
e∈pj

ci−1(e) · µ/w

≤ Di + αi,i+1 · µ/w.

Here αi,i+1 is the sum of the congestion along the paths chosen for packets injected
during [w(i−1), wi) with respect to ci+1(e). This is sufficient to imply Dt ≤ 1. Note
also that for every 2mw (non-control) packets routed through a link, the congestion
function of the link increases by at least a factor 1 + 2mµ. The remainder of the
analysis follows through for the revised definition of µ in (5).

To ensure that the transmission time of the control packets is upper bounded,
the scheduling protocol always gives priority to control packets. Observe that a
total of at most n2 +mn control packets can be sent out during one window, where
m is the number of links and n is the number of nodes in the network. If we let
τ = n3 + mn2, the transmission of a control packet takes at most τ time steps.
Without loss of generality we assume that w ≥ 2τ and w(1− r)/2 ≥ n2 + mn. The
latter condition ensures that together with the control packets the injections are
(w, (1 + r)/2)-admissible.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · Andrews et al.

3. A SCHEDULING PROTOCOL WITH POLYNOMIAL DELAY BOUNDS

In this section we assume that (w, r)-admissible paths are known (either given by
the adversary or computed as in Section 2). Hence, in order to achieve network
stability we can use any of the scheduling protocols that are known to be stable
for Adversarial Queueing. However, the best previous delay bounds known for
distributed, deterministic protocols are exponential in the maximum packet path
length. In this section we present a deterministic, distributed scheduling protocol
with a polynomial delay bound.

In [Andrews et al. 2001] a randomized protocol was presented for which the delay
bound is O(dmax

ε log m) with high probability, where ε = 1−r and dmax is the length
of the longest simple path in the network. This protocol is hard to derandomize
because its success depends on a condition that can only be checked globally. In
this section we first present a new randomized protocol and then show how to
derandomize it in a distributed manner. The key idea of this protocol is that the
conditions that determine the “success” of the protocol only depend on packets that
share the same initial link. This allows derandomization in a distributed manner.

Our new randomized protocol is defined in terms of two parameters M and T
which are defined below. We partition time into intervals of length M , which we
call M -intervals. We save up all packets that are injected into the network during
each M -interval and then schedule these packets during the next M -interval. We
give each packet a deadline for every link on its path. Our goal is to make sure
that no more than T packets have a deadline for link e during any time interval of
length T . If this condition holds then we are able to bound the end-to-end delay
experienced by a packet.

3.1 Randomized protocol.

For a packet p injected during an M -interval [(γ−1)M,γM) for an integral γ, let us
suppose its path is e0, e1, . . . , edp

. We define a deadline τp
k for p at link ek as follows.

We choose the initial deadline τp
0 uniformly at random from [γM + T, (γ + 1)M −

dmaxT). We then define the remaining deadlines inductively by τp
k+1 = τp

k +T . Our
protocol always gives priority to the packet with the smallest deadline at each link.
We define M and T such that,

T =
36m

ε3
log(2Mm2), (6)

M ≥ max
{

1− ε/2
ε/6

(dmax + 1)T,w

}
, (7)

and M is a multiple of w. These properties are satisfied for,

M = O

(
dmaxm

ε4
log

m

ε
+ w

)
.

(Note that the protocol uses knowledge of (bounds on) the values of w and r, like the
randomized protocol in [Andrews et al. 2001].) When a packet meets its deadlines,
it reaches its destination within 2M steps.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 13

3.2 Analysis.

Our objective is to show that all packets injected during a given M -interval meet all
their deadlines with a constant probability. Lemma 3.1 gives a sufficient condition
for all deadlines to be met. For any packet p and link e let Xp,e

[t,t+T) = 1 if there is
a k such that e is the kth link on packet p’s path and τp

k lies in the time interval
[t, t + T). Let Xp,e

[t,t+T) = 0 otherwise.

Lemma 3.1. If
∑

p Xp,e
[t,t+T) ≤ T for all t and all links e, then all packets meet

all their deadlines.

Proof. Suppose not. Let p be a packet that misses its kth deadline τp
k and

suppose that no deadline earlier than τp
k is missed. Then p has arrived at its kth

link ek by time τp
k − T . (This is true regardless of whether ek is the initial link of

p or not.) By our assumption that τp
k is the first deadline that is missed, all the

packets with deadlines for ek that are earlier than τp
k −T +1 meet those deadlines.

Therefore, the only packets that block packet p in the interval [τp
k −T + 1, τp

k] have
deadlines in the interval [τp

k − T + 1, τp
k]. By the assumption in the statement of

the lemma there are at most T − 1 such packets (excluding p). Therefore packet p
is served by link ek at time τp

k or earlier. This is a contradiction.

Given Lemma 3.1 we show,

Lemma 3.2. Consider packets injected during an M -interval, [(γ − 1)M,γM).
The number of deadlines from these packets on any link e during any interval [t, t+
T) is at most T with a constant probability.

Proof. We use a Chernoff bound to prove the number of deadlines is small.
Let Sγ

e0,e be the set of packets injected into the network during the interval [(γ −
1)M,γM) that have e0 as their initial link and that have link e on their path. The
expected number of deadlines is,

E

 ∑
p∈Sγ

e0,e

Xp,e
[t,t+T)

 ≤ |Sγ
e0,e|

M − (dmax + 1)T
T.

When |Sγ
e0,e| is large, the expectation is large and the argument is straightforward.

However, for small |Sγ
e0,e| a direct application of the Chernoff bound may not suffice.

To rectify this, let us define a new quantity,

βγ
e0,e =

M

M − (dmax + 1)T
max{|Sγ

e0,e|/M, ε/3m}.

The quantity β has the following properties.

(1) βγ
e0,e ≥ ε/3m;

(2)
∑

e0
βγ

e0,e ≤ M
M−(dmax+1)T ((1− ε) + mε/3m) ≤ 1−ε/2

1−2ε/3 (1− 2ε/3) ≤ 1− ε/2.

The second property follows from the requirement of M in (7) and the admissibility
of the paths. Our lemma follows if we show that the following holds with constant
probability, ∑

p∈S
γ
e0,e

Xp,e
[t,t+T) ≤ (1 + ε/2)βγ

e0,eT,∀e0, e and ∀[t, t + T). (8)

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · Andrews et al.

If the above holds, the number of deadlines on link e in the interval [t, t + T) is at
most (1 + ε/2)

∑
e0

βγ
e0,eT , which is less than T due to the second property of β.

We have,

Pr

 ∑
p∈Sγ

e0,e

Xp,e
[t,t+T) > (1 + ε/2)βγ

e0,eT

 ≤ ∏
p E[(1 + ε/2)Xp,e

[t,t+T)]

(1 + ε/2)(1+ε/2)βγ
e0,eT

≤
∏

p E[exp(ε
2Xp,e

[t,t+T))]

(1 + ε/2)(1+ε/2)βγ
e0,eT

(9)

≤ exp(−ε2βγ
e0,eT/12)

≤ 1
2Mm2

.

The first inequality is due to a Chernoff bound. The second and third inequalities
hold since 1 + x ≤ ex for x ≥ 0, and E[

∑
p∈Sγ

e0,e
Xp,e

[t,t+T)] ≤ βγ
e0,eT , respectively.

The fourth inequality follows from the definition of T in (6) and the fact that
βγ

e0,e ≥ ε/3m. By taking a union bound over all links e0, e and all intervals
[t, t + T) ⊆ [γM, (γ + 1)M), we have that the number of deadlines from all packets
on e during [t, t + T) is at most T with probability at least 1/2.

3.3 Remarks.

To prove Lemma 3.2 a condition weaker than (8) would be sufficient. It would
suffice to show that the number of deadlines on any e during any [t, t + T) is at
most (1 + ε/2)

∑
e0

βγ
e0,eT . Indeed, this would even allow T and M to be a factor

of m smaller, as in [Andrews et al. 2001]. However, such a weaker condition only
allows derandomization in a centralized manner.

We emphasize that the condition (8) depends only on sets of packets that are
injected into one particular initial link. Therefore we can choose the deadlines for
a packet simply by considering the other packets that are injected at the same
initial link. Hence, we can carry out a derandomization independently at each
initial link and obtain a distributed, deterministic protocol. This is in contrast to
the randomized protocol of [Andrews et al. 2001] in which the success condition
depends on packets that are injected across all initial links in the network.

3.4 Derandomization.

We use the method of conditional expectations to derandomize the protocol for
each M -interval. (See e.g. [Raghavan 1988].) In summary,

Theorem 3.3. Our derandomized protocol is distributed and guarantees a delay
bound of 2M = poly(m,w, 1/ε) for every packet.

Proof. Let Sγ
e0,e = {p0, p1, . . . , p`}. For i ≤ `, let g(δ0, δ1, . . . , δi) be equal to

∑
e,t

Pr

 ∑
p∈S

γ
e0,e

Xp,e
[t,t+T)

> (1 + ε/2)βγ
e0,eT |τp0

0 = δ0, . . . , τ
pi
0 = δi

 ,

where t is summed over the range [γM, (γ + 1)M − T). By a calculation similar
to the Chernoff calculation of (9), the value of g(·, . . . , ·) is upper bounded by the
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 15

following function h,

h(δ0, δ1, . . . , δi) =
∑
e,t

∏
p E[exp(ε

2Xp,e
[t,t+T))|τ

p0
0 = δ0, . . . , τ

pi

0 = δi]

(1 + ε/2)(1+ε/2)βγ
e0,eT

.

For fixed δ0, . . . , δi−1, the definition of conditional expectation implies that there
exists an initial deadline δi for the packet pi such that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi).
If we always choose the initial deadline so that this inequality is satisfied then,

g(δ0, δ1, . . . , δ`) ≤ h(δ0, δ1, . . . , δ`)
≤ h(∅)
≤ exp(−ε2βγ

e0,eT/12).

The third inequality follows from (10). We have chosen the parameters M and T
so that exp(−ε2βγ

e0,eT/12) is less than 1. In addition, since g(δ0, δ1, . . . , δ`) involves
no randomness every term of g is either 0 or 1. The above inequalities imply that
g(δ0, δ1, . . . , δ`) is less than 1 and so condition (8) fails with probability zero. Hence,
with probability one all deadlines are met and all packets reach their destinations
in time 2M .

It remains to show that we can calculate h(δ0, . . . , δi). If j ≤ i then,

E[Xpj ,e

[t,t+T)|τ
p0
0 = δ0, . . . , τ

pi

0 = δi]

is equal to 0 or 1 depending on whether or not the initial deadline δj causes packet
pj to have a deadline for link e during [t, t + T). If j > i then,

E[Xpj ,e

[t,t+T)|τ
p0
0 = δ0, . . . , τ

pi

0 = δi] = E[Xpj ,e

[t,t+T)],

which is equal to the probability, over all possible choices of the initial deadline,
that packet pj has a deadline for link e during the interval [t, t + T). (Recall that
the initial deadline has at most M choices and all subsequent deadlines are chosen
deterministically.) This probability is solely dependent on whether or not the path
for packet pj passes through link e. Hence, for fixed δ0, . . . , δi−1 we can choose the
value of δi that minimizes h(δ0, δ1, . . . , δi−1, δi).

4. INSTABILITY IN COMBINED ROUTING AND SCHEDULING

In [Andrews et al. 2001] it was shown that if the packet routes are given by the
adversary then the FIFO and Nearest-to-Go (NTG) scheduling protocols can be
unstable even if the packet paths are admissible. (FIFO always gives priority to
the packet that arrived at the link earliest. NTG always gives priority to the packet
that has the smallest number of hops remaining to its destination.) However, the
examples given in [Andrews et al. 2001] do not lead to instability if we are allowed
to route packets on paths other than the ones chosen by the adversary.

We therefore have a natural question. If we are allowed to choose the routes, can
we guarantee that FIFO and NTG are stable? In this section we show that the
answer to this question is negative. We present examples in which regardless of how
we choose the routes, the FIFO and NTG scheduling protocols create instability.

Theorem 4.1. There exists a network G such that FIFO creates instability un-
der some (w, r)-admissible injections regardless of how packets are routed.

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · Andrews et al.

w1

w0 v0

v1

f ′1f1

u′1u1u0 u′0

f0 f ′0

e1

e0

Fig. 3. Network G for which FIFO and NTG are unstable even if we are allowed to choose routes.

Proof. Network G is shown in Figure 3. We break the packet injections into
phases. We inductively assume that at the beginning of phase j a set S of s packets
with destination u0 is in the queue of e0. We show that at the beginning of phase
j +1 more than s packets with destination u1 are in the queue of e1. By symmetry
this process repeats indefinitely and the number of packets in the network grows
without bound. For the basis of the induction, we inject a large burst of packets
at source node v0 with destination node u0, which is allowed by a large window w.
From now on all the injections are at rate r with burst size one. In general the
sequence of injections in phase j is as follows.

(1) For the first s steps, we inject a set X of rs packets at node v0 with destination
u1. These packets are completely held up at e0 by the packets in S. We also hold
up packets in S at f0 by injecting rs packets at w0 with destination u0. These
newly injected packets get mixed with those of S into the set S′. At the end of
the first s steps, rs packets from S′ are at f0. Note that packets in X will be
routed through either f0 or f ′0.

(2) For the next rs steps, we inject a set Y of r2s packets at node v0 with destination
u1. These packets are held up at e0 by the packets in X. We also inject packets
at w0 with destination u′0 at rate r. These packets delay the packets from X that
are routed through f ′0. Hence, at most rs/(r + 1) packets of X cross f ′0. (This
only happens if packets in X are routed through f ′0, which is not necessarily the
case.) Note that no packet from X crosses f0 in these steps, since the packets in
S′ have priority. Hence, at the end of these rs steps, a set X ′ ⊆ X of at least
r2s/(r + 1) packets are still at w0.

(3) For the next |X ′|+ |Y | steps the packets in X ′ and Y move forward, and merge
at v1. Meanwhile, we inject packets at v1 with destination u1 at rate r. We end
with at least r(|X ′|+ |Y |) packets at v1 with destination u1. This number is at
least r3s + r3s/(r + 1).

This ends phase j. For r ≥ 0.9 we have r3 + r3/(r +1) > 1. It is easy to verify that
the injections during phase j are admissible. The inductive step is complete.
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 17

Injections similar to the above can be used to prove the instability of NTG on
network G at any rate r > 1/

√
2. The induction hypothesis of phase j now does

not require the packets in S to be initially in the queue of e0, but to cross e0 in the
first s steps of the phase. Hence, subphase (3) is no longer required. Furthermore,
after subphase (2) both sets Y and X ′ contain at least r2s packets, since single-link
injections have higher priority than the packets in X. It follows that the system is
unstable since 2r2s > s.

5. STABILITY OF A RING WITH PARALLEL LINKS

In this section we consider source routing on a ring with c parallel links. Consider a
decomposition of the network into c disjoint single rings. We propose a deterministic
on-line source-routing algorithm that routes each packet along one of these rings
and guarantees that the routing is admissible. In [Andrews et al. 2001] it was
shown that the single ring is stable under any greedy scheduling policy (i.e. one
that always schedules a packet whenever packets are waiting). Hence, we conclude
that the ring with c parallel links is stable under any greedy scheduling policy if
our source-routing algorithm is used.

Note that the 4-ring with 2 parallel links was shown to be unstable under a greedy
protocol such as FIFO when the packet paths are given by the adversary [Andrews
et al. 2001]. This shows that freedom of routing can make a difference in network
stability since we have a network that is unstable under FIFO if the adversary can
dictate the routes but is stable under FIFO if we can choose the routes intelligently.

5.1 Definitions

Consider a ring with n nodes and c parallel directed links from node i to node
i+1(mod n). The parallel links connecting neighboring nodes are uniquely labeled
1, . . . , c. We denote the cycle of n links labeled j as the jth single ring. Note that,
if j 6= j′, the jth and the j′th single rings are link disjoint. We assume that the
injections are (w, r)-admissible. For convenience we sometimes denote 1 − r by ε.
We propose a source-routing algorithm that finds weakly (W,R)-admissible paths
along these single rings, where, for some β < 1,

W ≥ 3
rε2

ln
nc

β
, (10)

R = 1− ε2, (11)

and W is a multiple of w.

5.2 Randomized Algorithm

Let us first study the following randomized routing algorithm. Each time a packet is
injected, one of the c single rings is randomly chosen, uniformly and independently,
and the packet is routed along it. Since the injections are (w, r)-admissible, in any
W -interval at most crW packets are injected that must cross the parallel links from
any node i to i + 1(mod n). Hence, the expected number of packets routed along
any link of the ring is at most rW . Using a Chernoff bound we can upper bound
the probability of more than (1 + ε)rW = RW packets being routed along any
link in the W -interval. Let P = p0, p1, . . . , p` be the set of packets injected in a

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · Andrews et al.

W -interval. For each packet pj , let X
pj
e be the random variable denoting whether

pj is routed along link e. Let Xe be the number of packets routed along link e in
the W -interval. From a Chernoff bound we have that,

Pr[Xe > (1 + ε)rW] ≤
∏

pj∈P E[(1 + ε)X
pj
e]

(1 + ε)(1+ε)rW

≤ [eε/(1 + ε)(1+ε)]rW

≤ e(ε−(1+ε) ln(1+ε))rW

≤ (e−ε2/3)rW

≤ β

nc
.

The last two inequalities follow from the fact that ε < 1 and the definition of W
in (10), respectively. We can now bound the probability of any link having more
than (1− ε2)W packets routed along it. We use L to denote the set of links in the
ring.

Pr[max
e∈L

Xe > (1 + ε)rW] ≤
∑
e∈L

Pr[Xe > (1 + ε)rW]

≤ |L| β
nc

= β

Hence, since β < 1, there is a positive probability of routing all the packets in such
a way that no link has congestion more than RW . By choosing a very small β (e.g.,
O(1/n)) we could show that this randomized algorithm guarantees that the routing
is weakly (W,R)-admissible with high probability. This can be used to show the
stability of any greedy scheduling protocol in a probabilistic sense (i.e., there is a
value C such that the probability of having more than kC packets in the system at
any given time is exponentially small in k).

However, in the rest of the section we only need β < 1. We will derandomize the
proposed algorithm, and all we need for this process to work is to have a feasible
routing with the required properties. This is guaranteed for any β < 1.

5.3 Off-line Routing

We will now derandomize the above algorithm so that all the packets are determin-
istically routed and no link has congestion more than (1 − ε2)W . To do this, we
use the method of conditional probabilities, as we did in Section 3. Unfortunately,
to apply this method directly we need to know from the beginning the set P of
packets to be routed. We achieve this as follows. We divide time into intervals
of W steps, and hold all the packets injected in one W -interval until its last step.
Then, all these packets are routed in that last step, when all of them are known.

Let P = p0, p1, . . . , p` be the set of packets injected in a W -interval. Let γpj

denote the single ring chosen to route packet pj . For i ≤ ` let,

g(δ0, δ1, . . . , δi) = Pr[max
e∈E

Xe > (1 + ε)rW |γp0 = δ0, . . . , γpi
= δi].

Since g(·, . . . , ·) is difficult to calculate directly, we define another function h(·, . . . , ·)
Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 19

by,

h(δ0, δ1, . . . , δi) =
∑
e∈E

∏
pj∈P E[(1 + ε)X

pj
e |γp0 = δ0, . . . , γpi

= δi]

(1 + ε)(1+ε)rW
,

which can be easily computed. For this, it is enough to observe that, when com-
puting h(δ0, δ1, . . . , δi), for each packet pj ,

—if j ≤ i, then
—if e is in the δjth single ring and it is in the path from the source to the

destination of pj , then E[(1 + ε)X
pj
e |γp0 = δ0, . . . , γpi

= δi] = 1 + ε.
—Otherwise, E[(1 + ε)X

pj
e |γp0 = δ0, . . . , γpi

= δi] = (1 + ε)0 = 1.
—if j > i, then

—if e could be in the path from the source to the destination of pj , then E[(1 +
ε)X

pj
e |γp0 = δ0, . . . , γpi

= δi] = (1 + ε)1/c.
—Otherwise, E[(1 + ε)X

pj
e |γp0 = δ0, . . . , γpi

= δi] = (1 + ε)0 = 1.

We have that, g(δ0, δ1, . . . , δi) ≤ h(δ0, δ1, . . . , δi). Also, for fixed δ0, . . . , δi−1, the
definition of conditional expectation implies that the single ring δi can be chosen
such that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi). If we always choose the single
rings so that this inequality is satisfied then,

g(δ0, δ1, . . . , δ`) ≤ h(δ0, δ1, . . . , δ`)) ≤ h(∅) ≤ β.

In this expression, the left-hand-side involves no randomness and so it is either 0 or
1. However, since β < 1, it has to be less than 1 and so there must be a probability
zero of failure. Hence, no link has congestion more than (1−ε2)W , and the routing
is weakly (W,R)-admissible.

5.4 On-line Routing

Now we want to route packets as soon as they are injected. This does not allow
us to directly use the above derandomization process, since we will not necessarily
know the set P by the time we need to route the first packets. This is needed to
compute the different values of the function h(·, . . . , ·). However, we will deal with
this problem by making pessimistic assumptions about the packets that have not
been injected yet.

First consider two packets, pk and pl, such that their paths do not overlap, and
the destination node of pk is the source node of pl. Replace these packets by one
single packet whose source node is that of pk and its destination node is that of
pl. Observe that, for fixed δ0, . . . , δi, if k > i and l > i, the value of h(δ0, . . . , δi)
does not change by the replacement (see above). This can be generalized to the
replacement of any number of packets.

Then, this allows us to use the following trick. Initially we assume a set P (0) of
packets that consists of crW ghost packets going from node i to node i+1(mod n),
for each i. The value h(∅) is computed for this set P (0).

Now, assume that i − 1 packets have been already injected and routed. (That
is, the values δ0, δ1, . . . , δi−1 are fixed and h(δ0, δ1, . . . , δi−1) is computed.) When
the ith packet pi is injected, we remove one ghost packet from the set P (i−1)

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · Andrews et al.

for each hop that pi crosses. These ghost packets are replaced by the packet
pi to obtain a new set P (i). The existence of the appropriate ghost packets is
guaranteed by the initial ghost packets we put in P (0) and the fact that the in-
jections are (w, r)-admissible. As we saw previously, this does not change the
value of h(δ0, δ1, . . . , δi−1). Then, route the packet pi (choose and fix δi) so that
h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi).

By repeating this process, at the end of the W -interval we have that

g(δ0, δ1, . . . , δ`) ≤ h(δ0, δ1, . . . , δ`)) ≤ h(∅) ≤ β,

where ` is the number of packets injected during the W -interval. We now remove
all the remaining ghost packets. This process eliminates any remaining random-
ness in g(δ0, δ1, . . . , δ`), and can never increase its value, since it only removes
packets. Then, since g(δ0, δ1, . . . , δ`) = 0 involves no randomness and β < 1,
g(δ0, δ1, . . . , δ`) = 0 and no link has congestion more than (1 − ε2)W . Hence, the
routing is weakly (W,R)-admissible.

6. CONCLUSIONS

In this paper we have presented source routing algorithms for packet-switched net-
works and we have described the first distributed, deterministic scheduling protocol
with a polynomial delay bound. There is much still to be explored in the study
of combined routing and scheduling. For example, different packets are often as-
sociated with different delay requirements. Some of them may be delay-sensitive
whereas others may be delay-tolerant. The problem of scheduling these packets
on given routes in order to meet these delay requirements has been studied before.
The ability to choose the routes would add an additional dimension to the problem
and may even make scheduling easier.

Acknowledgment

The authors wish to thank Adam Meyerson for helpful discussions.

REFERENCES

Aiello, W., Kushilevitz, E., Ostrovsky, R., and Rosen, A. 1998. Adaptive packet routing

for bursty adversarial traffic. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing. Dallas, TX, 359 – 368.

Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., and Liu, Z. 2001.
Universal stability results and performance bounds for greedy contention-resolution protocols.

Journal of the ACM 48, 1 (Jan.), 39–69.

Awerbuch, B., Azar, Y., and Plotkin, S. 1993. Throughput competitive on-line routing. In
Proceedings of the 34th Annual Symposium on Foundations of Computer Science. 32–40.

Awerbuch, B., Azar, Y., Plotkin, S., and Waarts, O. 1994. Competitive routing of virtual
circuits with unknown duration. In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms. 321–330.

Awerbuch, B. and Leighton, T. 1994. Improved approximation algorithms for the multicom-
modity flow problem and local competitive routing in dynamic networks. In Proceedings of the
26th Annual ACM Symposium on Theory of Computing. 487–496.

Bertsimas, D. and Gamarnik, D. 1999. Asymptotically optimal algorithm for job shop schedul-
ing and packet routing. Journal of Algorithms 33, 2, 296–318.

Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., and Williamson, D. P. 2001. Adver-

sarial queueing theory. Journal of the ACM 48, 1 (Jan.), 13–38.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Source Routing and Scheduling in Packet Networks · 21

Gamarnik, D. 1998. Stability of adversarial queues via fluid models. In Proceedings of the 39th

Annual Symposium on Foundations of Computer Science. Palo Alto, CA, 60–70.

Gamarnik, D. 1999. Stability of adaptive and non-adaptive packet routing problems in adver-
sarial queueing networks. In Proceedings of the 31th Annual ACM Symposium on Theory of

Computing. Atlanta, GA, 206–214.

Garg, N. and Könemann, J. 1998. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In Proceedings of the 39th Annual Symposium on

Foundations of Computer Science. Palo Alto, CA, 300–309.

Keshav, S. 1997. An engineering approach to computer networking. Addison Wesley, Reading,

MA.

Leighton, F. T., Maggs, B. M., and Rao, S. B. 1994. Packet routing and job-shop scheduling
in O(congestion + dilation) steps. Combinatorica 14, 2, 167 – 186.

Plotkin, S., Shmoys, D., and Tardos, E. 1994. Fast approximation algorithms for fractional

packing and covering problems. Math of Oper. Research, 257–301.

Raghavan, P. 1988. Probabilistic construction of deterministic algorithms: approximating pack-
ing integer programs. Journal of Computer and System Sciences 37, 130 – 143.

Rosen, E., Viswanathan, A., and Callon, R. 2001. Multiprotocol label switching architecture.

RFC 3031. http://www.ietf.org/rfc/rfc3031.txt.

Srinivasan, A. and Teo, C. 1997. A constant-factor approximation algorithm for packet routing,
and balancing local vs. global criteria. In Proceedings of the 29th Annual ACM Symposium on

Theory of Computing. El Paso, TX, 636 – 643.

Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., and Minden, G. 1997. A survey

of active network research. IEEE Communications Magazine, 80–86.

Young, N. 1995. Randomized rounding without solving the linear program. ACM-SIAM Sym-

posium on Discrete Algorithms, 170–78.

...

Journal of the ACM, Vol. V, No. N, Month 20YY.

