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Abstract— We consider a wireless basestation transmitting
high-speed data to multiple mobile users in a cell. The chan-
nel conditions between the basestation and the users are
time-varying and user-dependent. Our objective is to de-
sign a scheduler that determines which user to schedule at
each time step. Previous work on this problem has typi-
cally assumed that the channel conditions are governed by
a stationary stochastic process. In this setting a popular algo-
rithm known as Max-Weight has been shown to have good
performance.

However, the stationarity assumption is not always rea-
sonable. In this paper we study a more general worst-case
model in which the channel conditions are governed by an
adversary and are not necessarily stationary. In this model,
we show that the non-stationarities can cause Max-Weight
to have extremely poor performance. In particular, even
if the set of possible transmission rates is finite, as in the
CDMA 1xEV-DO system, Max-Weight can produce queues
size that are exponential in the number of users. On the
positive side, we describe a set of Tracking Algorithms that
aim to track the performance of a schedule maintained by
the adversary. For one of these Tracking Algorithms the
queue sizes are only quadratic.

We discuss a number of practical issues associated with
the Tracking Algorithms. We also illustrate the perfor-
mance of Max-Weight and the Tracking Algorithms using
simulation.

1 Introduction

High-speed wireless networks for data service are becoming
increasingly common and optimizing such networks is the
subject of active research. In particular, the scheduling
of high-speed data is vital to the performance of modern
wireless systems. In this paper we study the situation of
a single basestation transmitting data to a set of mobile
terminals in a cell. (See Figure 1.)

We follow a model that is motivated by Qualcomm’s
High Data Rate (HDR) system [6, 11]. The HDR system
forms the basis for the CDMA 1xEV-DO standard and is
becoming accepted as a standard model. In this model,
time is slotted. In every time slot each mobile calculates
the rate at which it can receive data and informs the bases-
tation in a Data Rate Control (DRC) message. The bases-
tation then determines which mobile to serve. If mobile i
is chosen for service at time slot ¢, the rate at which data
can be transmitted is called the DRC rate r;(¢). The value
of r;(t) depends on the quality of the channel between the
basestation and mobile ¢. In the HDR system, at most
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Figure 1: A wireless cell.

one mobile can be served per time slot. The job of the
scheduler is to choose which mobile to serve.

We emphasize that the DRC rates can be different for
different users and can change over time due to user mobil-
ity and channel fading. This provides a contrast with the
classical wireline scheduling problem where service rates
are the same for each user and do not change over time.

A great deal of work has recently be done on this prob-
lem. For example, a popular algorithm known as Maz-
Weight, which always serves the user that maximizes the
product of the DRC rate and the current queue size, has
been shown in the past to work well. However, almost
all previous work on wireless scheduling assumes that the
channel condition between the basestation and a mobile
user is governed by a stationary stochastic process such as
an ergodic Markov chain. This is not always a realistic as-
sumption. For example, consider a mobile user moving at
a slow speed away from the basestation. In this case the
quality of the channel will have a slow negative drift.

In this paper our focus is on scheduling algorithms that
perform well for non-stationary wireless channels.

1.1 Model and preliminaries

We consider a set of N mobiles (or users) that receive
(downlink) data transmissions from a basestation in a cell.
Fach user has a queue that is fed by an arrival process. We
use the following notation.

e 7;(t): the DRC rate at time ¢ for user i, i.e. the amount
of data that can be transmitted to user ¢ during time
slot ¢ if 7 is chosen;

o 7(t) = (ro(t),...rn—1(t)): the DRC vector at time ¢.

e ¢;(t): the amount of data queued for user i at the end
of time slot ¢;



e a;(t): the amount of data that arrives for user 7 in
time slot t.

The scheduler at the basestation chooses at most one
user to service for each time slot. For example, the Max-
Weight algorithm always chooses the user that maximizes
r;(t)q;(¢t) for service in time slot ¢. If user 7 is chosen, queue
g;(t) is reduced according to r;(t). Data then arrives for
all users and their queues are increased. More precisely,

qi(t +1)
gj(t+1)

—  ¢;(t) — min{q;(t),r;()} + ai(t)
— qj(t) + aj(t) Vj # 1.

In almost all previous work, the DRC process and the
arrival process are modeled by stationary stochastic pro-
cesses. More precisely, the DRC process is defined by
an ergodic Markov Chain with state space M such that
if the state at time ¢t is m € M then the DRC vector
(ro(t),...,rn—1(t)) can be written as (rg,...,m%_,), i.e.
the DRC values are dependent on the state m. In addi-
tion, the arrival process for user 4 is usually modeled by a
Bernoulli process with intensity A;. In this scenario it is
known (e.g. [22, 23]) that Max-Weight performs well.

However, as argued before stationary stochastic processes
are not always appropriate for modeling mobility. In this
paper we focus on a worst case model, in which the DRC
process and the arrival process are generated by an adver-
sary. By “worst case” we mean that the adversary is at-
tempting to cause the chosen scheduling algorithm as many
problems as possible. Scheduling in the context of “ad-
versarial queueing” has received much attention recently,
especially for the wireline environment [7, 2].

We assume that the scheduling process against an ad-
versary is as follows. At the beginning of each time slot ¢
the adversary generates a DRC vector, 7(¢). The schedul-
ing algorithm then makes a decision as to which user it is
going to serve. Finally the adversary injects data into the
queues.

In order for the problem to be interesting we require that
the system is not overloaded. More formally, we say that
a sequence of DRCs and arrivals is admissible if there is
some schedule that can serve all the data. That is, there
exist integers z;(t) € {0,1} (which we call the adversary’s
schedule) such that for some window w and some loading
parameter €,

T+w—1 T+w-—1

Y oait) < Y (L-e)zmt)r(t)
doai(t)y=1 vt (2)

vi,7, (1)

t=71

In other words, in any window of w time steps the adver-
sary is able to schedule the users so that each user receives
more service than the amount of data injected.

However, we stress that the adversary’s schedule can-
not be computed by an online algorithm. Note that at
the end of each window [7, 7 + w), a (computationally un-
bounded) online algorithm could examine the data that ar-
rived during the window and could deduce the adversary’s

bits/slot | k-bits/sec
0 0

64 38.4
128 76.8
256 153.6
512 307.2
1024 614.4
1536 921.6
2048 1228.8
3072 1843.2
4096 2457.6

Figure 2: The 10 DRC rates used in the EV-DO standard.

schedule. However, it is too late for the server to imple-
ment this schedule. The rate vectors that appear during
[T+ w, T+ 2w) could be entirely different from the rate vec-
tors that appeared during [7, 7 + w). Our aim is to design
an online scheduling algorithm that keeps the queues small
under all admissible DRC and arrival processes.

If ¢ = 0 then we say that the system is critically loaded.
If the e > 0 then we say that the system is subcritically
loaded.

1.2 Our results

In this paper we concentrate on non-stationary DRC pro-
cesses over a finite set of DRC rates. In particular we use
the 10 rates specified by the EV-DO standard. In the EV-
DO standard each time slot is 1.667ms, i.e. there are 600
slots per second. The allowable values for the DRC rates
in terms of bits per slot and in terms of kilobits per second
are presented in Figure 2. From now on we shall refer to
this rate set as the EV-DO rate set.!

e In Section 2 we show that for non-stationary channels
Max-Weight can give extremely poor performance. In
particular we give an example using the EV-DO rate
set for which Max-Weight produces queues that are
exponential in the number of users. We feel that it
is important to study Max-Weight since it has been
proposed so often in the literature.

A natural question to ask is whether there is an algo-
rithm that has a polynomial bound on queue size for non-
stationary channels. In [5] we showed that there is an al-
gorithm, which we refer to as the Quadratic Tracking Al-
gorithm, for which the bound on queue size is linear in the
number of users and quadratic in the number of possible
DRC rates.

The idea of this algorithm is that at the end of each win-
dow it calculates what the adversary’s schedule was dur-

1We remark that in actual EV-DO systems, it is not the case that we
have a separate DRC in each time slot. In reality, data is divided into
physical packets of size 1024, 2048, 3072 or 4096 bits. The packet is then
transmitted over multiple slots. The actual achieved transmission rate
may be slightly more or less than the DRC rate due to coding issues.
These details do not have a major effect on system performance and so
we ignore them in this paper for the sake of readability.



ing the window. In other words, it continually works out
what it should have done in the past. It then maintains
a quadratic number of counters to measure the difference
between its own schedule in the past and the adversary’s
schedule. It uses these counters to decide on its schedule
in the future. For the sake of completeness we describe the
Quadratic Tracking Algorithm in the Appendix.

There are a number of ways in which the Quadratic
Tracking Algorithm could be improved. First, we would
like a bound on queue size that is linear in the number
of DRC rates. Second, the definition of the algorithm as-
sumes that we know the value of w for which the inputs are
admissible. This assumption could be unrealistic. Lastly,
the calculation of the adversary’s schedule at the end of
each window requires the solution of an integer program.
Even though it turns out that we only need to solve a lin-
ear program, it is unlikely that this could be performed in
hardware. In this paper we address these issues.

e In Section 3.3 we present a heuristic Linear Track-
ing algorithm that only uses a linear number of coun-
ters for each user. As long as these counters remain
bounded, the bound on queue size is linear in the num-
ber of DRC rates and does not depend on the num-
ber of users. We refer to the algorithm as a heuris-
tic because we cannot prove that the counters remain
bounded. However, we do not know of a situation
where they are unbounded.

¢ In Section 3.4 we examine the situation where we do
not know the correct value of w. If, when calculating
the adversary’s schedule, it is impossible to serve all
the data in the window, we use linear programming to
maximize a weighted sum of the data served.

e In Section 3.5 we describe a method to calculate the
adversary’s schedule when it is impractical to solve a
linear program. We present a simple combinatorial
algorithm that can approximate the solution of the
linear program arbitrarily closely.

e In Section 4 we illustrate the behavior of Max-Weight
and the Linear Tracking Algorithm through simula-
tions. We first simulate the example from Section 2 to
show that Max-Weight does indeed produce exponen-
tially large queues. In contrast, the Linear Tracking
Algorithm maintains extremely small queues. We then
present another simple non-stationary example where
once again the Linear Tracking Algorithm outperforms
Max-Weight. Lastly we simulate a stationary example
where Max-Weight would be expected to do well. We
show that here the performance of the Linear Tracking
Algorithm is close to that of Max-Weight.

Remark 1. In our model, a;(t) represents the amount of
data injected into the queue for user ¢ at time ¢. However,
it is sometimes unwise to base a scheduling algorithm on
actual queue contents since a misbehaving user could po-
tentially gain more service by injecting an excessive amount
of data into its queue. A standard way to solve this prob-
lem is for each user to have a token buffer into which tokens

are injected at a fixed rate. We then use this token buffer
for scheduling rather the real data queue. If we are able to
keep the token buffer bounded then each user will receive a
long-term service rate equal to its token rate. For this rea-
son we feel that an important special case of our problem
is when a;(t) is independent of time since we can then use
a;(t) to represent the number of tokens arriving for user ¢
in time slot ¢. For our negative results the bad examples
that we study all have the property that a;(t) is constant.
However, we stress that our positive results apply to the
case of variable a;(t).

Remark 2. In this paper, we focus on finite rate sets
only. For the case of infinite rate sets, we showed in [5]
that if the DRC rates can be arbitrarily close to 0 then no
online algorithm can keep the queues bounded.

1.3 Previous work

As mentioned earlier, almost all work on scheduling over
time-varying channels has assumed that the channel pro-
cess is stationary. Under this assumption, Max-Weight was
first shown to perform well by Tassiulas and Ephremides [22,
23]. Other papers that study Max-Weight include [4, 3, 15].
Two variants of Max-Weight are Max-Delay [4, 3] and
Exp [18, 19]. The Max-Delay algorithm always serves the
user that maximizes A;(t)r;(t) where A;(t) denotes the
Head-of-Line delay for user ¢ at time ¢. Exp is a more com-
plex algorithm that provides more control over the relative
delays that the users experience. For the case in which
each packet has a deadline and the objective is to meet all
the deadlines, [17] shows that the Earliest-Deadline-First
algorithm is not always optimal (in contrast to the wireline
case).

In our model we assume that each queue is fed by an
arrival process and we wish to keep the queues small. In a
different model that is sometimes studied, each queue has
an infinite backlog and we wish to optimize some function
of the service rates that each user receives. For this model
a popular and widely implemented algorithm is known as
Proportional Fair [24]. Proportional Fair always serves the
user that maximizes r;(t)/R;(t) where R;(t) is an exponen-
tially smoothed average of the service rate received by user
i. It is known [21, 12] that for stationary channels Pro-
portional Fair maximizes the objective log R;. However,
it is also known [1] that if (as in our model) the queues
are fed by an arrival process then Proportional Fair can be
unstable (i.e. the queues can grow without bound).

The problem of providing a target service rate to each
user was studied in [9]. Algorithms for optimizing utility
functions subject to fairness requirements are presented in
[13, 14]. In [8], Borst examines the user-level performance
of scheduling algorithms such as Proportional Fair under
the assumption that each user has a finite service demand
and leaves the system once this demand is satisfied.



2 Max-Weight

In this section we present examples to show that Max-
Weight can give extremely poor performance when the
DRC process is non-stationary. In particular we present
an admissible arrival and DRC process for which Max-
Weight produces queues that are exponential in the number
of users. We restrict ourselves to the EV-DO rates shown
in Figure 2 and constant arrival processes.

Let us consider a system of IV users. User 0 has a special
role. Users 1 through N — 1 all act in a similar manner.
The arrival process for all users is constant. The arrival
rate for each user ¢ > 1 is 1 bit per slot; the arrival rate
for user 0 is 64 bits per slot. The DRC process is periodic
with period 64 slots and is defined as follows:

4096 t =0 mod 64

ro(t) = 4096 t = —1 mod 64 (3)
0 0.W.
64 t= —i mod 64
128 t=—(i+1) mod 64
(t) = ’ 4
ri(t) and ¢;(t) > 2gi+1(?) )
0 0.W.
user 0 user 1 user 2 user 3
t=1
t=2
Oor128 64
Oor128 64
t=w-1| 4096 64
t=w | 4096

Figure 3: DRC process that creates exponential queues for
Max-Weight. The rates in the empty slots are zero.

The arrival and DRC processes described above are ad-
missible for w = 64 and ¢ = 0 (i.e. the system is critically
loaded). To see this, let z;(t) = 1 whenever ¢t = —i mod w
and let z;(t) = 0 otherwise. (In other words, the adversary
serves user ¢ in time slots ¢ = —¢ mod w.) Then,

T4+w—1

> ait) =

t=71

T4+w—1

D wmilt)ri(t)
doaty=1 vt

Vi, T,

Theorem 1 Under Maz-Weight, the queue size for user
N —1 is exponential in N.

Proof: Let us define a sequence,

f1 =4096 x 62 and f; = 2f;i_; for i > 2.

We prove the following statement by induction on the num-
ber of users. Consider a system of N users and any queue
configuration at time ¢. The queue for the last user gy _1(t)
is either greater than fy_; or there exists a future slot
t' > t for which the queue qn_1(t') is greater than fy_;.

The base case is 2 users. Note that user 1 can only be
served in time slots ¢ = —1 mod w. At time ¢ = —1 mod w,
the queue go(t) for user 0 is at least 64 x 62 since the DRC
rate for user 0 is 0 in the preceding 62 time slots. If the
queue ¢ (t) for user 1 is smaller than f;, then go(t) x 4096 >
¢1(t) x 64. Hence, Max-Weight chooses to serve user 0 at
time ¢. This implies that the queue for user 1 never receives
service as long as it is under f;. Therefore the queue for
user 1 eventually grows to fi.

Inductively, we assume the statement holds for a system
of N = n users where n < w and we prove it for N =n+1
users. We use a second induction on the queue size of the
last user n. For k < f, we show that for any slot ¢ either
gn(t) > k or gn(t') > k for some ¢' > t. This is trivially
true for k = 0 since a;(t) > 0 for all slots but r;(¢) = 0 for
all but 2 slots out of 64. Assume now that the statement
holds for all &' < k.

Consider a time ¢t. By the second inductive hypothe-
sis there exists at time ¢’ > ¢ when g,(t') > k — 1. If
gn(t') > k then we are done and so we suppose ¢, (t') = k.
We claim that there must be a time ¢” in the future when
t" = —n mod w and ¢,—1(t") > k/2. If not then r,_1(¢")
never equals 128 and so users 0 through n — 1 act as
though they are a system of n users. That is, users 0
through n — 1 act independently of user n. Therefore,
by the first inductive hypothesis, at some time t" > ¢,
Gn-1(t") > fn—1 = fn/2 > k/2. During the time interval
[t',t"), gn(t) essentially remains constant. During the win-
dow containing ¢, user n — 1 is served with a DRC rate of
128 and user n is not served. Therefore, after time t"| ¢, (t)
becomes larger than k. This proves the second induction
which in turn immediately implies the first induction. O

Of course the arrival rates, DRC rates and window sizes
we have chosen above have no particular significance. In
general let us choose a window size of w and let N be at
most w. The arrival rate for user 0 is ap = 4096/w where
4096 represents the largest DRC rate; the arrival rate for
each user ¢ > 0 is still 1. We define the DRC process as
follows.

4096
To (t) = { 0
w t=—imodw
2w t=—(i+1) mod w,
and ¢;(t) > 2¢;+1(t)
0 0.W.

t=0,—1 mod w
0.W.

ri(t) =

Again the arrival and DRC processes are admissible for a
critically loaded system. By an argument similar to that in
Theorem 1 the queue for user 1 grows to (w—2)-ag-4096/w
and the queue for user i > 1 grows to be twice that for user
i — 1. Hence, Theorem 1 holds for,

fi = (w—2)-4096°/w® and f; = 2f;_; fori > 2.



For the EV-DO rate set, we can set w = 2048. The queue
can grow as high as 8184 -2V for N as large as 2048.

Our proof for Theorem 1 and the description of the ar-
rival and DRC processes are for a critically loaded system.
However, if the system is subcritically loaded for a small
€ > 0 we observe in our simulations that the statement of
Theorem 1 still holds. See Section 4.

3 'Tracking Algorithms

In this section we present a family of algorithms that pro-

0<zi(t) < 1 Vit (7
Since we only require fractional values we can calculate
z;(t) in polynomial time using a linear programming algo-
rithm. Note that we know the values of a;(t) and r;(t) since
we are solving the program for time steps that are in the
past. We also note that although in hardware implementa-
tions we are unlikely to be able to solve linear programs,
we can approximate the solution arbitrarily closely using
simple combinatorial algorithms. See Section 3.5.

Once we have calculated the solution we use it to update
a set of counters which measure how far away the Tracking

vide much better performance for examples with non-stationarg jeorithm is from the adversary’s schedule. Then, during

channel conditions. We refer to these algorithms as Track-
ing Algorithms. They are motivated by the following ob-
servation. Recall from the Introduction that a sequence
of DRCs and arrivals is admissible if there exist integers
z;(t) € {0,1} (which represent the adversary’s schedule)
such that for some window w and some loading parameter
€,
rw—1 THw—1
Z a;(t) < Z (1 —e)z;i(t)ri(t)
t=1 t=1
dowmi(t) = 1Vt
2

We let R be the DRC rate set and R™®* be the largest rate
from R. The following lemma is easy to prove.

Vi, T,

Lemma 2 Suppose we know the values of x;(t) for which
the admissibility condition is satisfied. If we always serve
the user for which z;(t) = 1 then the queue for user i is
bounded by (w + 1) R™2*,

Unfortunately, it is clear that the adversary’s schedule
is not implementable for two reasons. First, we cannot
calculate x;(t) online since z;(t) can depend on a;(t') and
r;(t") for ¢ > t. Second, even if we did know the future
arrivals and DRCs, finding a set of x;(t) that satisfy the
admissibility condition for a given window involves solving
an instance of the GENERALIZED ASSIGNMENT PROBLEM
(GAP) which is NP-hard [20].

The key aim of the Tracking Algorithms is to “track” the
adversary’s schedule as close as possible whilst still being
realizable. We make the algorithm online by trying to track
the adversary’s schedule from the past, rather than the
adversary’s current schedule. We circumvent the problem
of NP-hardness by only calculating a fractional schedule
for the adversary rather than an integral schedule.

More formally, we divide time into windows of w steps,
[0,w), [w,2w), 2w, 3w) .... (We assume for now that we
know w. We address how to run the algorithm if this is
not the case later on in Section 3.4.) Then at the end of
each window [(¢ — 1)w, fw) we find fractional values z;(t),
(£ — 1w < t < fw that satisfy,

lw—1 lw—1
Sooait) <> mrt) Vi L, (5)
t=(L—1)w t=({—1)w

Vt,

in(t) =1

the next window we use these counters to decide which user
we are actually going to serve. There are three versions
of the Tracking Algorithm that differ in how the counters
are defined and used. We now describe them in detail. We
assume throughout this section that the rate set R is finite.

3.1 Exponential Tracking Algorithm

We begin with an Exponential Tracking Algorithm. Al-
though this algorithm has an exponential bound on queue
size it introduces the main ideas. We define a counter C;(7)
for each of the |R|™ possible DRC vectors 7 and for each
user ¢. This counter is a measure of the number of the times
user 1 is serviced by the (fractional) adversary’s schedule
when the DRC vector is 7, minus the number of times user
i is serviced by the Tracking Algorithm when the DRC vec-
tor is 7. More precisely, at time ¢ the Tracking Algorithm
always serves user,

j € argmax C;(7(t)),

with ties broken arbitrarily. If user j is chosen for service
and C;(7(t)) > 0 then C;(7(t)) is decremented by 1. When
we reach the end of the window containing time step ¢ and
have calculated the (fractional) values z;(t) we increment
Ci(F(t)) by z;(t) for each i. Pseudocode of the algorithm
is contained in Figure 4.

We analyze the Exponential Tracking Algorithm by par-
titioning time steps according to the DRC vector. For-
mally, let,

Tr = {t:7(t) =7}

For a time window [7, 7 + w) let p be the number of times
that the DRC vector is 7, i.e. p = |Tr N [7,7 + w)|. By the
choice of user to serve, either ), C;(7) is decremented by
p during the window or else ) . C;(7) = 0 at some point
during the window. At the end of the window, ), C;(7) is
incremented by p. From this it is clear that >, C;(7) < w.
Intuitively, we have now bounded the difference between
the amount of service the adversary gives to user ¢ and the
amount of service the Tracking algorithm gives to user 4.
It is now straightforward to prove that,

Lemma 3 For the Exponential Tracking Algorithm the queue

size for user i is upper bounded by (w+2) R™¥*+3w|R|N Rmax,

Proof: Suppose for the sake of simplicity that if C; (7(t)) =
0 for all j then Exponential Tracking does not serve any



Part I (performed at every time step 7)
1 j <+ argmax; C;(7(7))

2 Serve user j

3 C;(f(1)) « max{C;(7(r)) — 1,0}.

5 fort=(/L-1w,...,lw—-1
6 fori=0,1,2,...,N —1
7 Ci(7(1)) « Cu(m(t)) + z:(t)

/* Decrement counter */

Part IT (performed at the end of each window when 7 =fw —1for £=1,2,...)
4 Compute a fractional adversary schedule {z;(t)} for the past window where ({ — 1)w < t < fw

/* Increment counters according to {z;(t)} */

Figure 4: Exponential Tracking Algorithm.

Part I (performed at every time step 7)
1 j + argmax; C;(r;(7))
2 Serve user j

3 Cj(rj(r)) « max{C;(r;(r)) - 1,0}.

5 fort=0L—-Nw,...,¢w—1
6 fori=0,1,2,...,N —1
7 Ci(ri(t)) < Ci(ri(t)) + zi(t)

/* Decrement counter */

Part IT (performed at the end of each window when 7 =fw —1for £ =1,2,...)
4 Compute a fractional adversary schedule {z;(t)} for the past window where (¢ — 1)w < t < fw

/* Increment counters according to {z;(t)} */

Figure 5: Linear Tracking Algorithm. The only difference between Exponential Tracking and Linear Tracking is that
the counter is defined on each DRC rate for Linear Tracking and the counter is defined on length-N DRC vectors for

Exponential Tracking.

user. Let y;(t) = 1 if Exponential Tracking serves user j
at time ¢ and y;(t) = 0 otherwise. For any time 7 let 7’
be the last time that ¢;(7' — 1) < R™a*. This implies that
¢i(7") < (w + 1)R™**. We have,

gi(r) = qi(r') = > wt)ri(t) + Y ailt).
t=7' t=7'
Then by the admissibility condition,

qi(1) < (w+1)R™&*— i yi(t)r; (t)+meax+i x; (t)r (t).

By partitioning time according to the DRC vector we have,

G(r) < Quw+DR™ +>" Y (@it) — pi®)ri (D).

7 te€Tm7'<t<T

The value of 3,7 .o, (i(t) — yi(t)) is essentially the

difference between the value of the counter C;(7) at time 7/

and the value of C;(7) at time 7. Hence 3, ;. 1oy (zi(t)—
yi(t)) < 3w. (The reason it is 3w rather than w is due to

the fact that the counters are only incremented at the end

of a window.) In addition, at all times ¢t € T, the value of
r;(t) is equal to the ith component of 7. Hence,

(@i(t) — yi(t))rs(t) < 3wR™™,
teETm:T' <t<T

which implies ¢;(7) < (2w + 1)R™ 4 3w|R|VR™8*. O

3.2 Quadratic Tracking Algorithm

The Quadratic Tracking Algorithm was presented and an-
alyzed in [5]. We briefly describe it in the Appendix for
completeness. Pseudocode for the algorithm is contained
in Figure 12. The motivation for the Quadratic Track-
ing Algorithm is that we would like to have a polynomial
bound on queue size. For this purpose, we now define our
counters on pairs of rates rather than on length-V DRC
vectors. For each pair of users ¢ < j and for each pair
of rates a,b € R we maintain a counter, C;;(a,b). The
following lemma is proved in [5].

Lemma 4 ([5]) For the Quadratic Tracking Algorithm the
queue size for user i is upper bounded by w R™*+2N|R|> Rmax,

3.3 Linear Tracking Algorithm

The Quadratic Tracking Algorithm has a much better bound
on queue size than the Exponential Tracking Algorithm.
However, it is still quadratic in the size of the rate set
which may be unacceptable in some situations. In addi-
tion as we can see from Figure 12 the algorithm for updat-
ing the counters is somewhat involved. We now introduce
a simple heuristic Linear Tracking Algorithm which only
uses a linear number of counters. As long as these coun-
ters remain bounded this algorithm allocates service in a
manner that is extremely close to the adversary and so it




achieves good performance. The pseudocode for the linear
tracking algorithm is contained in Figure 5.

For each r € R and for each user i we have a counter
C;i(r). This is a measure of the number of the times user
i is serviced by the (fractional) adversary’s schedule when
r;(t) = r minus the number of times user i is serviced by
the Tracking Algorithm when r;(¢) = r.

At time t the Linear Tracking Algorithm always serves
user,

J € argmax Cj(r;(t)),

with ties broken arbitrarily. If user j is chosen for service
then C;(r;(t)) is decremented by 1. When we reach the end
of the window containing time step ¢t and have calculated
the (fractional) values z;(t) we increment C;(r;(t)) by z;(t)
for each i.

If the counters remain bounded then we immediately
have a bound on queue size. The proof of the following
lemma is almost identical to the proof of Lemma 3.

Lemma 5 Suppose that during the operation of the Linear
Tracking Algorithm all counters C;(r) remain between —a
and . Then the queue size for user i is upper bounded by
(2w + 1)R™* + 2(w + a)|R|R™2*.

3.4 Incorrect Window Size

The above algorithms rely on our ability to compute a frac-
tional schedule for the adversary by finding a solution to
the constraints (5)-(7). However, this relies on knowing a
value of w for which (5)-(7) are satisfiable for all windows.
(From now on we shall refer to a window for which (5)-(7)
are satisfiable as a satisfiable window.) One solution is to
first guess a value of w and then whenever we encounter
an unsatisfiable window we simply double w. However, in
reality it may be the case that the minimum value of w for
which 100% of the windows are satisfiable is much larger
than the minimum value of w for which 99% of the win-
dows are satisfiable. In this case we would prefer to use
the smaller window size.

To achieve this, we now have to extend the definition of
our algorithms to unsatisfiable windows. For this purpose,
instead of trying to satisfy (5)-(7) in window [(£ — 1)w, fw)
we now solve the following the linear program,

max Z(dz)2/\z (8)
subject to
fw—1
d; = Yi,e + Z a; (t) Vi, (9)
t=({—1)w
fw—1
Aid; = > wmri(t) Vi, (10)
t=({—1)w
Ao <1 Vi, (11)
dom) < 1 W, (12)
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The parameter d; is the amount of user-i data that we wish
to serve during the window. We emphasize that d; is a pa-
rameter, not a variable. It equals Zf:(_ll—l)w a;(t), the data
injected for user 4 during the window, plus +; ¢, the residual
user-i data that was left over from the previous window.
The variable A; is the fraction of d; that the adversary is
able to serve during the window. We define the residual
data for the next window by,

Yiepr = di(1 = Ng).

We note that \; is completely determined by the values of
z;(t). If A; =1 for all ¢ then all the data is served and we
say that the window is satisfied. If the window cannot be
satisfied then the form of the objective function means that
we give preference to users with more data to serve. We
keep track of the average fraction of windows that are satis-
fied. If this fraction exceeds a suitable threshold, say 99%,
then we double the window size w, otherwise we leave the
window size unchanged. We remark that if all windows are
satisfied then the solutions to (8)-(13) will also be solutions
to (5)-(7).

3.5 Efficiently Solving the Linear Program

Although linear programs can be solved in polynomial time,
schedulers for wireless data systems are typically imple-
mented in ASICs or DSPs. It is unreasonable to expect
that a generic linear program solver could be implemented
in such a device. However, using techniques of Garg and
Ko6nemann [10] (which were in turn based on earlier tech-
niques of [16] and [25]) we can approximate (8)-(13) arbi-
trarily closely using a simple combinatorial algorithm. In
this section we sketch the ideas.
For any dual variables u; and v, define,

D(ﬁaﬁ) = Zui+zvt
i t

min | u; + aivi
it \ ()
Using the theory of complementary slackness, it can be

shown that the dual is equivalent to,
D(i. &
min M
(i, 0)

(Note that there are no constraints in this formulation.)
Our algorithm for finding an approximate solution to (8)-
(13) is an iterative algorithm that works as follows.

e Initially set z;(t) =0, u; = 1 and v; =1 for all 4,¢.
e At each iteration find the (4,¢) pair that minimizes

1 w; + diU,'
d)2\"" @)’
For this pair let f = max{1, d;/r;(t)}. We then update

primal and dual variables according to,
T; (t) «— T; (t) + f
U; uz(1+0fn(t)/d,)
Ve ’Ut(]. +6- f),




for some parameter 6.

e Terminate after (N + w)[1/0log,(1 + 6)] iterations.
The primal variables z;(¢) will in general be infeasible.
We create a feasible solution by setting,

- z;(t)
max{Y; 2;(t), >y wi(t')ri(t')/di}

The following lemma follows directly from the analysis of
Garg and Kénemann for packing linear programs.

Lemma 6 Let 3 be the optimum solution to (8)-(13). The
value of the feasible solution produced by the above iterative
algorithm is at least (1 — 60)20.

T; (t)

Convergence of LP solution
le+07 T T T

8e+06 | =

6e+06

Solution
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2e+06

! !
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Figure 6: Convergence of the combinatorial algorithm to
the optimum solution.

In Figure 6 we illustrate the convergence of the iterative
algorithm for one window consisting of 60 time slots and 40
users. The value of # is 0.1. In the figure we plot the value
of the feasible solution versus the number of iterations. We
also plot 3 and (1—6)23. We observe that the value of the
feasible solution exceeds (1 — )23 after slightly more that
500 iterations.

4 Simulation Results

4.1 Non-Stationary Channels

We first validate Theorem 1 from Section 2. The simulation
setup is as follows. We choose a window size w = 62 so that
the system is subcritically loaded with ¢ ~ 0.03. In order
to keep the plots simple we look at 4 users only (although it
is easy to show exponential queue sizes for larger numbers
of users). User 0 has constant arrivals of 64 bits per time
slot and users 1 through 3 have constant arrivals of 1 bit
per time slot. The DRC rates are defined in (3)-(4) and
they are also illustrated in Figure 3.
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Figure 7: Exponential queues for Max-Weight.

Figure 7 shows the queue growth for users 1, 2 and 3
under Max-Weight. We can see that the queue size for
user 3 is twice that of user 2, which is twice that of user 1.
These queues grow continuously for the first 5.7 x 108 slots
before they flatten out. The queue for user 3 grows close
to 1068.

On the contrary, the Tracking Algorithms produce much
smaller queues. Figure 8 plots the total queue size over
all users when Linear Tracking is implemented. As we can
see, the total queue size stays below 3800 bits throughout.

Tracking with linear counters

T T T T T
15000 | 5
[}
2 10000 5
3
o
5000 | =
0 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000
Time

Figure 8: Small queues for Linear Tracking.

We now present a non-stationary example that is closer
to reality. Consider a highway passing by a sequence of
evenly spaced basestations. When traveling through a cell
associated with one of the basestations, a car first expe-
riences increasingly stronger DRCs as it approaches the
basestation and later weaker DRCs as it moves farther
away. Suppose that at the edge of the cell the DRC is
64 and the distance to the basestation is d. Then the DRC
doubles to 128 at distance 271/3d = 0.79d if we assume
the signal strength is inversely proportional to the cube of
distance. The following list of numbers shows the fraction
of time that the car experiences each DRC as it moves to-
wards the basestation. The same numbers apply for the



situation when the car moves away from the basestation.

64 | 128 | 256 | 512 | 1024 | 1536 | 2048 | 3072 | 4096
021 | 0.16 | 0.13 | 0.10 | 0.05 | 0.03 | 0.04 | 0.03 | 0.25

We consider a scenario in which a stream of evenly spaced
cars pass by the basestations. At any given time the num-
ber of cars per cell is 40. Each car repeats a sequence of
DRCs which goes through every DRC from 64 up to 4096
and then from 4096 down to 64. The relative duration
of each DRC is shown in the above chart. Suppose the
cell size is 1 mile, then at a constant speed of 60 miles
per hour the duration of the sequence equals 1 minute,
which is 7" = 60 % 600 = 36000 slots. Each car starts the
sequence with an offset of 7/40. Suppose also each car
injects at a rate of 100 bits per slot. This is an admis-
sible injection process, since at every slot the total bits
injected is 100 x 40 = 4000 and some user has DRC equal
to 4096. Therefore, by serving this user stability can be
accomplished. Figure 9 (top) is a scatter plot of the DRC
rates that Max-Weight uses at each time slot. We can see
that Max-Weight frequently uses rate 3072. Figure 9 (bot-
tom) is a scatter plot of the DRC rates that Linear Tracking
uses. Linear Tracking initially uses the small DRC rates
but it starts to use rate 4096 exclusively around time T
The duration of the simulation is 127". From Figure 10,
we can see that Max-Weight produces a much larger total
queue size than Linear Tracking. This is consistent with
the DRC rates that the two algorithms choose to serve.

The behavior of Linear Tracking and Max-Weight we
have observed remains unchanged qualitatively under a
number of variations. For example with respect to T, the
total duration of the DRC sequence, we have tried small
values such as T' = 200 time slots for which DRCs can
change in a matter of few slots to large values such as
T = 72000 slots for which DRCs stay unchanged for thou-
sands of slots. We have also tested a number of users rang-
ing from 10 to 80. In all these variations, as long as the
total injected bits per slot over all users is close to 4096
and in every time slot some user has a DRC of 4096, Linear
Tracking is able to accomplish stability. In contrast, Max-
Weight uses smaller DRCs sufficiently often and therefore
its total queuesize grows much larger.

We also considered scenarios in which the signal strength
is inversely proportional to the square, or the 4th power,
of distance. In this case the relative durations of the DRCs
are quite different from those under the cubic rule. (The
following table shows the fractions under the square rule.)
However, we observed that Max-Weight and Linear Track-
ing are not sensitive to the exact duration of each DRC. As
long as the sequence cycles through all DRCs from low to
high and then from high to low, the relative performance
of the two algorithms is unchanged.

64 | 128 | 256 | 512 | 1024 | 1536 | 2048 | 3072 | 4096
0.29 | 0.21 | 0.15 | 0.10 | 0.05 | 0.03 | 0.03 | 0.02 | 0.13

4.2 Stationary Channels

We conclude by considering a 40-user stationary case in
which each user has a DRC trace that fluctuates around

T
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Figure 9: (Top) The DRC rates that Max-Weight chooses.
(Bottom) The DRC rates that Linear Tracking chooses.
(These are scatter plots. The dots appear like lines since
they are so dense.)

a mean value according to 3km/h Rayleigh fading. Since
this example is stationary we would expect Max-Weight to
perform well. We observe in Figure 11 that Max-Weight
does indeed produce smaller queues than Linear Tracking.
However, the difference is much less dramatic than the dif-
ference between the two algorithms in the non-stationary
cases.

5 Conclusions

In this paper we have studied the problem of scheduling
over non-stationary wireless channels. We created an ex-
ample showed analytically that the popular Max-Weight
protocol can produce queue sizes that are exponential in
the number of users. In contrast, we presented Tracking
algorithms that try to keep close to the adversary’s sched-
ule and generally produce much smaller queue sizes. We
also showed via simulation that, for an example of traffic
moving on a highway, Max-Weight has inferior performance
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Figure 10: The total queue size produced by Max-Weight
and Linear Tracking for highway traffic.
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Figure 11: The total queue size produced by Max-Weight
and Linear Tracking for a stationary example.

than the Linear Tracking algorithm.

We believe there are a number of open questions related
to the Tracking algorithms. First, we would like to know
if the counters for the Linear Tracking algorithm do in-
deed remain bounded. Second, are there better Tracking
algorithms that keep even closer to the adversary’s sched-
ule than the algorithms that we have presented? Third,
we note that the Tracking algorithms have to perform dif-
ferent amounts of computation in each time step since we
only compute the adversary’s schedule and increase the
counters at the end of each window. We wonder if there is
a smoother schedule that calculates a portion of the adver-
sary’s schedule in each slot. Lastly, our bad example for
Max-Weight generated exponential queue sizes. It would
be interesting to know if the example could be extended to
an unstable scenario for Max-Weight where the queue sizes
are unbounded. We note that for this to happen the DRC
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process could not be periodic.

At a high level, relatively little is known as to how to best
characterize non-stationary wireless channels. The admis-
sible condition presented in this paper is extremely general.
It includes “periodic” behavior (such as the highway traffic)
for which some form of prediction may help, as well as “ad-
versarial” behavior (such as in a military setting) for which
worst-case analysis is perhaps the most suitable. We need
to better understand both types of non-stationary traffic.
Of course, the real challenge is design an algorithm that
performs well for all stationary and non-stationary traffic.
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Appendix

We briefly describe the Quadratic Tracking algorithm which
was presented and analyzed in [5]. Pseudocode for the al-
gorithm is contained in Figure 12. For each pair of users
i < j and for each pair of rates a,b € R we maintain a
counter, Cj;(a,b). These counters are kept constant dur-
ing the window. The algorithm to decide which user to
serve is simple. At time ¢t we serve user,

1= mln{z : C,’j(T‘i(t),Tj(t)) >0 Vji> Z}

(We provide a motivation for this scheduling rule below.)
The algorithm to update the counters at the end of a win-
dow is more complicated. We sketch the method here. For
details see [5]. The counters C;;(a, b) are updated by a set
of temporary counters ¢;;(a, b) which are set to zero at the
start of the update process. These temporary counters are
updated iteratively using a sequence of fractional schedules
S_1,80,851,.-.,9n-1. The amount of service that schedule
S; gives to user j at time ¢ is denoted s;;(t). We remark
that we require 3 s;;(t) = 1.

The schedule S_; is equivalent to the adversary’s sched-
ule, i.e. s_1;(t) = z;(t). The schedule Sy_ is equivalent
to the Tracking algorithm’s schedule, i.e. if the Tracking
algorithm serves user j then sy_1 j(t) = 1. The schedule
S; has the property that if the Tracking algorithm serves
user j for j < then s;;(t) = 1.

The fractional schedule S; and the temporary counters
¢ij(a,b) are defined inductively. Suppose that S;_; and the
temporary counters c(;_1);(ri—1,7;) are already defined.

o If the Tracking algorithm serves user ¢ at time ¢ then
we set s;;(t) = 1 (and hence s;;(¢t) = 0 for j # 9).
For all j > i we decrement counter c;;(r;(t),r;(t)) by
si—1,5(t)-

If the Tracking algorithm serves user i’ > ¢ at time ¢
then by the definition of the algorithm, it must be true
that Cy;(ri(t),r;(t)) < 0 for some j. For this j we set
s4,;(t) = si—1,;(t) +si—1,:(t) and we increment counter
Cij (T’i (t),Tj (t)) by Sz'_l,z'(t)- We also set Sii (t) =0and
Si,k(t) = Si—l,k(t) for k #1,j.

If the Tracking algorithm serves user i’ < ¢ at time ¢
then we set s;;(t) = 1. No counters are changed.

Once all the temporary counters have been defined,
Cij(ri(t),r;(t)) is incremented by c¢;;(ri(t),r;(t)) (which
may be negative). It is shown in [5] that C; ;(a, b) measures
the number of times that schedule S; (fractionally) serves
user j minus the number of times that schedule S;_; (frac-
tionally) serves user j during the time steps that r;(t) = a
and r;(t) = b.

The key idea of the stability analysis is that a temporary
counter is only incremented if the corresponding permanent
counter is negative and it is only decremented if the cor-
responding permancent counter is positive. This allows us
to prove that the counters remain bounded. The complete
proof that the queue sizes are quadratic can be found in [5].



Part I (performed at every time step 7)

1 fori=0,1,2,...,N -2

2 if Cij(Ti(T),Tj(T)) >0 for all j >
serve user ¢
exit Part I

3 serveuser N — 1

Part IT (performed at the end of each window when 7 =fw —1for £=1,2,...)
Compute a fractional adversary schedule {z;(t)} for the past window (£ — 1)w < t < fw
5 Initialize temporary counters, let ¢;;(-,-) :==0 Vi,j
6 fort=(/—-1w,...,.fw—1
7 fori=0,1,2,...,N — 2
8 Case 1: if the Tracking algorithm served user ¢ in time step ¢
set s;;(t) =1 and s;;(¢) = 0 for j # 1
for all j > i, decrement c¢;;(r;(¢),7;(¢)) by si—1,;(t)
9 Case 2: if the Tracking algorithm served user ¢’ > ¢ in time step ¢
there exists some j > i s.t. Cj;(ri(t),r;(t)) <0
let s;;(t) :== s;_1,j(t) + si—1,i(t), increment ¢;;(r;(t),r;(t)) by s;—1,i(t)
let Si’i(t) =0
for k # i and k # j let s;1(t) = si—1,x(2).
10 Case 3: if the Tracking algorithm served user i’ < i in time step ¢
set Si,i (t) =1 and Si,j (t) =0 fOI‘j 75 1!
11 Update permanent counters, let Cy;(r;(t),r;(t)) := Ci;(ri(t),r;(t)) + cij(ri(t),;(2))-

W

Figure 12: Quadratic Tracking Algorithm.
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