Scheduling Over a Time-Varying User-Dependent
Channel with Applications to High Speed Wireless
Data

Matthew Andrews
Bell Laboratories
and

Lisa Zhang

Bell Laboratories

In a wireless network, a basestation transmits data to mobiles at time-varying, mobile-dependent
rates due to the ever changing nature of the communication channels. In this paper we consider
a wireless system in which the channel conditions and data arrival processes are governed by an
adversary. We first consider a single server and a set of users. At each time step t the server can
only transmit data to one user. If user ¢ is chosen the transmission rate is r;(¢). We say that the
system is (w, €)-admissible if in any window of w time steps the adversary can schedule the users
so that the total data arriving to each user is at most 1 — ¢ times the total service it receives.

Our objective is to design on-line scheduling algorithms to ensure stability in an admissible
system. We first show, somewhat surprisingly, that the admissibility condition alone does not
guarantee the existence of a stable online algorithm, even in a subcritical system (i.e. € > 0). For
example, if the nonzero rates in an infinite rate set can be arbitrarily small, then a subcritical
system can be unstable for any deterministic online algorithm.

On a positive note, we present a tracking algorithm that attempts to mimic the behavior of the
adversary. This algorithm ensures stability for all (w, €)-admissible systems that are not excluded
by our instability results. As a special case, if the rate set is finite, then the tracking algorithm
is stable even for a critical system (i.e. ¢ = 0). Moreover, the queue sizes are independent of €.
For subcritical systems, we also show that a simpler max weight algorithm is stable as long as the
user rates are bounded away from zero.

The offline version of our problem resembles the problem of scheduling unrelated machines and
can be modeled by an integer program. We present a rounding algorithm for its linear relaxation
and prove that the rounding technique cannot be substantially improved.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless communication; F.2.m [Analysis of Algorithms and Prob-
lem Complexity]: Miscellaneous

General Terms: Algorithms, Design, Theory
Additional Key Words and Phrases: Scheduling, stability, time-varying, user-depedent, wireless
channel

Author’s address:

Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974. {andrews,ylz}@research.bell-labs.com.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2005 ACM 1529-3785/2005/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005, Pages 1-27.

2 . Andrews and Zhang

1. INTRODUCTION

In the classical packet scheduling problem, it is assumed that each server has a
fixed rate. If multiple queues of data are contending for the same server, the server
serves one of them at the fixed rate. This is an accurate model in wireline networks
since the electronics in most wired communication devices are designed to process
data at a constant bit rate.

However, for wireless systems the constant rate server model no longer applies
since data rates are determined by channel conditions. Consider a fixed basestation
transmitting data to a set of mobile users. (See Figure 1.) If a user close to the
basestation receives a signal along an unobstructed path, the amount of energy
needed to transmit each bit is low. Therefore, the data rate for that user can be
high. In contrast, if a user is far away or if the signal is somehow obstructed, then
the data transmission requires high energy and the rate has to be low. Moreover,
the transmission rate for a fixed user can even vary over time due to issues such as
user mobility and Rayleigh fading (an effect that causes received power to vary on
a fast time scale). Hence we have a situation where the data transmission rate is
both user dependent and time dependent.

good channel

poor channel

Fig. 1. A wireless system.

The problem of scheduling over variable channel conditions in wireless systems
has recently received a great deal of attention. However, previous work usually
assumes that channel conditions and data arrival processes can be modeled by
ergodic stochastic processes such as ergodic Markov chains. In this paper we exam-
ine the problem when an adversary governs the channel conditions and data arrival
processes. This seems more suitable since user mobility can destroy any type of
stationarity in the channel conditions. Our objective is to keep the system stable,
i.e. keep all the queues in the system bounded.

1.1 The Model

Our model is motivated by the Qualcomm High Data Rate (HDR) system [11]
for high speed data transmission in 3rd generation Code Division Multiple Access
(CDMA) wireless networks. Many wireless service providers are expected to de-
ploy HDR in the near future. We provide a description of the HDR system in
Appendix A.

We consider a single server (e.g. a basestation) and a set of N users (e.g. mobiles),
each of which has its own separate queue. (See Figure 2.) Time is divided into slots.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 3

In each slot the server can transmit data to at most one user. If the server selects
user 7 in time slot ¢ then the amount of data that can be transmitted is denoted
r;(t). This is a non-negative real number that we refer to as the user rate or channel
condition. To describe the arrival process, we use the real number a;(t) to denote
the amount of data that arrives for user 7 in time slot ¢.

()

(ry(0, r 0, Fn-a ()

Fig. 2. A single server.

We assume that an adversary governs both the channel conditions and the ar-
rivals, i.e. we have no underlying statistical information about how they behave.
At each time slot ¢ the adversary reveals the rate vector (ro(t),...,rn_1(t)) be-
fore the server makes its scheduling decision. Once the decision has been made
the adversary injects data, i.e. the arrival vector is revealed. Our objective is to
design scheduling algorithms for the server so as to achieve stability, i.e. we want
to maintain bounded queues at all times.'

In order for stability to be feasible it is necessary to impose some restrictions
on the adversary. In particular, we assume that the system is (w, €)-admissible for
some fixed w, €. This means in any window of w time steps, the adversary can
define a schedule in which the amount of data arriving for each user is at most
(1 — ¢) times the total service that the user receives. More formally, there exists
a binary assignment vector z;(t) that indicates whether or not user ¢ is served at
time t and satisfies the following conditions.?

le(t) =1 Vt7

IWe observe that if the rates r;(t) can be zero then bounded queues do not necessarily imply
bounded delays. This is because data for queue ¢ can be held up indefinitely if r;(¢t) = 0 for an
extended period.

2We note that the adversary does not necessarily schedule all the data that arrived in [T, T + w)
within the window [T, T+w) since data for user ¢ may arrive after the time slots that the adversary
assigns to user i. However, it is easy to verify that the adversary’s schedule is indeed a stable
schedule.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

4 . Andrews and Zhang

T+w—1 T+w—1
o oat)<(1—e) Y rita(t) ViVT,T+w).
t=T t=T
We observe that if r;(t) = 1 for all 4,¢ then we have the standard admissibility
condition for the Adversarial Queueing Model [8; 3], i.e. the total amount of data
that arrives for the server in a window of size w is at most (1 — &)w.

Note that at the end of each window [T, T +w), a (computationally unbounded)
online algorithm could examine the data that arrived during the window and could
deduce the adversary’s schedule. However, it is too late for the server to implement
this schedule. The rate vectors that appear during [T'+w, T 4 2w) could be entirely
different from the rate vectors that appeared during [T, T + w).

IN

1.2 Our Results

Let R be the set of rates that can be assigned to the users. For all our results
we assume that R has an upper bound, since otherwise stability would be trivially
impossible. Let R"P = sup{r € R} and R™ = inf{r € R : » > 0}. (Note that the
inclusion of 0 in R does not affect R™).3

—In Section 2 we show that if the rate set R has certain properties then the
admissibility condition does not by itself guarantee that stability is feasible. We
construct two examples using an infinite rate set R. In the first example € > 0
and R™ = 0. In the second example ¢ = 0 and R™ > 0. In both cases no
deterministic online scheduling algorithm can be stable.

We believe that these results are of interest since they show that our model
is fundamentally different from the Adversarial Queueing Model in which the
admissibility condition alone is sufficient to guarantee the existence of stable

algorithms.
—In Section 3 we present a positive result. We construct a Tracking algorithm

which attempts to keep track of the adversary’s schedule and aims to give sim-
ilar amounts of service to each user. The Tracking algorithm is stable for all
admissible systems that are not excluded by our instability results. If the rate
set is finite, the Tracking algorithm is stable even if € = 0. Moreover, the queue
sizes are independent of €. These properties are of interest since many stability
proofs rely heavily on the positivity of €. If the rate set is infinite, the Tracking
algorithm is stable as long as ¢ > 0 and R™™ > 0. From our instability results it
is clear that neither of these conditions can be removed.

The results of Sections 2 and 3 imply that when € > 0 the existence of a stable
algorithm is crucially dependent on whether or not R™ > 0. This is somewhat
surprising since a priori it would be tempting to think that the existence of

arbitrarily small rates has no effect on stability.
—In Section 4 we study a well-known algorithm called MAX WEIGHT in the adver-

sarial context. At time ¢t MAX WEIGHT always serves the user i that maximizes

3If Rinf = (then the nonzero rates can be arbitrarily small. At first, this may seem strange since
it would seem difficult to transmit less than 1 bit per slot. However, when channel conditions
are poor, the data is heavily coded and the codewords could extend over multiple slots. If the
number of code bits per data bit becomes arbitrarily large then the data transmission rate becomes
arbitrarily small.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 5

ri(t)qi(t), where g;(t) is the queue size of user ¢ at time ¢t. We show that MAX
WEIGHT is stable as long as 0 € R, € > 0 and R™ > 0.

We observe that the Tracking algorithm provides stability in a wider context
since it allows for 0 € R and even allows for € = 0 as long as the rate set is finite.
To model a wireless system it is important to have stability when 0 is a member
of the rate set since a mobile user could temporarily move into a place where no

transmission is possible.
—In Section 5 we consider the offline problem in which all data is present at time

0 and all the rate vectors are known in advance. This off-line version is NP-
hard which can be shown with an easy reduction from the Partition problem.
We present an algorithm for rounding the fractional solution together with lower
bounds which show that our rounding techniques cannot be substantially im-
proved.

1.3 Previous Work

The basic structure of the Qualcomm HDR system is described by Jalali et al. in
[11]. The default scheduling algorithm in HDR was proposed by Tse in [21] and
is known as Proportional Fair. A variation of Proportional Fair was presented in
[14]. The case in which the channel conditions and arrival process can be modeled
by ergodic Markov chains has been extensively studied. In this setting stable algo-
rithms include MAX WEIGHT [5; 4; 13], MAX DELAY [5; 4] and EXP [16; 17]. MAX
WEIGHT selects the user that maximizes ¢;(¢)r;(t), whereas MAX DELAY selects
the user that maximizes A;(¢)r;(t) where A;(¢) denotes the Head-of-Line delay for
user ¢ at time t. EXP is a more complex algorithm that keeps the user delays in de-
sired proportions. An earlier paper [20] deals with the special case of r;(t) € {0,1}.
We emphasize that all these results make use of stationarity properties that do not
exist in our adversarial setting.

In [9], Borst and Whiting examine the problem of meeting target throughput
levels to each user. In [15], Shakkottai and Srikant examine a situation where
ri(t) € {0,1} and show that if the objective is to meet an assigned deadline for
each packet then the Earliest-Deadline-First algorithm is not always optimal (in
contrast to the constant rate case).

Some recent papers have addressed the issue of routing in dynamic networks.
In [7], Awerbuch et al. consider an adversarial network model where edges come
and go over time. The aim is to route and schedule packets so that the system
remains stable. A similar problem was considered by Anshelevich et al. in [6].
However, there is an important distinction between our model and the models of
[7; 6], in addition to the fact that their rates can only be 0 or 1. In [7; 6], each
node can transmit packets to multiple neighbors simultaneously, assuming that the
corresponding edges are present. However, in our model a basestation can only
transmit to one mobile user at a time. This makes stability harder to achieve.

Our analysis in Section 4 makes use of techniques similar to those used by Aiello
et al. for combined routing and scheduling in adversarial networks [1]. We also
observe that our model has a similar flavor to the classical scheduling problem on
unrelated machines (e.g. [18]). In this problem when a job is assigned to a machine
the increase in work on that machine is machine-dependent. Typical metrics in the
classical problem include makespan, average completion time and average response

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

6 : Andrews and Zhang

time. Our problem is somewhat different in that we address stability in an online
setting.

2. INSTABILITY EXAMPLES

In this section we show that for certain rate sets R, the admissibility condition alone
does not guarantee that stability is feasible for deterministic online algorithms,
even in subcritical systems where € > 0. This provides a marked contrast to the
traditional Adversarial Queueing Model. Recall that R™ = inf{r € R : 7 > 0}. We
first present an example with € > 0 and R™™ = 0 in which no deterministic online
algorithm can be stable. In conjunction with the stability results of Section 3, we
have the surprising fact that the existence of a stable algorithm depends crucially
on R™ . In other words, stability can be affected by the existence of arbitrarily
small positive rates. We then consider critical systems where € = 0 and show that
even if R™ > 0 no deterministic online algorithm is stable.

Intuition for the proofs. All of the instability proofs use a similar type of analysis.
Consider a situation with 2 users, user 0 and user 1. At time ¢ the online algorithm
chooses a user ¢ where i € {0,1}. The adversary creates a rate vector and injects
data to ensure that the online algorithm has made the “wrong” decision and should
have chosen user 1 — ¢ at time ¢.

(0,0 +1- €)1 ()
fai) F@i0) 1-) e

(a,0)

(a)

(a,ft) ~To(®)
@) (@) ro®

A= ot) a4 a;() qy0) +1-&)ra)

Fig. 3. The change in potential when the online algorithm serves user 0.

More precisely, let f(-) be a twice differentiable function that satisfies f/(z) > 0
and f”(z) > 0 for z > —1 and also satisfies f(z) — o0 as x — oo, le. f(x) is
unbounded, increasing and convex on [—1,00). (See Figure 3.) Let go(t) and ¢ (t)
be the queue lengths of the two users at time ¢. The adversary defines a user rate
vector that satisfies ro(t),r1(¢) < 1 and,

fao®)ro(t) = f(q())r1(t) Vt.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 7

If the online algorithm chooses to serve user i then the adversary creates arrivals
for user 1 — i only. In particular,

a;(t) =0 and a1—;(t) = (1 —&)ri—;(t).

Clearly, this is a (1,¢)-admissible arrival process. However, we show that the on-
line algorithm has unbounded queues, and is therefore unstable, by showing that
the potential function L(t) = f(qo(t)) + f(¢1(t)) is unbounded as t — co. We have,

Lt+1) = flai(t+1)+ f(a-i(t +1))
f@ (@) —ri(t) + flar—i(t) + (1 — e)r1—i(t))
fai(t)) + flq1-i(t))

AV

P)rd) +)1 -)il
3P + 55" @)1 - i)
— L(t)
e @ O)rit) +) ri(0)) 1)
3 (- i), @)

for some ¢; € [q;(t) —ri(t), qi(t)], c1—i € [q1—i(t), q1—i(t) + (1 —&)r1—;(¢)]. Note that
the queue lengths at time ¢t + 1 satisfy ¢;(t + 1) > ¢;(t) — r;(¢) and ¢1—;(t + 1) =
q1—i(t)+ (1 —¢)r1_;(t). Hence, the inequality follows from the monotonicity of f(-).
The second to last equality follows from Taylor’s theorem. The last equality follows
from the definition of the user rate vector. To show L(¢t + 1) > L(t), it suffices to
show that the sum of the two terms (1) and (2) is positive.

For our examples, we follow this basic framework and show that L(t) is un-
bounded as ¢t — oo, which implies instability. We note however that for Theo-
rem 2.2 instead of a single potential function we use a whole family of potential
functions.

Before we begin we need a useful lemma about potential functions.

LEMMA 2.1. Let g(t) > 0 be a function of time. Suppose there exists a function
h(z) and a constant ¢ such that g(t+c¢) > g(t)+ h(g(t)) for all t and inf{h(x): x €
[0,0]} > 0 for all intervals [0,b]. Then the function g(t) is unbounded.

PROOF. Suppose not. Let B = sup{g(t) : ¢ > 0} and let 6 = inf{h(z) : z €
[0, B]}. By assumption 6 > 0. Then for all n, g((n + 1)c) > g(nc) + 6. Hence there
exists an n such that g(nc) > B. This is a contradiction. [

THEOREM 2.2. For any deterministic* online scheduling algorithm the adversary
can create instability with a rate set that satisfies € > 0 and R™ = 0.

PROOF. The example has 2 users, 0 and 1. We construct instability in phases

4We note that our instability examples also apply to randomized algorithms and adaptive adver-
saries. It would be interesting to know if there is a randomized algorithm that is stable against
oblivious adversaries.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

8 : Andrews and Zhang

indexed by k > 2. Let,

T — 1?;5 ((k:—l)él—»s)2 _€> 1

We move from phase k to phase k+1 at the first time that go(t) > Tk or ¢1(t) > Tk.
The key properties of the sequence {T}} are that it is unbounded and increasing
and,

2 —€
Suppose that we are in phase k. We use a potential function,
Li(t) = (0(t) + D" + (2 (t) + D).
The adversary works as follows in phase k. If ¢o(t) < ¢1(¢) then the adversary sets,

(1+¢)(qo(t) + 1)F!
(1—e)(qu(t) + 1)+

<k> (1—¢)?— 135k (Th + 1) = ke.

ro(t) =1 and 7(t) =

If qo(t) > q1(t) the adversary sets,
(L+e)a) + 1"
(1 —)(go(t) + DF1

It is clear that these rates can be arbitrarily small, hence R = 0. Note also that
RP = i%z If the online algorithm serves user 4 in slot ¢ then the adversary sets,

az(t) =0 and al,i(t) = (1 - E)Tlfi(t).

ro(t) = and r1(t) = 1.

It is clear that this is an admissible injection pattern. The strategy of the adversary
is to always serve the opposite user to the one served by the online algorithm. We
analyze the behavior of L (t). We focus on two cases. In the first case qo(t) < g1 (t)
and the online algorithm serves user 0. In the second case qo(t) < ¢1(¢) and the
online algorithm serves user 1. The cases in which go(t) > ¢1(¢) are similar.
Case 1. qo(t) < ¢1(t) and the online algorithm serves user 0. We have,
qo(t+1) = max{qo(t) — 1,0}
at+1) = qi(t) + (1 —e)ri(t).
Since the function (z + 1)* is monotone increasing on [—1,00) we have,
(ot +1) +1)* > (qot) +1—1)*
(t+1)+ 1 = (@) +1+ 1 =g (t)"

Therefore,

Li(t+1)

(gt +1)+ 1"+ (qu(t +1) + 1)

(qo(t) + 1= 1" + (qu(t) + 1+ (1 — e)ri(t))"

(q0(t) + 1" — k(qo(t) + 1) + (qu(t) + 1)*
(

AV

t
+k(qi(t) + 1)* 71 (1 —)r1 (t) by convexity

Li(t) — k(go(t) + D)1 + k(1 + &) (qo(t) + 1)1
Ly (t) + ke.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Y

Scheduling Over a Time-Varying User-Dependent Channel . 9

Case 2. ¢o(t) < ¢1(t) and the online algorithm serves user 1. Note that since we
are in phase k we must have, qo(t) < Tj. We have,

qQo(t+1) = qo(t) +1—¢
¢1(t+1) = max{q(t) — r1(t),0}.

We assume that ¢ is small enough that 1< < 2 (which implies 71 (¢) < 2). Then
we have,

(go(t+1)+1)* = (go(t) +1+1—¢e)*
(t+1)+ 1" > (qi(t) +1—r(t)"
Therefore,

Li(t+1)

(a0t +1) + 1% + (qa(t +1) + 1)

(q0(t) + 1+ 1 =)+ (qu(t) + 1= ()"

(0(0) + P+ KL= 2)anle) + D+ (§) 0= 2 an(0) + 142
Haa(t) + 1) = k(@ (t) + 1) ()

Li(t) + k(1 —e)(qo(t) + 1)k—1 _ ki i-i

Y

Y

(qo(t) + 1)
+(5) - 2@l + 142

2elo) + a0+ 1 ((§) 0 o2 -
Ly (t) + ke since qo(t) < T'(k).

The above analysis shows that Ly (¢t + 1) > L (t) + ke in all cases. This means
that there exists a time ¢’ for which either go(t') > T} or ¢1(t') > T}, i.e. we only
stay in each phase for a finite amount of time. Since the sequence {7} } is increasing
and unbounded this means that the queue sizes cannot be bounded. Hence we have
instability. O

3ek
1—¢

Y

(o) +1)

Y]

For the special case of MAX WEIGHT the proof can be significantly simplified.
We present it separately since MAX WEIGHT has received a lot of attention in the
literature.

THEOREM 2.3. The adversary can make the MAX WEIGHT algorithm unstable
with a rate set that satisfies € > 0 and R™ = 0.

PROOF. We have 2 users, 0 and 1. The initial condition is that ¢o(0) = 1 and
¢1(0) = 1. In even time slots the adversary sets,
1

(I+e)q(t)’
1—¢

(T+e)aq(t)

To(t) =1 1 (f) =
ao(t) =0 a1 (t) =

In odd time slots the adversary sets,

ro(t) =1/(1—¢) ri(t) =0,
ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

10 : Andrews and Zhang

ao(f) =1 al(t) =0.

It is clear that this is an admissible injection pattern. The strategy for the adversary
is to assign even time slots to user 1 and odd time slots to user 0.

Suppose inductively that when ¢ is even we have qo(t) = 1. (This certainly holds
for t = 0). By the rate definition we have, qo(t)ro(t) > q1(¢)r1(t) which implies
that MAX WEIGHT algorithm assigns time slot ¢ to user 0. Therefore qo(t+1) =0
and ¢1(t +1) = q1(¢) + (lJrls);qu(t)' Since user 0 now has no data to serve and

ri(t +1) = 0 we must have qo(t +2) =1 and ¢1(t + 2) = ¢1(¢) + UJ:(S);;(”. This
proves the inductive hypothesis and shows that gy (t) increases. By Lemma 2.1 ¢; (¢)
is unbounded. [

We next consider critical systems where € = 0. The following theorem provides
an additional situation where instability can occur.

THEOREM 2.4. For any deterministic online scheduling algorithm the adversary
can create instability with a rate set that satisfies € = 0 and R™ > 0.

PROOF. The example has 2 users, 0 and 1. Let f(z) = z_+2 + 5% — 1 We note
here that f/(x) = 52:7?22);4 and f"(x) = (m+2)3 We analyze the system using the

potential function L(t) = f(qo(t)) + f(q1(t)).
For each user 7, the adversary sets,
1 4(qi(t) +2)?

i) = @)~ B 1 2E 4

From this we have that 2 < ri(t) < 1 for i € {0,1} and for all t. Therefore
R" =1 >0and R =1 < oo.

If the algorithm decides to service user 0 at time ¢ then the adversary injects
r1(t) data into the queue for user 1. Conversely, if the algorithm decides to service
user 1 at time ¢ then the adversary injects r¢(¢) data into the queue for user 0. It
is clear that this is an admissible injection pattern (with ¢ = 0). The adversary’s
strategy is to always serve the opposite user from the one served by the algorithm.

We must analyze L(t 4+ 1). Suppose that the algorithm serves user 0. The other

case is symmetrical. We have,

Qo(t+1) = qo(t) —ro(t)
= floo(t+1)) = flqo(t) —ro(t)).
(This is true even if 7¢(t) > qo(t) since ro(t) < 1 and f(-) is monotone increasing
on [—1,00).) Similarly we have,
Bt +1) > 0+
= fla(t+1)) = flau(t) +ri(t)).

Now, by Taylor’s theorem and the fact that f'(-) is increasing on [—1, c0) we have,

Flao() —ro(t)) = flao(t) = f'(qo())ro(t) = f(ao(t)) — 1
by the definition of r¢(t). Similarly, by the fact that f”(-) is decreasing on [—1, c0)
we have,

Flqu(t) +r1(2))

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 11

> flar(®) + f(a(®)r(t) + %f”((h (t) + () (r1 (1))?

= F@®) + 14+ 3 @ () + (@) 0)
by the definition of 71 (¢). Therefore,
L{t+1)
Flao(t+1) + Far ¢+ 1)
Flao(t)) + Flar() = 1+ 14 5 (@ (t) + ra ()1 (1)’

1 2
- 10+ 5 (Garram o) O
By the definition of L(-) we have,

a0 <3 (z0+3).

Y%

Recall also that 3 < r1(t) < 1. Therefore,

Lit+1) > L) + % (ﬁ) (%)2

5 5

By Lemma 2.1, L(¢) is unbounded. Hence by the definition of f(-) one of the queues
is unstable. [

Instability of Proportional Fair. On a different note, we point out that the Pro-
portional Fair algorithm is unstable. (See Appendix A for more details.) This is
the algorithm used in most implementations of the Qualcomm HDR system [11]

and it works as follows. At each time step ¢ Proportional Fair serves the user that

’I‘i(t)
. ,U‘l(t)

to user i up to time ¢. There are in fact different implementations of Proportional

Fair depending on how users for which ¢;(¢) < r;(t) are dealt with. However, it is
shown in [2] that all these implementations can be unstable. The instability holds
even against a benign adversary which only injects data at constant arrival rates
and which only uses two rate vectors that appear in a periodic fashion.

maximizes

where p;(t) is an exponentially smoothed average of the service rate

3. STABILITY OF A TRACKING ALGORITHM

In this section we propose a Tracking algorithm that attempts to keep track of
the adversary’s schedule and mimic it wherever possible. We first show that the
algorithm is stable for any (w, ¢)-admissible arrival process when the rate set R is
finite. This is even true when € = 0, i.e. when the system is critically loaded. If
the rate set R is infinite, the Tracking algorithm remains stable as long as € > 0
and R™ > 0. Hence we are stable in all situations not covered by the instability
examples of Section 2.

We first consider a simplified scenario in which at the end of each window the
adversary reveals to the Tracking algorithm the schedule that it used during the
window. (Of course, it is now too late for the Tracking algorithm to use this schedule
since the window is over.) We then consider the more realistic scenario in which we

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

12 . Andrews and Zhang

have to compute the adversary’s schedule at the end of each window based on the
data that arrived. Unfortunately this is not feasible in general for a polynomially
bounded algorithm since it involves the solution of an integer program. However,
we show that in fact it is sufficient to only compute a fractional schedule for each
window.

Let X!™*(t) (resp. X2 (t)) be the amount of service given to user i by the
Tracking algorithm (resp. the adversary) up to time ¢. Throughout this section our
key aim is to bound the difference |X"*(t) — X2*(¢)|. This is because,

Levma 3.1, If [X[™8(t) = XP ()] < A for all t then qi(t) < 2A + wR™ for
all t. Hence the queue for user i is stable.

PROOF. Let s be the last time before ¢ that the queue for user i was empty.
Let k be the largest integer such that s + kw < t. Then, since the system is
(w, €)-admissible,

ai(t) < Y ai(r) = X[t —1) + X[™(s — 1)

I
-

t—1
< ai(t) — X0t — 1) + X0 (s — 1) + 2A

s+kw—1
< Z ai(7) — X8 (s + kw — 1) + X2 (s — 1) + 2A + wRs"P
< 2A + wR®"P,

O

Suppose that the rate set is finite. Let F' = |R| and let N be the number of
users in the system. We now motivate the Tracking algorithm. Let w = 1 and
suppose that the adversary reveals which user it serves in every time step after we
have made our choice. We keep track of the most recent choice that the adversary
has made for each rate vector. For example suppose that the user rate vector at
time ¢ is 7(t) and the adversary chooses user i. If ¢’ > ¢ is the next time that this
rate vector appears, i.e. ¥(t) = 7(t'), then we choose user i to serve at time ¢’. In
this way, the number of slots that we have assigned to user i never differs from the
number of slots the adversary has assigned to user i by more than FV, the total
number of rate vectors. Therefore the difference in service assigned to user ¢ by the
two schedules is at most F'V - R*“?, By Lemma 3.1 we have stability.

The downside of the above proposal is that the difference in service can be ex-
ponential in the number of users. In Section 3.1 we present the Tracking algorithm
and show that the difference between its service to user ¢ and the adversary’s service
to user 4 is at most N - F2- R®"P, In Section 3.2 we consider the case of general w in
which the adversary reveals its schedule at the end of each window. The difference
in service is now N - F2 - RS% . . In Section 3.3 we no longer assume that the
adversary reveals its schedule at the end of each window. The Tracking algorithm
now has to compute the schedule based on the data that arrived. We show that the
algorithm does not need to solve an integer program. It is able to track a fractional

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 13

schedule for each window. In Section 3.4 we conclude with a discussion of infinite
rate sets.

3.1 Tracking Algorithm with Window Size 1

We define the Tracking Algorithm in Figure 4 using a sequence of schedules,
S_1,50,--.,9N_1, where S_; is the adversary’s schedule and Sy_; is the sched-
ule of the Tracking algorithm. The purpose of the intermediate schedule S; is to
“track” schedule S;_1 and decide when the Tracking algorithm should serve user 1.
In particular, the Tracking algorithm serves user ¢ only if S; serves user ;. Whether
or not S; serves ¢ at time ¢ depends on the positivity of a set of counters defined
below. For rate pair (a,b) and 0 < i < j < N, consider all the time steps ¢’ < ¢t at
which r;(t') = a and r;(¢') = b. We use a counter C; ;(a,b) to denote the number of
times that schedule S; serves user j minus the number of times that schedule S;_1
serves user j during these time steps. The basic rule is that the Tracking algorithm
does not serve user ¢ at time unless C; ;(r;(t),7;(t)) > 0 for all j > ¢. Initially, all
counters are set to 0.

Figure 4 describes the Tracking algorithm for w = 1. In the algorithm description,
S;(t) denotes the user served by S; at time ¢ and C(r;(t),r;(¢)) is a shorthand for
Ci,;(ri(t),r;(t)). In part I we loop through i and decide whether or not schedule
S; should serve user ¢. The intuition for the algorithm is that with respect to the
current rate values, we always want the service that S; has given user j to be more
than the service that S;_; has given user j, for all 7 > i. Hence schedule S; can
only serve user i if it is already “ahead” of S;_1 in service to user j for the current
rate values, i.e. C(r;(t),r;(t)), for all j > 4. This will allow us to prove that the
Tracking algorithm is never too far behind the adversary in its service to any user.
If schedule S; does serve user 4 then schedule S; also serves user ¢ for all j > 1.

For i < N — 1, S;(t) may not be defined in part I of the algorithm and so we
define it in part II after the adversary reveals its choice. If S;_;(¢) > i then we
simply let S;(t) be the same as S;_1(¢). If S;—1(t) =i then S, serves a user j > ¢
that prevented S; serving user 4 in part I. (In particular, schedule S; is not “ahead”
of S;_1 in service to user j for the current rate values.) In part II we also update
the necessary counters. We shall see below that no counter is ever negative, i.e. we
maintain the invariant that with respect to the current rate values, the service that
S; has given user j is more than the service that S;_1 has given user j, for all j > 1.

In Lemma 3.2 we verify that the Tracking algorithm is well defined. We then
prove the stability of the algorithm in Lemma 3.4 and Theorem 3.5.

LEMMA 3.2. The Tracking algorithm is well defined. For every t,

(1) Sn—1(t) is computed before the adversary reveals its choice S_1(t);
(2) S;(t) is defined for all i.

PROOF. Since Sy_1(t) is computed in Part I of the algorithm, the Tracking
algorithm decides which user to serve at each time ¢ before it knows the adversary’s
choice at time ¢t. We show item 2 by induction on i. Since S_;(t) is computed the
basis holds. Inductively, if S;(¢) is undefined after Part I, then S;_;(¢) has to be
at least i. Hence, Case 2 and Case 3 in Part II cover all possible situations and so
S;(t) is defined for all ¢ by the end of Part II. O

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

14 . Andrews and Zhang

The following is a useful fact about the Tracking algorithm.

Fact 3.3. If j < i then S;(t) serves user j if and only if S;—1(t) serves j.
We also have,

LEMMA 3.4. Forae R, be R and 0 <i < j < N, the counter C; j(a,b),

(1) remains either 0 or 1;

(2) counts the number of times that S; serves j minus the number of times that
Si—1 serves j during the time steps for which r;(t) = a and r;(t) = 0.

PrOOF. All counters are initialized to 0. To prove item 1, we assume the state-
ment holds inductively at all times before ¢. In part I of the algorithm, we define
S;(t) to be i if all the counters C(r;(t),r;(t)) for j > i are positive. (See Line 3.)
By induction, these counters are all 1. Hence, when we decrement a counter in
Case 1, we decrement it from 1 to 0. In Case 2 when S;(¢) is undefined we find a
counter that is at most zero and increment it by 1. By induction, this counter has
to be zero before the increment and therefore becomes 1 after the increment.

To see item 2, assume it holds inductively before time ¢. Let us examine how
the counters are updated. Suppose S;(t) < i, (i.e. S;(t) is defined in Part I). By
Fact 3.3 the only situation in which S;(t) # S;—1(t) is when S;(¢t) = ¢ and S;_1(t)
equals some j > ¢. This is Case 1 of the Tracking algorithm and the counter
Ci,;(ri(t),r;(t)) is decremented. Suppose S;(t) > 4, (i.e. S;(t) is defined in Part
IT). In Case 2 of the algorithm, S;(t) equals some j > 4, S;_1(t) = ¢ and the
corresponding counter is incremented. In Case 3 of the algorithm, S;(t) = S;—1(t)
and no counters are changed. In all cases item 2 is maintained. [

THEOREM 3.5. For each user j, the difference between the Tracking algorithm’s
service to user j and the adversary’s service to user j is at most N - F2 . RS"P. By
Lemma 3.1, every queue length is bounded by 2N - F? . RSP + RS'P. Hence, the
system s stable and the queue length is independent of .

PROOF. For each user j let us bound the difference in service it receives from the
adversary’s schedule S_; and the Tracking algorithm’s schedule Sy_;. By Fact 3.3
if ¢ > j then schedule S; serves user j if and only if schedule S;_; serves user j.
Hence, it suffices to bound the difference in service that user j receives from S; and
S_q.

We first define C;; = >°,, Cij(a,b) for i < j. (Recall that C;;(a,b) is not
defined for ¢ > j.) By Lemma 3.4, C;; is the number of times that S; serves j
minus the number of times that S;_; serves j over all time steps. Furthermore,
0<C;; £F 2. Therefore, for any user j, the amount of service schedule S j—1 gives
to user j minus the amount of service schedule S_; gives to user j is at least 0 and
at most,

j—1

> Cij- R <j-F? R

i=0
The difference between the service that .S; gives to user j and the service that S;_;
gives to j can be bounded as follows. Consider user 7. If i < j then S; serves i

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 15

Time ¢
Part I
1 Let S;(t) :=undefined for i =0,...,N — 1.
2 fori=0,1,2,...,N —2
/* S; only serves user i if it is ahead of S;_1 in service to all j > i */
3 it C(r;i(t),r;(¢)) > 0 for all j > ¢

let S;(t) :=1
let S;(t) ;=i forall j >4
exit Part I

4 Let Sy_y(t) =N —1.

Part II
5 Adversary reveals S_1(t).
/* Define S;(t) if it is undefined and update counters */
6 fori=0,1,2,...,N —2
7 Case 1: if S;(t) =i and S;—1(t) > i
decrement C(r;(t),r;(t)) by 1, where j = S;_1(t)
8 Case 2: if S;(t) = undefined and S;_1(t) =i
there exists some j > i s.t. C(r;(t),7;(t)) <0
let S;(t) := j for any such j
increment C(r;(t),7;(t)) by 1.
9 Case 3: if S;(t) =undefined and S;_1(t) > ¢
let Si(t) = i—l(t)~

Fig. 4. Tracking algorithm for window size 1.

if and only if S;_; serves 4. If ¢ > j then the number of times S; serves ¢ minus
the number of times S;_; serves ¢ is C;;. Hence, the number of times S; serves
Jj minus the number of times Sj_1 serves j is — 3, Cj;. Therefore, the amount
of service schedule S; gives to j minus the amount of service S;_; gives to j is at
most 0 and at least,

N-1

= > Cji B > —(N—1-j)-F? R,

i=j+1
The above results imply that the difference between the amount of service that the
Tracking algorithm gives to user j and the amount of service that the adversary
gives to user j is at most,

max{j - F?.- R (N —1—j)- F?. """},
O
3.2 Tracking with Window Size w

We now modify our algorithm for the case of general w. We partition time into
windows of w time steps. At the end of each window the adversary reveals the
choices that it made during the window. However, we continue to make scheduling

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

16 : Andrews and Zhang

decisions every time step. The modifications to the Tracking algorithm are minor
and are presented in Figure 5.

For each window, we execute Part I of the algorithm w times, once at each time
step in the window. We use the same rule as before to decide whether or not
S;i(t) serves user i. At the end of the window the adversary reveals its choices
and we execute Part II of the algorithm w times. We again consider three cases
to update counters and decide which user S;(t) serves if S;(t) is undefined in
Part I. The difference now is that we increment and decrement a set of temporary
counters ¢(r;(t),r;(t)) during the execution of Part II. These temporary counters
are initialized to zero at the beginning of Part II and the permanent counters
C(r;(t),r;(t)) are updated using the temporary counters only at the end of Part II.
The reason for this additional complexity is that we want the counters used by Part
I to remain constant during the window. The following statements are analogous
to Lemma 3.4 and Theorem 3.5.

Part I (performed at every time step t)
1 Part I is the same as in Figure 4.

Part IT (performed at the end of window ¢)

2 Initialize temporary counters, let ¢(-,-) := 0

3 for time steps fw, fw+1,...,({ + Dw—1

4 execute Part IT and increment/decrement c(-, -) only.

5 Update permanent counters, C(r;(t),r;(t)) := C(ri(t),r;(t)) + c(ri(t), r;(t)).

Fig. 5. Tracking algorithm for window size w.

LEMMA 3.6. Fora€ R, b€ R and i < j the expression C; j(a,b) + ¢; j(a,b),

(1) remains in the range [—w,w].
(2) counts the number of times that S; serves j minus the number of times that
Si—1 serves j during the time steps for which r;(t) = a and r;(t) = 0.

PRrROOF. To prove item 1, we assume the statement holds inductively at the
beginning of a window. During the window, a temporary counter is decremented
only when the corresponding permanent counter is positive and it is decremented
at most w times. A temporary counter is incremented only when the corresponding
permanent counter is non-positive and it is incremented at most w times. Item 2
holds as in Lemma 3.4. [

THEOREM 3.7. For each user j, the difference between the Tracking algorithm’s
service to user j and the adversary’s service to user j is at most N - F2 . RSP . q,
By Lemma 3.1, every queue length is bounded by 2N - F?- RS%P .w+w- RS*P. Hence,
the system is stable and the queue length is independent of €.

PrOOF. As in Theorem 3.5, it suffices to bound the difference in service that
a user j receives from schedule S; and S_;. We define C;; = 3, ,(Cij(a,b) +
¢ij(a,b)) for i < j and so C;; is the number of times that S; serves j minus the

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 17

number of times that S;_1 serves j over all time steps. By Lemma 3.6, |C; ;| is at
most F? - w. Following the same argument as in Theorem 3.5, we obtain that the
number of times schedule S;_; serves j minus the number of times S_; serves j
equals,

j—1
E Ci)j.
=0

The number of times schedule S; serves j minus the number of times schedule S;_;
serves j equals,

N-1
-2 G
i=j+1
Therefore the difference between the amount of service that the Tracking algorithm

gives to user j and the amount of service that the adversary gives to user j is at
most,

Jj—1 N-1
Do ICigl - R+ Y |Cial - R < N -w- F? - R
i=0 i=j+1

O

3.3 Computing the Adversary's Schedule

In this section we no longer assume that the adversary reveals its schedule at the
end of each window of length w. The Tracking algorithm now has to compute
the schedule based on the rate vectors and the data arrivals during the window.
Fortunately, we are able to redefine the Tracking algorithm so that it tracks a
fractional schedule rather than an integer schedule. Hence we only need to solve a
linear program at the end of each window rather than an integer program. At the
end of window ¢, the linear program is as follows.

0<z;t)<1 for0<j< N lw<t<({+1)w,
Z:Cj(t) =1 forw<t<({l+1l)w,
J

(+1)w—1 (t+1)w—1
Z a;(t) < (1—e¢) Z ri(t)z;(t) for 0 <j < N.
t=flw t=Llw

The new version of the Tracking algorithm is presented in Figure 6. We specify
each schedule S;(t) using an n-tuple (s;0(t), s:,1(t), . .., si,n—1(t)), where 37, s; ;(t) =
1 and s;,;(t) > 0. The value of s; ;(t) represents the fractional assignment of time
slot ¢ to user j by schedule S;. Let e; be the vector that has a 1 in the jth position
and 0 elsewhere. We use the expression S;(t) = e; to denote the fact that sched-
ule S; assigns the entire time slot ¢ to user j. For some feasible solution x of the
above linear program we set s_; _;(¢) = x;(¢). This defines the adversary’s schedule
Si—1(t). The schedule Sx_1(t) is computed in Part I of the algorithm. It is easy
to see that the Tracking algorithm is still well defined. In particular,

LEMMA 3.8. For every t, Sny—1(t) is computed before the adversary reveals its

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

18 : Andrews and Zhang

Part I (performed at every time step t)
1 Let S;(t) :=undefined for i =0,...,N — 1.
2 fori=0,1,2,...,N —2
3 it C(ri(t),r;(t)) > 0 for all j > i
let S;(t) :==¢; for j >
exit Part I
4 Let SN_l(t) =eN-—-1.

Part IT (performed at the end of window ¢)
5 Compute a feasible fractional schedule S_; for the adversary
6 Initialize temporary counters, let ¢(-,-) := 0
7 fort=tlwlw+1,...,0+Nw-1
/* Define S;(t) if it is undefined and update counters */

8 fori=0,1,2,...,N —2
9 Case 1: if S;(t) = e;

for all j > ¢, decrement c¢(r;(¢t),r;(t)) by si—1,;(t)
10 Case 2: if S;(t) = undefined

there exists some j > i s.t. C(r;(t),7;(t)) <0
let s;.;(t) == si-1,;(t) + si—1,i(t), increment c(r;(t),r;(t)) by si—1.:(t)
let Siﬁi(t) =0
for k # i and k # j let s, (t) = si—1.1(t).
11 Update permanent counters, C(r;(t),7;(t)) := C(r;(t),r;(t)) + c(ri(t),r;(t)).

Fig. 6. Tracking algorithm against a fractional adversary.

choice S_1(t). Moreover, Sy_1(t) = e; for some i. Hence Sny_1 is an integral
schedule.

Fact 3.3 remains true and can be restated as follows.
Fact 3.9. If_] < i, then Si)j(t) = Si—l,j(t)-

Proor. If s;; = 1, then Part I of the algorithm defines s; ; = 1 for all ¢ > j.
Suppose s;; = 0. If Part I defines S;11, then Sj11 = e; for some k # j which
implies s;41,; = 0. If Part II defines S;11, then s;4;; is defined to be s; ;. This
argument holds inductively for all ¢ > j+1. O

The counters still have the same meaning except that the number of times a user
is served can be fractional. The following lemma is almost identical to Lemma 3.6.
LEMMA 3.10. Fora € R, b€ R and 0 <i < j < N the expression C; ;(a,b) +
Ci,j (a, b) ’
(1) remains in the range of [—w, w;
(2) counts fractionally the number of times that S; serves j minus the number of
times that S;—1 serves j during the time steps for which r;(t) = a and r;(t) = b.
PRrROOF. To prove item 1, we assume the statement holds inductively at the
beginning of a window. During the window, a temporary counter is decremented

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 19

only when the corresponding permanent counter is positive. It is decremented at
most w times and by at most 1 every time. (See Case 1.) A temporary counter is
incremented only when the corresponding permanent counter is non-positive. It is
incremented at most w times and by at most 1 every time. (See Case 2.)

To see item 2, assume it holds inductively at all times before t. We examine how
S;(t) differs from S;_1(t). Suppose S;(t) is defined in Part I. If S;(¢) = e; for some
j < i then S;_1(¢t) must be e; as well. No counter is updated. If S;(t) = e; then
si,(t) = 0 for j > 4. Hence the counters c(r;(t),r;(t) for j > i are decremented by
si—1,;(t) in Case 1 of Part II. If S;(¢) is defined in Part II then the difference between
S;i(t) and S,—1(t) is that s;;(t) is set to 0 and s; ;(¢) is incremented by s;—1,(t)
for some j > 4. For this particular j, the counter c(r;(¢),r;(t)) is incremented
accordingly. [

Using Fact 3.9 and Lemma 3.10 we can show that the statement of Theorem 3.7
still holds. We obtain,

THEOREM 3.11. If the rate set R is finite, the Tracking algorithm is stable for
any (w,e)-admissible system. This includes critical systems in which € = 0.

3.4 Infinite Number of Rates

For the case of an infinite rate set R, the stability of the Tracking algorithm can

be preserved as long as R™ is positive and ¢ is positive. We define,
i Rsup
v = RP(1 —¢/2)", for0 <k < ’VIOgl_E/Q W-‘)

and new rates 7;(t), by,

7:Z_(t)_{o if r;(t) = 0

Vi iy < ri(t) < Vit

Since 7;(t) > r;(t)(1 — €/2), any (w,e)-admissible arrival process with respect to
rates r;(t) is (w, e/2)-admissible with respect to the new rates 7;(t). We apply the
Tracking algorithm to these new rates. We conclude,

THEOREM 3.12. If the rate set R is infinite, the Tracking algorithm is stable for
any (w,e)-admissible system as long as R™ and e are both positive.

4. STABILITY OF MAX WEIGHT

In this section we consider the MAX WEIGHT algorithm. Recall that at each time
step t, MAX WEIGHT serves the user ¢ that maximizes the product g;(¢)r;(t) where
qi(t) is the queue length of user i at time ¢. In the following we show that the
Max WEIGHT algorithm is stable for many (w, €)-admissible systems. However, it
is unknown whether MAX WEIGHT is stable when 0 € R or when R is finite and
¢ = 0. This distinguishes the Tracking algorithm from MAX WEIGHT since the
Tracking algorithm is known to be stable in these two cases. In particular, in the
wireless context it is important to be able to handle cases when 0 € R. Another
distinction is that for MAX WEIGHT the queue lengths are dependent on 1/e.

THEOREM 4.1. MAX WEIGHT is stable for any (w, €)-admissible system if e > 0,
R™ >0 and 0 ¢ R.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

20 : Andrews and Zhang

PROOF. Our analysis of MAX WEIGHT is standard. Consider the potential func-
tion L(t) = Y_,(qi(t))*>. We show that if the queues are sufficiently large then this
potential function has negative drift.

Let m;(t) € {0, 1} indicate whether or not the max weight algorithm serves user
1 at time ¢. For simplicity, in the following analysis we sometimes drop the bounds
on summation. If ¢;(¢o) > Z?:J;;U_l m;(t)r;(t) then

tot+w—1 t+w—1 2
qi(to +w)?* = <Qi(t0)+ Z a;i(t) — Z mi(ﬂﬁ(ﬂ) ;

and if ¢i(to) < 2"y (£)rs(t) then

to+w—1 2
<qi(t0)+ Z ai(t)>

t=to

t+w—1 to+w—1 2
(Z mi(t)ri(t)—&- Z ai(t)> .

t=to t=to

IN

gi(to + w)?

IN

Therefore in both cases we have,
L(to + w) — L(to)

ZQi(to +w)? — ZQi(f0)2

< Z <Qi(to) + Z ai(t) — Z mz‘@)ﬂ'@))
2
£y (Z it () + 3 m—(t)) -3 ato)?
<

2 Z (zt: ai(t)> +2 Z <zt: mi(t)ri(t)>
+ QZQi(tO) (Z a;(t) — Zmi(t)rz'(t)> (3)

Since the arrival process is (w, €)-admissible, there exists a set of z;(t) € {0,1} that
satisfies,

to+w—1 to+w—1
Z a;i(t) < (1—¢) Z x;(t)r;(t) Vi and le(t) =1 Vi
t=to t=to i

Hence, the first two terms of (3) can be upper bounded by a function of RSP, w
and N, the number of users. Let ¢; denote this upper bound. To bound the third
term of (3) we note that,

qi(t) — wR™ < q;(to) < q;(t) + wR™ for to <t <ty+w.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 21

Hence,
L(to +w) — L(to)
< a +2wRS“pZZ ai(t) +mi(t)ri(t))

+2 Z Z qi(t)(1 = e)xi(t)ri(t) — qi(t)mi(t)ri(t))

Again the second term of the above expression can be upper bounded by a function
of R°"P w and N. Let co denote this upper bound. To bound the third term, we
note that by the definition of MAX WEIGHT, >, ¢;(t)r: (t)mi(t) > >, qi(t)ri(t)z; ().
If gmax(t) = max; ¢;(t) and k = argmax;q;(t) then >, ¢;(t)r; (t)m;(t) > qi(t)ri(t) >
Gmax (t) R, We have

L(to + w) — L(to)

cL+e—2) Z(aqz-(t)mi O)ri(t))

c1 + cg — 2e R™ Z Gmax (t)
¢

IN

IN

Hence when the queues are sufficiently large, i.e. Zt°+w Gmax(t) > (c1+c2)/(2e R™),
the potential function decreases. This implies stablhty. We emphasize that this
argument only works for e > 0, R™ > 0and 0¢ R. O

5. OFFLINE ALGORITHM

We now consider the offline case. While this is an interesting theoretical problem
in its own right, it could also be applicable to a situation in which we know the
mobility and traffic patterns in advance and we wish to precompute a schedule.

We assume a set of users that each has a queue of data at time 0. Our objective
is to service all the queues within a given set of time steps whenever possible. This
is equivalent to finding a feasible solution to the following set of constraints. Let
the integer variable z;(t) = {0, 1} indicate whether or not user ¢ is serviced at time
t. Let g; be the queue size of user ¢ at time 0. Ideally, we wish to find values for
x;(t) that satisfy,

dori(wi(t) > Vi and Y mi(t)=1 Vit
t i

It is easy to see that this offline problem is NP hard. For two users, suppose
ro(t) = ri(t) for all t and g0 = q1 = 3., 70(t). Finding a feasible solution to
service both queues completely is equivalent to solving the Partition problem, which
is known to be NP-hard [10].

By linearizing the integer constraint z;(t) = {0,1} to 0 < x;(t) < 1, we can
find a feasible fractional solution in polynomial time. We propose two algorithms
for rounding the fractional solution and prove that they satisfy the properties in
Theorems 5.1 and 5.2. The construction of our rounding algorithms is motivated by
the approach of Shmoys and Tardos [18] for minimizing makespan when scheduling
on unrelated machines.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

22 . Andrews and Zhang

THEOREM 5.1. If there is a feasible fractional solution, then we can guarantee
that a 1 — « fraction of each queue is served as long as r;i(t) < ag; for each time t
and user i,

PROOF. We construct a bipartite graph (U, T, F) with node sets U and T and
an edge set E connecting nodes in U and nodes in T'. Each time step ¢ corresponds
to one node in 7. Each user ¢ corresponds to ¢; nodes in U, where ¢; = [, ;(t)].
Let these ¢; nodes be called i* where 1 < k < ¢;.

To describe the edge set, let us consider a particular user i. If in the fractional
solution z;(t) = 0 for time ¢ then edges (,4*) do not exist for k = 1...¢;. Suppose
{t7 :1 < j <m} is the set of time steps for which z;(¢/) > 0. We now describe the
subgraph induced by the node sets {#/} and {i*}. We assign a value y to each edge
in the edge set to ensure the following properties. For (¢/,i*) € E we want,

¢
Zy(tj, i*) = 2;(t7) for all i, (4)
k=1

Zy(tj,ik) =1 fork <g, (5)

J
Zy(tj,ik) <1 fork=c¢;. (6)

J
For notational simplicity let us temporarily rename the time steps t!,...,t™ by
1,...,m. We also assume without loss of generality that the rates are ordered,

ri(1) > ri(2) > ... > r;(m). We find the minimum m; such that >, ;(t) > 1.
We add edges (t,i') for t = 1...m; and assign the following y-values to ensure (4)-

(6)-

. x;(t) fort < my
t 1 = ey — ’
y(52) { 1 _ t:11 1:Ei(t) fort:mL

We now move on to node i2. If y(my,i') < z;(m1) then part of z;(my) is cur-
rently unassigned. Hence we add an edge (m1,i2) and assign y(m1,i%) = x;(m1) —
y(m1,i'). In a similar manner we find the minimum my such that Y7;"2 . x;(t)+
y(m1,i%) > 1 and add edges (t,4%) for t = m; + 1,...,ma. To ensure (4)-(6), we

assign,

1 _ m2—1

2 xi(t) for my <t < mg,
y(t,i%) = "
t=mi+1 xi(t) - y(mlu 1) for t = mao.

We continue this process until we reach the last node 7.

We now assume that in fact Ej y(t7,i%) = 1. (If this is not the case then we
define a dummy time slot #; and set 7;(t;) = 0, y(f;,i%) = 1 — Y, y(t/,i%). We
observe that y defines a fractional matching from nodes in T to U that matches
every node i* ezactly. By standard matching theory this implies there is an integral
matching that exactly matches every node i*. We denote this integral matching by
z. We have,

doomat i)+ Y)+ D> r(t)z(ti%) (7)

0<t<my mi1<t<mg Me; —1<t<me;

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 23

Y

STonyti)+ > @yt .+) r(t)a(ti%(8)

my<t<mo mo<t<ms Mme,; —1<t<me;

Y
NgE
3
<
—
~
~—
<
—~
\‘PF
S
el
S~—
|
<
-
~—
~
S~—"
<
~—~
T~
~
"
~—

t=1 k t=1
= > m®mi(t) = > byt
t=1 t=1
=g — Y rity(t.). (9)
t=1

To see that the first inequality holds, recall r;(1) > r;(2) > Every term in (7)
and (8) is a convex combination of rates. The rates in (7) are larger than those
in (8). If the rates satisfy the condition 7;(t) < ag; for each time ¢ and user i, the
second term in (9) is upper bounded by ag;. O

THEOREM 5.2. If there is a feasible fractional solution, then for any rates we
can guarantee that at least half of the users have at least half of their queue served.

PROOF. We first note that integral feasibility is unchanged if we take each rate
r;(t) to be min(r;(t), q;). Therefore, let us assume without loss of generality that
ri(t) < ¢; for all t and i. For each time slot ¢t we create a pair of time slots t4 and
tB. We define new rates by,

Ti(tA) _ { Qi/2 if ri(t) > %’/2

0 otherwise
T (tB) = T; (t) — T (tA)

We set up the constraints using the new time slots {¢*,#%} and the new channel
rates. We then apply the above rounding algorithm to a feasible fractional solution.
However, the rounded integral solution may not define a valid solution if t4 and
tB are assigned to serve two different users. We apply the following procedure to
create a valid solution.

Initially all users are unremoved. Consider time slots 4 and tZ. Suppose t4
serves i and tZ serves j. If r;(t?) = ¢;/2, then in our final solution t* serves i and
7 is not served at all. Note that in this way, at least half of i’s queue is served. Now
both ¢ and j are considered removed. We move on to the next pair of time slots and
see which unremoved user(s) they serve. The procedure terminates when either all
users are removed or all time slots are considered. Among all removed users exactly
half of them have exactly half of their queue served. Among all unremoved users,
no two can be served by time slots t4 and ¢ for the same ¢ (unless 7;(t*) = 0).
Hence, the rounded integral solution induced on the unremoved users is valid. [

We also present asymptotically matching integrality gaps to demonstrate that no
rounding algorithm could be significantly better. Let n be the number of users.

THEOREM 5.3. There exists an example with a feasible fractional solution such
that in any integral solution at least one user has at most a 1 — a+ «/n fraction of
its queue served.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

24 . Andrews and Zhang

PROOF. Suppose for simplicity that 1/« is an integer. (The proof is similar if
this is not the case.) We have n(1 4+ 1/«) time slots and n + 1 users each of which
has queue size 1. We define the following rates.

« for0<t<n,i=0

! for 0 <t <n(l/a),i—1=tmodn

a/n forn(l/a<t<n(l+1/a),i—1=tmodn
0 otherwise

T (t) =

Note that r;(t) < a for all 4,¢. A fractional solution that serves all users completely
is given by,

1/n for0<t<mn,i=0

2i(t) = 1—1/n for0<t<n,i—1=t

! 1 forn<t<n(l+1l/a),i—1=tmodn
0 otherwise

For the integral solution suppose that all users 1 < ¢ < n receive service higher
than 1 — a4+ a/n. Then all time slots 0 < ¢t < n must be assigned to user i = ¢+ 1.
Therefore user 0 receives no service. [

THEOREM 5.4. There exists an example with a feasible fractional solution such
that in any integral solution at least n/2—1 users have less than half of their queues
served.

PROOF. We have 3n + 1 time steps and 2n users each of which has queue size 1.
Let 6 = 1/4n. We define the following rates.

2nd fort=0,1<i<2n

1 for0<t<n,i=t

1 forO<t<n,i=t+n
ri(t) = 1/2—6 forn<t<2n,i=t

1/2—06 for2n<t<3n,i=t—2n

0 otherwise

The following is a fractional solution that serves all users completely. During every
time step the server splits its service equally among all the users that have positive
rates. The fractional solution z is given by,

1/2n fort=0,1<i<2n
1/2 for0O<t<n,i=t
1/2 forO0<t<m,i=t+n

zit) = 1 forn<t<2n,i=t
1 for 2n <t < 3n,i=t—2n
0 otherwise
For the integral solution, note that the rates for times n 4+ 1,...,3n are less than

1/2. Therefore, if a queue is more than half served then it must receive service
during the first n + 1 steps. In an integral solution, at most n + 1 users (out of 2n
users) can receive service in n + 1 steps. O

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 25

A. THE QUALCOMM HIGH DATA RATE SYSTEM

In this section we describe the Qualcomm High Data Rate (HDR) system for high
speed data transmission in wireless networks. This provides further motivation for
our model and demonstrates its relation to wireless systems in reality.

HDR. In HDR the length of the time slot is 1.67ms, i.e. 600 slots per second. In
each slot the basestation can transmit to at most one user. The user rate r;(t) is
calculated as follows. Each mobile monitors the quality of a pilot signal transmitted
by the basestation and estimates the channel quality. From this estimation mobile
i decides on the rate, r;(t) at which it can receive data in the next time slot.
The better the channel quality, the larger 7;(t) is. The mobile then transmits this
information to the basestation in a Data Rate Control message (DRC). From these
messages the basestation has the complete rate vector. We note that many papers
use the notation DRC;(t) instead of r;(¢).

In order for decoding to be feasible, HDR uses a finite set of rates, namely (in kbits
per second) R = {0,38.4,76.8, 153.6,307.2, 614.4,921.6, 1228.8,1843.2,2457.6}.
Our model simplifies two features of HDR. First, if the basestation decides to trans-
mit at a low rate (e.g. 38.4kbps), HDR forces multiple time slots (e.g. 16 slots) to
be assigned to the same user. Otherwise, the amount of data transmitted would be
too small, which would lead to implementation problems. Second, if the basestation
decides to serve user ¢, the actual data transmission rate might be slightly different
from 7;(t), due to the coding schemes that are used to compensate for noisy wireless
channels.

As we mentioned earlier, the scheduler in our model assigns slots one at a time.
In addition, if user ¢ is served at time ¢ the actual transmission rate is exactly r;(t).
Our model is more general in that we allow a continuum of rates.

Proportional Fair. The standard scheduling algorithm used by HDR is known
as Proportional Fair. This algorithm always chooses the user ¢ that maximizes
r;(t)/pni(t + 1) where u;(t + 1) is an exponentially smoothed average of the service
rate to user ¢ up to time t. More precisely,

pi(t+1) = (1 =1/7)pi(t) + s4(t) /7,

where s;(t) is the amount of data scheduled to user ¢ in time slot ¢ and 7 is a
“time constant” for the averaging. (In the HDR system the value of 7 is typically
1024 and so the averaging is taken over roughly 1.7 seconds.) The rationale for
Proportional Fair is that if all users have large backlogs then the scheme maximizes
> log pi(t) [12; 19]. This implies that increasing p;(t) by some factor has the same
effect on the objective as increasing u;(¢) by the same factor.

There are in fact three versions of Proportional Fair depending on how users
with small queues are scheduled. In [2] it is shown that all three versions can be
unstable. This is even true against a benign adversary that only injects data at
constant arrival rates and only uses 2 rate vectors that appear in a periodic fashion.
More precisely, consider a 2-user system with the following arrival rates and service
rates,

ao(f) =9 Vt7 al(t) =49 Vt

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

26 : Andrews and Zhang

1000 for ¢ mod 10 =0

ro(t) =100 V¢, ri(t) = { 100 otherwise

The system is stable if we assign time slot ¢ to user 1 if ¢ mod 20 = 0 and to user
0 otherwise. However, Proportional Fair is not “intelligent” to enough assign time
slots in this way. It is shown in [2] that at most 9 out of every 10 time slots are
assigned to user 0. Therefore the queue for user 0 is unstable.

Acknowledgements

The authors would like to thank Sasha Stolyar and Sem Borst for many helpful
discussions about wireless scheduling. The authors would also like to thank two
anonymous referees for their suggestions on improving the presentation of the paper.

REFERENCES

W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen. Adaptive packet routing for bursty ad-
versarial traffic. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
pages 359 — 368, Dallas, TX, May 1998.

M. Andrews. Instability of the proportional fair scheduling algorithm for HDR. Submitted.
M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. Universal
stability results and performance bounds for greedy contention-resolution protocols. Journal
of the ACM, 48(1):39-69, January 2001.

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting. CDMA
data QoS scheduling on the forward link with variable channel conditions. Bell Labs Technical
Memorandum, April 2000.

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting. Providing
quality of service over a shared wireless link. JEEE Communications Magazine, February 2001.
E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algorithms in dy-
namic adversarial systems. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, Montreal, Canada, May 2002.

B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple routing strategies
for adversarial systems. In Proceedings of the 42nd Annual Symposium on Foundations of
Computer Science, pages 158 — 167, Las Vegas, NV, October 2001.

A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queueing
theory. Journal of the ACM, 48(1):13-38, January 2001.

S. Borst and P. Whiting. Dynamic rate control algorithms for CDMA throughput optimization.
In Proceedings of IEEE INFOCOM 01, Anchorage, AK, April 2001.

M. R. Garey and D. S. Johnson. Computers and intractability - A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

A. Jalali, R. Padovani, and R. Pankaj. Data throughput of CDMA-HDR a high efficiency-high
data rate personal communication wireless system. In Proceedings of the IEEE Semiannual
Vehicular Technology Conference, VT C2000-Spring, Tokyo, Japan, May 2000.

H. Kushner and P. Whiting. Asymptotic properties of proportional-fair sharing algorithms. In
40th Annual Allerton Conference on Communication, Control, and Computing, 2002.

M. Neely, E. Modiano, and C. Rohrs. Power and server allocation in a multi-beam satellite with
time varying channels. In Proceedings of IEEE INFOCOM 02, New York, NY, June 2002.

J. Rhee, T. Kim, and D. Kim. Wireless fair scheduling algorithm for 1xEV-DO system. In Pro-
ceedings of the IEEE Semiannual Vehicular Technology Conference, VTC2001-Fall, Atlantic
City, NJ, October 2001.

S. Shakkottai and R. Srikant. Scheduling real-time traffic with deadlines over a wireless channel.
In Proceedings of ACM Workshop on Wireless and Mobile Multimedia, Seattle, WA, August
1999.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

Scheduling Over a Time-Varying User-Dependent Channel . 27

S. Shakkottai and A. Stolyar. Scheduling algorithms for a mixture of real-time and non-real-
time data in HDR. In Proceedings of 17th International Teletraffic Congress (ITC-17), pages
793 — 804, Salvador da Bahia, Brazil, 2001.

S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a time-varying channel:
The exponential rule. Analytic Methods in Applied Probability, 2002. To appear.

D. Shmoys and E. Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming A, 62:461 — 474, 1993. Also in Proceedings of the 4th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1993.

A. Stolyar. Multiuser throughput dynamics under proportional fair and other gradient based
scheduling algorithms. Submitted.

L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37(12):1936 — 1948, December 1992.

D. Tse. Forward-link multiuser diversity through rate adaptation and scheduling. In prepara-
tion.

Received ; revised ; accepted

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.

