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Abstract

We consider approximation algorithms for buy-at-bulk
network design, with the additional constraint that demand
pairs be protected against edge or node failures in the net-
work. In practice, the most popular model used in high
speed telecommunication networks for protection against
failures, is the so-called 1+1 model. In this model, two edge
or node-disjoint paths are provisioned for each demand
pair. We obtain the first non-trivial approximation algo-
rithms for buy-at-bulk network design in the 1+1 model for
both edge and node-disjoint protection requirements. Our
results are for the single-cable cost model, which is preva-
lent in optical networks. More specifically, we present a
constant-factor approximation for the single-sink case, and
an O(log3 n) approximation for the multi-commodity case.
These results are of interest for practical applications and
also suggest several new challenging theoretical problems.

1 Introduction

The telecommunications industry is the inspiration for
numerous network optimization problems. In this paper, we
consider buy-at-bulk network design problems that arise in
the design and operation of modern optical core networks
[6]. These networks are characterized by the following two
salient features: (i) very high capacity achieved via DWDM
(Dense Wavelength Division Multiplexing) based optical
transmission technology and (ii) expensive equipment ex-
hibiting economies of scale. In such networks, each link
carries enormous amounts of traffic and hence the failure
of a link or a node represents an unacceptable degradation
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of service. Therefore, fault tolerance is an integral part of
the design. Although there are a variety of ways to ensure
fault tolerance, one of the most commonly used solutions
in optical core networks is to set up, for each commodity,
so-called dedicated or 1+1 protection. This amounts to re-
serving a pair of disjoint paths between the source and des-
tination nodes of each commodity. The popularity of the
1+1 model comes from its operational simplicity and high
restoration speed.

Disjointness may be defined in several ways, according
to requirements of the commodity in question. For instance,
the commonly used measures include “site-disjointness”,
where the two paths do not share any common nodes; edge-
disjointness, where the two paths do not share any common
links; and cable or fiber-disjointness, where the two paths
must use distinct fibers/cables if they go through the same
link. In this context, a central problem faced by network
operators and equipment vendors is to build a cost-effective
and bandwidth-efficient network that supports a multitude
of traffic at the desired level of protection. The network op-
erators look to utilize their network resources as efficiently
as possible, and the equipment vendors seek to find inno-
vative cost advantages to obtain a competitive edge in bid-
ding for contracts from the network providers. We refer the
reader to [6, 31, 27, 30] for in-depth descriptions of the var-
ious issues in optical network design.

We give a formal description of the optimization prob-
lem that abstracts the above problem. The input consists of
an undirected edge-weighted graph G = (V,E), and a set
of h node pairs s1t1, s2t2, . . . , shth that represent differ-
ent traffic demands. Each pair has a non-negative demand
value dem(i) that needs to be routed between si and ti and
also specifies a protection requirement. In this paper we re-
strict our attention to the 1+1 model in which each demand
requires node-disjoint protection. A feasible solution con-
sists of a collection of path pairs (P1, Q1), . . . , (Ph, Qh),
where Pi and Qi are internally node-disjoint paths between
si and ti and each carries a reserved bandwidth of dem(i).
If these paths induce a requirement of be units of bandwidth
on edge e of the network, then equipment that can support
this requirement has to be purchased.

Now, let us discuss the cost model for purchasing band-
width on the edges. In this paper, we focus on a sim-
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ple cost model, namely the single-cable cost model: band-
width can be purchased in integer quantities of a cable of
capacity k. The cost of purchasing a cable on edge e is
ce. Thus, the cost of purchasing a bandwidth of be units
on edge e is fe(be) =

⌈
be

k

⌉
ce. The objective is to min-

imize the total cost
∑

e fe(be) over all possible choices
of (P1, Q1), . . . , (Ph, Qh). The single-cable cost function
closely models DWDM networks, where each optical fiber
carries the same number of wavelengths k, and each edge e
has a cost ce for deploying one copy of a fiber; the cost ac-
counts for equipment along the edge and at the end nodes of
the edge (see [6]). We give an overview of more general cost
functions, namely the non-uniform and the uniform multi-
cable functions, in the related work section.

Observe that, even in the single-cable setting, the buy-at-
bulk problem captures, as special cases, some well-known
NP-hard connectivity problems such as the minimum-cost
Steiner tree and the minimum-cost Steiner forest problems.
Moreover, Andrews [1] has shown that even the single-
cable problem without protection constraints is hard to ap-
proximate to within an Ω

(
log1/4−ε n

)
factor; this separates

the approximability of the buy-at-bulk problem from those
of connectivity problems. In the connectivity setting, sur-
vivability and protection constraints have long been studied
and include classical problems. Jain [21] devised the im-
portant iterative rounding method that yields a 2 approxi-
mation algorithm for the survivable network design prob-
lem (SNDP), in which the goal is to find a minimum-cost
subgraph that satisfies given edge connectivity requirements
between each pair of nodes in a graph. In [13] this tech-
nique was extended to handle node connectivity, when the
requirements are restricted to be in the set {0, 1, 2}.

Buy-at-bulk network design without protection has re-
ceived substantial attention in the past decade, including
some recent work on super-constant lower bounds in the
simplest setting [1], and poly-logarithmic upper bounds in
the most general non-uniform setting [7, 8]. On the con-
trary, the variant with protection has not been so far consid-
ered in the literature on approximation algorithms. One rea-
son for this is the difficulty of the buy-at-bulk problem, even
without protection constraints. Although the first approxi-
mation algorithm for the multiple-cable setting appeared in
1997 [3], the algorithm was based on a technique that was
not sufficiently flexible. It is only recently that alternative
algorithms [5, 7] were developed that not only handled the
non-uniform cost functions, but also provided new algorith-
mic approaches and insights. Further, for SNDP, the iter-
ative rounding method of Jain [21], and the earlier primal-
dual approach [33], strongly rely on the structural properties
on the underlying linear program, which do not hold for the
buy-at-bulk problem.

Our primary motivation to study this problem arose
while developing a sequence of optical network design tools

at Bell Laboratories. We realized the ubiquity of the 1+1
model in practice, the lack of theoretical understanding of
protected buy-at-bulk network design and a dearth of useful
heuristic methods for the problem. Most algorithms used
in practice are based on simple ad hoc methods combining
greedy algorithms, local improvement and some enumera-
tion. We hope this paper serves as a starting point in ad-
dressing the challenges from the theoretical point of view,
as well as in providing insights that lead to more sophisti-
cated and effective heuristics.

Results. We give approximation algorithms for buy-at-bulk
network design in the 1+1 protection model for the single-
cable setting. Observe that the 1+1 edge-disjoint protection
problem can be reduced in a straightforward fashion to the
1+1 node-disjoint protection problem. In fact, for the edge-
disjoint case our arguments can be substantially simplified;
however, our focus here is on the node version, as it is the
version arising more commonly in practice. We note that
hardness results for the unprotected problems carry over to
their protected counterparts via simple reductions.

Our first result is for the single-sink problem. This is
the special case of the problem where all the pairs have one
terminal node in common. In other words, the pairs are
st1, st2, . . . , sth and s is a common sink. We present an
O(1) approximation algorithm for it and also establish an
O(1) integrality gap for a natural linear programming re-
laxation.

Our second result is an O(log3 h) approximation for the
multi-commodity problem. In particular, we show that that
an α approximation for the single-sink problem via a natural
LP relaxation yields an O(α log3 h) approximation for the
multi-commodity problem, and combine this with our result
for the single-sink problem. A technique developed in the
recent work of Kortsarz and Nutov [23] for the unprotected
buy-at-bulk problem can be applied in our setting as well,
and this leads to an improved ratio of O(α log2 h). The
details of this improvement are deferred to a later version.

Overview of Algorithmic Ideas. The high-level frame-
work of our algorithms is reminiscent of familiar ap-
proaches that have been applied to buy-at-bulk network de-
sign without protection. Nevertheless, the transition to the
protected setting requires some new algorithmic ideas and
in the following, we give a brief overview of these.

For the single-sink problem, we take advantage of the
single-cable model to start with a good lower bound on the
optimal solution: we compute a minimum-cost subgraph H
of G that has two node-disjoint paths from each terminal
ti to the sink s. The graph H is used in a clustering pro-
cedure to find aggregation points, called centers. The idea
is to route the flow of each terminal ti to two distinct cen-
ters, via node-disjoint paths. Furthermore, the centers need
to receive Ω(k) flow, so that they can route to the sink inde-
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pendently. We remark that clustering and re-routing of flow,
as above, is a natural algorithmic paradigm that has been ap-
plied in algorithms for single-sink unprotected buy-at-bulk
[28, 2, 16, 18, 25]. For the unprotected case, a simple tree
based clustering procedure suffices, where each cluster con-
tains terminals with Θ(k) amount of demand, and a center
can be chosen arbitrarily from the cluster.

In the protected case, in particular the node-disjoint set-
ting, a straightforward clustering procedure as above does
not guarantee that each terminal can find disjoint paths to
two distinct centers. We give a clustering procedure that
enables us to overcome this difficulty; a distinctive feature
of this procedure is that it may create clusters that enclose
an arbitrarily large (compared to k) amount of demand, but
in that case the cluster is required to satisfy some special
property that can be exploited. Some of the methods we
employ in sending flow to two centers are inspired by the
work in [10], however the node-disjointness calls for sev-
eral new technical ideas.

The multi-commodity problem is considerably harder to
approach directly, and here we build on the recent algorith-
mic paradigm developed for the unprotected non-uniform
problem [19, 7]. At the high level, the algorithm uses an
iterative greedy approach. In each iteration, it finds a par-
tial solution of good density amongst the remaining demand
pairs, where density is the ratio of the solution cost to the
number of pairs connected. In [19, 7, 8] the problem of find-
ing a partial solution of good density is effectively reduced
to a single-sink problem. A key step in the reduction is to
show the existence of a solution with near-optimal density
that also has a junction structure: demand pairs connect to
each other via a common junction node r, and this enables
one to employ single-sink techniques by guessing r.

A similar scheme can be applied to the edge-disjoint pro-
tection problem; nevertheless, this does not suffice for the
node-protected version. Indeed, even if terminals si and
ti individually have two node-disjoint paths to r, they may
still not be 2-node-connected. To overcome that difficulty,
we show that the basic junction scheme can be extended to
use a pair of nodes (u, v), as a junction through which mul-
tiple pairs connect. This requires more intricate arguments.
Furthermore, we believe this scheme offers an interesting
idea for new heuristics, which should be evaluated against
the current methods that are based on greedy approaches.

Related work. We briefly discuss closely related work, be-
ginning with a review of more general cost models. The
most general cost model considered in the buy-at-bulk prob-
lem is the non-uniform case, where each e ∈ E has an as-
sociated concave or sub-additive function fe : R+ → R+

and fe(be) is the cost of purchasing be units of bandwidth
on e. In the uniform cost model, the function fe is re-
stricted to be identical for all edges, up to constant fac-
tors. An alternative (and equivalent) definition of this model

stipulates that there exists a fixed set of cables, with ca-
pacities u1 < u2 < · · · < ur and costs per unit length
c1 < c2 < · · · < cr, such that the cost per bandwidth de-
creases; that is c1/u1 > c2/u2 > · · · > cr/ur. To support
be units of flow on edge e, one needs to purchase the cheap-
est combination of cables of total capacity at least be.

As mentioned above, the buy-at-bulk problem has so far
been studied only in the unprotected setting. One of the
early approximation algorithm formulations of the problem
was due to Salman et al. [28]. In subsequent work, a number
of variants have been considered. Even the simplest ver-
sions of buy-at-bulk network design, including the single-
sink single-cable problem, are APX-hard since they gener-
alize the Steiner tree problem.

Regarding the uniform multi-commodity problem,
Awerbuch and Azar [3] showed that it is easy to solve on
a tree and then reduced the problem on general graphs to
one on a tree using embeddings into random tree metrics
[4, 12], thus obtaining an O(log n) approximation. For the
uniform single-sink problem, Andrews and Zhang [2] gave
an approximation ratio that is independent of the number of
nodes (but does depend on the cost function); an O(1) ap-
proximation was first achieved in [16], with subsequent re-
finements and improvements in the ratio [18, 22]. For a spe-
cial case of the multi-commodity problem called the rent-
or-buy problem, an O(1) approximation is known [24, 17].

For the non-uniform single-sink problem, Meyerson et
al. [26] presented an O(log n) approximation. Charikar and
Karagiozova [5] gave an exp(O(

√
log n log log n)) approx-

imation for the non-uniform multi-commodity problem; re-
cently, the first poly-logarithmic approximation was ob-
tained in [19, 7], which also introduced the junction scheme
that we now extend. The ratio achieved was O(log4 h), and
in [8] the same ratio was established even for the setting in
which nodes have costs.

Andrews [1] showed that there is no O
(
log1/2−ε n

)
approximation algorithm for the non-uniform multi-
commodity problem, unless NP has efficient randomized
algorithms. In the uniform case, including the single-cable
model, the hardness factor becomes O

(
log1/4−ε n

)
. More-

over, for the single-sink non-uniform problem a hardness
factor of O(log log n) is known [11].

Connectivity problems have a rich history in classical
combinatorial optimization, and there is vast literature on
the subject. We refer to [29] for exact algorithms and classi-
cal results and [32, 20, 21, 13] for pointers to approximation
algorithms. In particular, Jain [21] and Fleischer et al. [13]
present 2 approximation algorithms for SNDP and the ele-
ment connectivity problem (which generalizes SNDP), re-
spectively. In [13] a 2 approximation algorithm is also ob-
tained for the node-connectivity version of SNDP when the
requirements are restriced to lie in the set {0, 1, 2}; we make
use of this algorithm.
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2 Single-Sink Buy-at-Bulk with Protection

An instance of the node-protected single-sink problem
consists of a graph G = (V,E), a sink node s ∈ V , a set
of terminals T = {t1, t2, . . . , th} ⊆ V \s, and a demand
function dem : T → N∗. We use k ∈ N∗ throughout to
denote the capacity of the cable that can be installed in in-
tegral copies on any edge e ∈ E, at a cost ce per cable.
Thus, carrying bandwidth be on e costs dbe/kece. Our al-
gorithm consists of three high level steps that follow the
outline given in Section 1.

• Connectivity: Find a subgraph H = (VH , EH) of G
such that each ti has two node-disjoint paths to s in H .

• Clustering: Partition the node set VH into disjoint
subsets X1, X2, · · · , X` called clusters, such that for
1 ≤ i ≤ ` the induced subgraph H[Xi] is con-
nected and dem(Xi) ≥ k, where dem(Xi) =∑

tj∈Xi
dem(tj). Clusters exhibit additional proper-

ties that facilitate analysis.

• Routing: Use clusters to identify a subset S ⊂ VH

called centers. For each terminal tj ∈ T , route
dem(tj) to two distinct centers uj , vj ∈ S using node-
disjoint paths, such that every center receives Ω(k)
flow from terminals. Then, route the flow from each
center to s directly and independently.

2.1 Connectivity

We apply the 2 approximation algorithm from [13] for
the node-connectivity version of the survivable network de-
sign problem on G, with a connectivity requirement of 2
between s and ti, for each ti ∈ T , and 0 for every other
pair of nodes. Let H = (VH , EH) be the subgraph re-
turned. We install one cable on each edge of H and hence
cost(H) ≤ 2 cost(OPTSS), where OPTSS is the optimal solu-
tion to the node-protected single-sink problem.

For simplicity, we henceforth assume that H is 2-node-
connected, because the clustering and routing procedures
can be applied to each 2-node-connected component of H
separately.

2.2 Clustering

We describe an algorithm to partition H (in fact, any
2-node-connected node-weighted graph) into clusters, as
mentioned earlier. A cluster X is called small if dem(X) <
k; normal if k ≤ dem(X) ≤ 2k; and jumbo if dem(X) >
2k. Ideally, we would like to partition VH so that all clus-
ters are normal. However, this is not always possible. In-
stead, we allow jumbo clusters in the partition, as long as
they possess certain structural properties. In particular, a
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Figure 1. A typical star-like cluster with 4
components (left) and a typical twin cluster
(right). By definition, dem(A) + dem(B) < 2k
and dem(B) + dem(C) < 2k.

jumbo cluster X is star-like if and only if there exists a spe-
cial node v ∈ X such that each connected component of
H[X\v] contains < k demand. Similarly, X is twin if and
only if there exist two special nodes u, v ∈ X such that for
all w ∈ {u, v}, one component of H[X\w] contains < 2k
demand, while all other components contain < k demand.
Figure 1 provides a visualization of the above definitions.

Lemma 2.1. In polynomial time, the node set VH can be
partitioned into clusters X1, X2, . . . , X`, such that for 1 ≤
i ≤ `: (a) the induced subgraph H[Xi] is connected; (b)
dem(Xi) ≥ k; and (c) if dem(Xi) > 2k, then Xi is either
star-like or twin.

Proof. We need a few more definitions. Given some parti-
tion of VH into clusters X1, X2, . . . , X`, we say that v ∈ Xi

is a border node if and only if there exists a u ∈ Xj , i 6= j,
such that the edge uv ∈ EH . In that case, Xi and Xj are
neighboring clusters and v is a neighbor of Xj . Moreover,
a node v is called critical if and only if: (i) it belongs to a
cluster X with dem(X) ≥ 2k, and (ii) at least one of the
connected components of H[X\v] contains < k demand;
and (iii) it is a neighbor of one or more small clusters. We
say that these clusters contend for the critical node. Fur-
thermore, a component of H[X\v] that has ≥ k demand is
called self-sufficient. Note that a non-critical node may be-
come critical and vice-versa several times during the clus-
tering procedure, which is presented below.

Initially, each node of VH is in a cluster of its own.
Henceforth, consider all small clusters simultaneously. Ap-
ply the following transformations, when feasible, in order
of priority. Repeat until there are no small clusters left.

1. If the total demand in two neighboring clusters is at
most 2k, merge them.

2. If a small cluster has a neighbor node that is not criti-
cal, move the node to that cluster.

3. Consider a cluster X with a critical node v. Separate
any self-sufficient components of H[X\v] into new
clusters. Keep v and all other components together.
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Figure 2. An example for which transforma-
tion 5 is necessary. Since no other trans-
formation applies, dem(A) + dem(B) < k and
dem(B) + dem(C) < k. Compare with Figure 1.

If the remaining cluster is small, merge it immediately
with a small cluster contending for v (like in transfor-
mation 1).

4. If there exists a small cluster X that contends for only
one critical node v of cluster Y , then create a jumbo
cluster by merging X and Y into a new cluster Z.
The connected components of H[Z\v] are H[X] and
the components of H[Y \v], none of which is self-
sufficient. Therefore, Z is star-like.

5. If there exists a small cluster X that contends for sev-
eral critical nodes of cluster Y (e.g. as in Figure 2),
then create a jumbo cluster by merging X and Y into
a new cluster Z.

Let U ⊆ Y be the set of critical nodes contended for
by X . We say that w ∈ U is interesting if and only if
all other elements of U belong to only one component
of H[Y \w], denoted W . After the merger, H[VW ∪
X] is a connected component of H[Z\w] containing
< 2k demand. All other components of H[Z\w] are
also components of H[Y \w] and hence contain < k
demand. Note that there are at least two interesting
critical nodes in U , so Z is a twin cluster.

A twin cluster created at some point in the procedure
may later become star-like or normal due to transformations
2 and/or 3. Similarly, a star-like cluster may become nor-
mal. Obviously, when the procedure terminates, there are
only normal, star-like and twin clusters in the partition.

It remains to sketch why the algorithm terminates in
polynomial time. Let n1, n2, n3 be the combined number
of normal and jumbo clusters, the number of small clusters
and the number of nodes in small clusters, respectively, at
any given moment. Clearly, all three numbers are bounded
by |VH |, since every cluster contains at least one node. Ob-
serve that if any of the above transformations is applied, n1

does not decrease and n2 does not increase. Furthermore,
if both n1 and n2 are left unchanged, n3 strictly increases.
Consequently, there can be no more than |VH | consecutive

transformations in which both n1 and n2 remain constant,
which implies that the total number of transformations is
O

(
|VH |2

)
. Since each transformation can be implemented

in polynomial time, thus completing the proof.

2.3 Routing

We now describe a scheme to implement the routing step
of the algorithm using the clustering of H . The routing in-
volves several phases and the analysis goes hand-in-hand
with each phase. In this section, an edge e of H is called
intra-cluster if there exists a cluster X such that e is an edge
of H[X]. Otherwise, e is an inter-cluster edge.

Phase 1: We process each cluster Xi separately. First of
all, take a spanning tree of H[Xi] and find its balanced sep-
arator, with respect to the amount of demand. Call this node
the center of Xi and denote it by vi. If Xi is star-like, its
special node is an obvious choice for vi.

Proposition 2.2. For each terminal tj ∈ Xi\vi, there exist
two node-disjoint paths P1(tj) and P2(tj) using edges of
H[Xi], both starting from tj , such that P1(tj) ends at vi

and P2(tj) ends at a border node b(tj) of Xi.

Proof. Create a graph G from H , by contracting all nodes
of VH\Xi into v∗. Since H[Xi] is connected, v∗ is not
a cut vertex of G. Furthermore, if u ∈ Xi is a cut ver-
tex of G, then it is also a cut vertex of H , contradicting
H’s biconnectivity. Therefore, G has no cut vertices, i.e. it
is biconnected. Hence, there exist two node-disjoint paths
P1(tj), P2(tj) from tj to vi and v∗, respectively, which can
be found by solving a min-cost flow problem. After deleting
the last edge of P2(tj), these two paths satisfy all required
properties.

Send flow equal to dem(tj) along each of P1(tj),
P2(tj). Then, extend P2(tj) by adding an inter-cluster edge
(b(tj), b′(tj)), where b′(tj) belongs to some other cluster
Xi′ . We refer to b′(tj) as the entry point of tj to Xi′ . We
upper bound the total flow on any edge induced by this rout-
ing phase. If Xi is normal, then the total flow carried on an
edge e is at most 2k, because for every terminal tj ∈ Xi

at most one of P1(tj) and P2(tj) passes through e. If Xi is
star-like, the maximum flow per edge is < k, since the paths
originating in one component of H[Xi\vi] have no common
edges with paths originating in another component. Finally,
if Xi is twin with special nodes u, v, the maximum flow per
edge is < 3k. However, note that the terminals contained in
each small component of H[Xi\u] and H[Xi\v] send flow
to a border node within that same component. Hence, re-
gardless of how other terminals of Xi are routed, no more
than 2k flow from this cluster passes through any single bor-
der node. The next lemma follows from the above.
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Lemma 2.3. In Phase 1, every intra-cluster edge of H car-
ries at most 3k flow and every inter-cluster edge carries at
most 4k flow (2k from each cluster its endpoints belong to).

Phase 2: Again, we examine each Xi individually, but now
the focus is on foreign flow, i.e. flow that arrives in Xi from
other clusters. Consider a spanning tree T of H[Xi] and
root it at vi. We process the nodes in T in a bottom up
fashion starting from the leaves; a node v is processed only
after all its descendants in T have been processed.

When processing a node w 6≡ vi, let S be the set of
terminals that send foreign flow to w. If that flow does not
exceed 4k, it is forwarded to w’s parent p(w), which means
that the P2 paths of the terminals in S are extended up to
p(w). Naturally, this flow is taken into consideration when
processing p(w).

Otherwise, consider the P2 paths of the terminals in S,
and in particular the path segments between the entry points
to Xi and w. These segments define a tree Tw, which is a
subgraph of T . Find the balanced separator x of Tw, as-
suming that the weight of a node equals the total demand of
the terminals in S for which it is an entry point. If x 6≡ w,
re-route the paths along edges of Tw so that they all end up
in x instead, which becomes an auxiliary center. Conse-
quently, some paths are extended and others are contracted.
Observe, though, that the total flow on each of the edges
involved cannot increase, and in fact may decrease.

Finally, vi is processed last. If it receives < 4k foreign
flow, we are done, else the aforementioned procedure is ap-
plied. Note that the auxiliary center thus created may coin-
cide with vi, but we treat them as separate entities to sim-
plify the subsequent analysis.

Lemma 2.4. In Phase 2, each intra-cluster edge of H car-
ries at most 4k foreign flow.

Phase 3: For a cluster Xi with center vi, denote by f(vi)
the total flow accumulated in vi. Note that f(vi) includes
flow coming from terminals of Xi\vi, foreign flow (which
cannot exceed 4k, see above), plus dem(vi) if vi is itself
a terminal. Likewise, for an auxiliary center x we define
f(x) as the total foreign flow accumulated in x. Moreover,
let g(·) = k df(·)/ke, i.e. g is simply f rounded up to the
nearest multiple of k.

Consider an instance I ′ of the node-protected single-sink
problem on the graph G, with sink s and the cluster centers
and auxiliary centers as terminals. The demand of a ter-
minal t is given by g(t), which is 2k or a larger multiple
of k. In this case, the optimal solution to the problem can
be found in polynomial time: for each terminal t, find the
shortest cycle containing t and s, and then route flow along
the two paths from t to s induced by the cycle. The network
OPTSS

′ built in this fashion has the minimum possible total
volume (capacity × length, summed over all edges), so its

cost is optimal even when splittable flows are allowed. The
following lemma captures the cost of the routing.

Lemma 2.5. cost(OPTSS
′) < 21 cost(H)+15 cost(OPTSS).

Proof. We shall construct a hypothetical feasible solu-
tion SOL′ to I ′, with cost not exceeding 21 cost(H) +
15 cost(OPTSS). In SOL′, each terminal sends flow to one
or more of t1, t2, . . . , th (i.e. the terminals of the original
instance), which is then routed to s. Let us examine cluster
centers and auxiliary centers separately.

Suppose that Xi is a normal cluster. The center node
vi sends 2g(vi) flow to terminals of Xi, so that no more
than half the amount of that flow goes through the same
node (except vi and s), and the flow each terminal tj ∈
Xi receives is proportional to dem(tj). Of course, if vi is
itself a terminal, it absorbs its own share of flow. Since vi

is the balanced separator of a spanning tree of H[Xi], this
routing can be achieved using edges of that tree, with the
flow on any edge not exceeding g(vi) ≤ 6k. Furthermore,
each terminal tj receives at most 12 dem(tj) flow, because
2g(vi)/ dem(Xi) < 12.

In case Xi is a twin cluster, g(vi) ≤ 7k and
2g(vi)/ dem(Xi) < 7. Therefore, each terminal tj receives
at most 7 dem(tj) flow and the flow on any edge is ≤ 7k.
If Xi is a star-like cluster, a similar argument applies. Note
that 2g(vi)/ dem(Xi) ≤ 7, so each terminal tj receives at
most 7 dem(tj) flow. However, since every component of
H[Xi\vi] originally contained < k demand, the flow on
any edge is < 7k.

The last step is to route the flow that has accumulated at
t1, t2, . . . , th to s. It is easy to see that this can be done with
cost at most 12 cost(OPTSS). Thus, we derive that:

Proposition 2.6. The partial cost of SOL′ due to cluster
centers is < 7 cost(H) + 12 cost(OPTSS).

Now, consider an auxiliary center x in some cluster Xi.
Recall from the description of Phase 2 the definitions of S
and Tw. In that phase, each edge e of Tw carried up to
min{4k, f(x)/2} foreign flow to x. In SOL′, the flow on e
from x is 2g(x)/f(x) times as much, which turns out to be
< 9k. Furthermore, take an intra-cluster edge e that carried
flow destined for one or more auxiliary centers, located in
clusters other than Xi. This flow could not exceed 2k, and
because 2g(x)/f(x) < 5

2 for any x, the flow on e in SOL′ is
< 5k. Hence, the total flow on an intra-cluster edge due to
auxiliary centers does not exceed 9k + 5k = 14k.

On the other hand, if e is an inter-cluster edge, it car-
ried at most 4k flow to auxiliary centers, so in SOL′ it
has < 10k flow. Finally, routing the flow to s has cost
<

⌈
5
2

⌉
cost(OPTSS) = 3 cost(OPTSS).

Proposition 2.7. The partial cost of SOL′ due to auxiliary
centers is < 14 cost(H) + 3 cost(OPTSS).
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Propositions 2.6 and 2.7 finish the proof.

Lemmas 2.3, 2.4 and 2.5 imply that the total cost of
our solution is at most 28 cost(H) + 15 cost(OPTSS) ≤
71 cost(OPTSS). It is also relatively straightforward to verify
its feasibility. Therefore,

Theorem 2.8. The node-protected single-sink single-cable
buy-at-bulk problem is O(1) approximable.

2.4 LP Relaxation and its Integrality Gap

So far, we have evaluated buy-at-bulk solutions under a
cable capacity cost model. In other words, the cost of using
edge e is cedbe/ke, where k is the cable capacity, be is the
flow on e and ce is the cable cost for e. We now compare
this model against a fixed + incremental cost model (FI),
otherwise known as the cost-distance model [2, 26]. In the
FI model, each edge e has a fixed cost ce and an incremental
cost `e; the cost of purchasing bandwidth be on e is given
by fe(be) = ce + `e · be. When restricted to the single-cable
case, the FI model specializes to having `e = ce/k for each
e; in other words, fe(be) = ce(1+be/k). Since cedbe/ke ≤
ce(1 + be/k) ≤ 2cedbe/ke, the cost of a solution under the
single-cable FI model is within a factor of 2 of that under
the cable capacity model.

Let us formulate a linear programming relaxation for the
protected single-sink buy-at-bulk problem under the single-
cable FI model. In the formulation, x(e) is a variable that
indicates whether or not edge e is in the solution; Qi is the
collection of simple cycles containing the sink s and the
terminal ti ∈ T ; f(q) is a variable indicating whether flow
from ti is carried to s using the node-disjoint paths on the
cycle q ∈ Qi; finally `q =

∑
e∈q `e is the total length of the

edges in q, where the edge length `e equals the incremental
cost ce/k per unit flow. Observe that the first term in the
objective function (1a) represents the fixed cost, which de-
pends only on which edges are used in the network, while
the second term is the incremental cost, that is proportional
to the flow carried by these edges.

LP1 : min
∑
e∈E

cex(e) +
h∑

i=1

dem(ti)
∑
q∈Qi

`qf(q) (1a)

s.t.
∑
q∈Qi
q3e

f(q) ≤ x(e) ∀e ∈ E,
1 ≤ i ≤ h

(1b)

∑
q∈Qi

f(q) ≥ 1 ∀1 ≤ i ≤ h (1c)

x(e), f(q) ≥ 0 ∀e ∈ E,
q ∈

⋃
i Qi

(1d)

Lemma 2.9. The linear program LP1 has an integrality
gap of O(1) for the single-cable FI cost model.

Proof. Denote by OPTLP1 the optimal solution to LP1. Us-
ing the same arguments as in Propositions 2.6 and 2.7, but
replacing OPTSS with OPTLP1, we can show that the FI cost
of SOL′ is bounded by (a) the FI cost of using the edges of
H , with up to 21k units of flow on each edge, plus (b) the FI
cost of using the edges of OPTLP1, such that each edge car-
ries up to 15 times the flow it carries in OPTLP1. In other
words, costFI(SOL′) < 22 cost(H) + 15 costFI(OPTLP1).
Moreover, in the first two routing phases the algorithm
uses edges of H , with up to 7k units of flow on each
edge, so the corresponding FI cost is < 8 cost(H). Thus,
costFI(SOL) < 30 cost(H) + 15 costFI(OPTLP1).

It remains to bound cost(H) in terms of costFI(OPTLP1).
Recall that H is obtained by iterative rounding of the opti-
mal solution to the following LP formulation of the node-
connectivity version of the survivable network design prob-
lem [13].

LP2 : min
∑
e∈E

cex(e) (2a)

s.t.
∑

e∈δ(S,S′)

x(e) ≥ 2− |V \(S ∪ S′)|

∀S, S′ ⊆ V , S ∩ S′ = ∅,
s ∈ S, T ∩ S′ 6= ∅

(2b)

0 ≤ x(e) ≤ 1 ∀e ∈ E (2c)

Since constraints (1b)-(1d) imply (2b) and (2c), the value
of the optimal solution to LP2 is clearly a lower bound
on costFI(OPTLP1), and cost(H) is at most twice that.
Hence, cost(H) ≤ 2 costFI(OPTLP1) and costFI(SOL) <
75 costFI(OPTLP1).

3 From Single-Sink to Multi-Commodity

In this section we consider the node-protected multi-
commodity buy-at-bulk problem. We establish that an
α approximation for the single-sink problem implies an
O(α log2 h log D) approximation for the multi-commodity
problem via a natural LP relaxation, where D =∑

i dem(i). Note that this result applies to the general FI
model, i.e. without the single-cable restriction `e = ce/k
that was introduced in Section 2.4. This is significant be-
cause the general FI model is essentially equivalent to the
non-uniform model. However, in the single-cable model
that is of interest here, the dependence on D can be re-
moved and the ratio becomes O(α log3 h). The results
in Section 2.4 imply that α = O(1) for the single-cable
model, and thus we obtain an O(log3 h) approximation for
the multi-commodity single-cable problem. To simplify
the exposition, throughout this section we assume unit de-
mands (dem(i) = 1 for 1 ≤ i ≤ h) and prove the ratio of
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O(log3 h) in this setting. The extension to the general case
of arbitrary demands is omitted.

We use the algorithmic paradigm from [7], as outlined
in Section 1. The main technical ingredient is an extension
of the junction tree concept from [7]. We define a structure
which we call a junction-structure, more precisely a two-
node junction-structure, as shown below.

To begin with, let us formulate the objective function
for the multi-commodity problem in the general FI model.
Recall that ce and `e are the fixed and incremental cost (=
length) of e. Given two nodes a, b and a subgraph H of G,
we let `2H(a, b) be the minimum-length cycle of H con-
taining a and b. Note that this is the same as the minimum
length of two node-disjoint paths between a and b in H .
Then the objective function is to find E′ ⊆ E that mini-
mizes

∑
e∈E′ ce +

∑
siti∈T `2G[E′](si, ti).

A two-node junction is a pair of nodes (u, v) with u 6= v.
We say that a node x is two-connected to a junction (u, v)
in a graph H if there exist paths P and Q in H that connect
x to u and x to v, respectively, and are node-disjoint (except
at x). Denote by `2H(x, (u, v)) the minimum total length of
two such paths. The following is straightforward to verify.

Proposition 3.1. Let H be a graph in which si and ti are
two-connected to a junction (u, v) and there exists a cycle
containing u and v. Then there is a cycle in H containing si

and ti of length at most `2H(si, (u, v)) + `2H(ti, (u, v)) +
`2H(u, v).

Given a subset A of the demands, a junction-structure
for A rooted at a two-node junction (u, v) is a subgraph
H(u, v) of G satisfying the requirements of Proposition 3.1
for every si and ti such that siti ∈ A. Hence, we can con-
nect the pairs in A using edges of H(u, v), with cost no
more than∑

e∈E(H(u,v))

ce +
∑

siti∈A

(
`2H(u,v)(si, (u, v)) +

+ `2H(u,v)(ti, (u, v)) + `2H(u,v)(u, v)
)
. (3)

Quantity (3) is called – somewhat abusively – the cost of
junction-structure H(u, v).

Given a multi-commodity instance with unit de-
mands, let OPTMC be the optimal solution. We first
show the existence of a junction-structure of density
O

(
log h

h

)
cost(OPTMC), where density is defined to be the

ratio of the cost of the junction-structure to the number of
demand pairs connected by it. Although this existence proof
builds upon the ideas in [7], to ensure node-disjointness we
need a more sophisticated argument in Lemma 3.4. Using
the O(1) integrality gap of the single-sink problem, we fur-
ther show how to find a junction-structure whose density is
at most O(log h) times the optimal density, namely a struc-
ture of density at most O

(
log2 h

h

)
cost(OPTMC). We now re-

move the demands whose source-destination nodes are con-
nected and recurse on the remaining ones. This gives us an
approximation ratio of O(log3 h) for the protected multi-
commodity buy-at-bulk problem.

3.1 Existence of Low-Density Junction-Structure

To show the existence of a junction-structure with low
density, we assume knowledge of an optimal solution E∗ to
the given multi-commodity instance and find a low-density
junction-structure from E∗. Let G∗ = G[E∗] be the graph
induced on the edge set E∗. Let L =

∑
i `2G∗(si, ti)/h

be the average length of the demand pairs in the optimal
solution. A demand siti is short if `2G∗(si, ti) is at most
2L. By Markov’s inequality, most demands are short:

Proposition 3.2. At least h/2 demands are short.

From now on we focus on these short demands only. For
each demand pair siti, we fix a shortest cycle Qi through
si and ti in G∗. Subsequently, we present an algorithm that
decomposes G∗ into connected edge-disjoint1 induced sub-
graphs G∗

1 = G[E∗
1 ], G∗

2 = G[E∗
2 ], . . . , G∗

f = G[E∗
f ]. For

a subgraph H of G∗, we define a ball BH((u, v), r) with
center (u, v) and radius r to contain vertices x ∈ V (H)
for which `2H(x, (u, v)) ≤ r. We abuse notation and use
BH((u, v), r) also to denote the induced subgraph. A de-
mand pair siti is captured by a ball BH((u, v), r) if both
si and ti are contained in the ball. A pair siti intersects
BH((u, v), r) if it is not captured by the ball, but the ball
contains some edge in the cycle Qi.

We choose a short demand pair uv as center (u, v) and
define a sequence of radii rj = 2L · j for j ≥ 1. We
begin with the ball BG∗((u, v), r1); if the number of cap-
tured demands is at least the number of intersected de-
mands, we make the ball the first component G∗

1. Other-
wise, the number of captured demands is fewer than the
number of intersected demands. In this case, we consider
progressively larger balls, of radii r2, r3, and so on. Let J
be the smallest index such that the number of demands cap-
tured by BG∗((u, v), rJ) is fewer than the number of de-
mands intersected by the same ball. Then, BG∗((u, v), rJ)
becomes the first component G∗

1. We remove all edges in
BG∗((u, v), rJ) from G∗ and all demands that are either
captured or intersected by that ball; these intersected de-
mands are henceforth considered lost. We recurse on the
residual of G∗ and the remaining demands to create compo-
nents G∗

2, G
∗
3, . . . , G

∗
f , until no demands are left. We let Ti

be the set of demands captured by the component G∗
i , and

let (ui, vi) denote the center we have arbitrarily chosen for
G∗

i . Since lost demands are fewer than captured demands,
the following lemma also holds.

1This is in contrast to the 1+1 edge-protection case where the subgraphs
can be chosen to be node-disjoint. The node-disjoint property is relevant
for the buy-at-bulk problem with node costs [8].
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Lemma 3.3. The total number of demands that are cap-
tured by G∗

1, G
∗
2, . . . , G

∗
f is at least h/4.

We show below that one of the components corresponds
to a low-density junction-structure. The construction of the
ball-growing algorithm has the following property.

Lemma 3.4. Any demand intersected by the ball
BG∗((u, v), rj) is captured by BG∗((u, v), rj+1).

Proof. Assume that BG∗((u, v), rj) intersects the demand
pair siti. We establish that `2G∗(si, (u, v)) ≤ rj+1.
(The proof for ti is identical.) Start from si and move
in one direction along Qi. Denote by x the first node in
BG∗((u, v), rj) thus encountered, and by Psix the segment
of Qi traversed. Then, go back to si and move in the op-
posite direction along Qi. Denote by y the first node in
BG∗((u, v), rj) encountered, and by Psiy the segment of
Qi traversed. Note that, x and y are distinct; since Qi

and BG∗((u, v), rj) share an edge, at least two nodes on
Qi are in BG∗((u, v), rj). Also, by construction, Psix and
Psiy are node-disjoint. Let Pxu and Pxv be the two node-
disjoint paths from x to u and v, respectively, whose com-
bined length is at most rj . Similarly, let Pyu and Pyv be
the two node-disjoint paths from y to u and v, respectively,
whose combined length is at most rj . By the choice of x
and y, the paths Pxu, Pxv , Pyu and Pyv are node-disjoint
from Psix and Psiy , other than at x and y. We distinguish
the following two cases.

Case 1: x /∈ Pyu∪Pyv and y /∈ Pxu∪Pxv (see Figure 3,
top). Let F be the subgraph induced on Qi ∪ Pxu ∪ Pxv ∪
Pyu ∪ Pyv . Add a dummy node α to F , such that α is
adjacent to u and v only, via zero-length edges. Then, create
a single-sink min-cost flow problem on F , where two units
of flow are sent from si to α. Assume that each node except
si and α has unit capacity and zero cost, and each edge has
cost equal to its length.

Consider the following fractional solution: si sends one
unit of flow to x along Psix and one unit to y along Psiy;
x sends 1/2 units of flow to u along Pxu and 1/2 units to
v along Pxv; and y sends 1/2 units of flow to u along Pyu

and 1/2 units to v along Pyv . It is easy to see that node
capacities are not exceeded and the routing cost is at most

1
2
`(Pxu ∪ Pxv) +

1
2
`(Pyu ∪ Pyv) + `(Qi) ≤

≤ 1
2
rj +

1
2
rj + 2L = rj+1 . (4)

The integrality of single-sink min-cost flow implies the ex-
istence of two node-disjoint integral paths between si and
α, of total cost no more than the fractional cost given in (4).

Case 2: Otherwise, without loss of generality, suppose
that Pyu goes through x (see Figure 3, right); the other sub-
cases are symmetrical. Pyv and the segment of Pyu be-
tween x and u yield two node-disjoint paths from x to u and

r rsi ti

r r
x y

r r
u

v

r rsi ti

r r
x y

r r
u

v

Figure 3. Existence of two node-disjoint paths
from si (symmetrically ti) to u and v.

from y to v, whose combined length is less than rj . Conse-
quently, there exist two node disjoint paths from si to u and
v, whose total length is at most `(Pyu) + `(Pyv) + `(Qi) ≤
rj + 2L = rj+1.

Lemma 3.5. For 1 ≤ i ≤ f and every node x in
G∗

i , `2G∗
i
(x, (ui, vi)) ≤ 2L · (1 + log h). In particular,

for each demand st captured by G∗
i , `2G∗

i
(s, (ui, vi)) +

`2G∗
i
(t, (ui, vi)) + `2G∗

i
(ui, vi) ≤ 2L(3 + 2 log h).

Proof. Let H be the residual graph of G∗ after the first i−1
components G∗

1, . . . , G
∗
i−1 are created and their edges re-

moved. From Lemma 3.4 and the construction of the al-
gorithm, every time the ball grows from BH((ui, vi), rj)
to BH((ui, vi), rj+1) the number of demands captured by
BH((ui, vi), rj+1) is at least twice the number captured by
BH((ui, vi), rj). Since the total number of pairs is h, the
number of times the radius is increased is at most dlog he.
Thus, G∗

i has radius at most 2L · (1 + log h). Clearly, then,

`2G∗
i
(s, (ui, vi)) + `2G∗

i
(t, (ui, vi)) + `2G∗

i
(ui, vi) ≤

≤ 2 · 2L(1 + log h) + 2L = 2L(3 + 2 log h) .

Lemmata 3.3 and 3.5, and the fact that the subgraphs
G∗

1, . . . , G
∗
f are edge-disjoint, when combined with a sim-

ple averaging argument lead to the following theorem.

Theorem 3.6. Given a multi-commodity instance
of the protected buy-at-bulk problem, there exists a
junction-structure of density O

(
log h

h

)
cost(OPTMC).

3.2 Finding a Low-Density Junction-Structure

Using the single-sink single-cable approximation algo-
rithm as a subroutine, an O(log h) approximation to the
minimum-density junction-structure can be derived. This
is a consequence of the theorem below.

Theorem 3.7. There is an O(log h) approximation for the
min-density protected single-sink single-cable problem.

Proof. We closely follow the argument used in [7]. First, let
us formulate a linear programming relaxation for the den-
sity version of the protected single-sink problem. In other
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words, the objective is to minimize the ratio of the cost of
the network to the number of terminals it connects to the
sink. For each terminal ti, we introduce a variable yi that
indicates whether or not ti is connected to s in the solution.
By normalizing the sum

∑h
i=1 yi to 1, we ensure that the

objective function represents the density of the solution.

LP3 : min
∑
e∈E

cex(e) +
h∑

i=1

∑
q∈Qi

`(q)f(q) (5a)

s.t.
∑
q∈Qi
q3e

f(q) ≤ x(e) ∀e ∈ E,
1 ≤ i ≤ h

(5b)

∑
q∈Qi

f(q) ≥ yi ∀1 ≤ i ≤ h (5c)

h∑
i=1

yi = 1 (5d)

x(e), f(q), yi ≥ 0 ∀e ∈ E,
q ∈

⋃
i Qi,

1 ≤ i ≤ h

(5e)

Lemma 3.8. The linear program LP3 is a valid relaxation
for the min-density protected single-sink problem. It can be
solved optimally in polynomial time.

We then partition the demands into groups Ta, where
a ∈ [0..dlog he], depending on the values of the correspond-
ing yi variables in the optimal solution to LP3, which can
be computed efficiently. Let Ta = {ti | ymax/2a+1 ≤
yi < ymax/2a}, where ymax = maxi yi. Among these
groups there exists one group Tb such that

∑
ti∈Tb

yi =
Ω(1/ log h). Moreover, 2b/(ymax|Tb|) = O(log h).

Finally, we solve the protected single-sink problem on
Tb using the approximation algorithm from Section 2, and
claim that the resulting solution is an O(log h) approxima-
tion to the min-density protected single-sink problem. In-
deed, let α be the value of the optimal solution to LP3.
For terminals in Tb, we may obtain a feasible solution
to LP1 by scaling up the solution to LP3 by a factor of
β = 2b+1/ymax. The cost of this solution is at most αβ. By
the proof of Lemma 2.9, the algorithm of Section 2 can yield
an integral solution, for terminals in Tb, of value O(αβ). Its
density is O(αβ)/|Tb|, which is O(log h)α, by the choice
of b. Since α is a lower bound on the density of the optimal
solution, the proof is complete.

We now describe how to approximate the minimum-
density junction-structure. Once again, the ideas are sim-
ilar to those in [7], but the details are more elaborate.
The step of guessing the junction (u, v) of a min-density
junction-structure is implemented, as is standard, by trying
each possible pairs of nodes as a candidate junction, and
keeping the best result.

Then, we relax this problem to an LP very similar to
that for the min-density single-sink problem. Create a new
graph G′ by adding an artificial sink node r to the graph
G and connecting it to u and v via edges ur, vr such that
`ur = `2G(u, v), cur = k · `ur, and cvr = `vr = 0.
Assume, without loss of generality, that each node in the
original graph G is the endpoint of at most one demand
pair in T . Consider LP3 on G′, with r as sink and T ′ =
{s1, t1, s2, t2, . . . , sh, th} = {t′1, t′2, . . . , t′2h} as the set of
terminals. Moreover, place an additional set of constraints
in LP3:

yi = yj ∀i, j such that ∃p with t′i = sp and t′j = tp

Suppose that the minimum-density junction-structure OPT∗

has density γ∗. It is straightforward to convert OPT∗ to a
feasible solution of this new linear program, with density
between 1

2γ∗ and γ∗; it may not be exactly 1
2γ∗, because the

fixed cost of some junction-structure edges may be double-
counted in the objective function of the LP.

Apply the algorithm from Theorem 3.7 to the optimal so-
lution of the modified LP3 above. Observe that the round-
ing procedure ensures that for any i, j such that yi = yj ,
either both t′i and t′j are connected to r, or neither is. Thus,
the resulting solution SOL∗ to the single-sink density prob-
lem can be converted back to a junction-structure. By Theo-
rem 3.7, SOL∗ has density O(log h)γ∗, so the corresponding
junction-structure also has density O(log h)γ∗. Combined
with Theorem 3.6, this yields

Theorem 3.9. Given a multi-commodity instance of the
protected single-cable buy-at-bulk problem, there is a poly-
nomial time algorithm that finds a junction-structure with
density O

(
log2 h

h

)
cost(OPTMC).

As mentioned before, we use an iterative greedy algo-
rithm, similar to the classic one for set cover. In each iter-
ation, we use Theorem 3.9 to find an approximate junction
structure in the residual instance and remove the demand
pairs that are connected by the structure to obtain the resid-
ual instance for the next iteration. Hence,

Theorem 3.10. The node-protected multi-commodity
single-cable buy-at-bulk problem can be approximated by
a factor of O(log3 h).

Recall that in this section all demands have dem(i) = 1.
In the single-cable setting, Theorem 3.10 holds for arbitrary
demands as well; we omit the details.
Remark. The reduction from the min-density junction
structure problem to the single-sink one can be extended to
the general FI model. Consequently, if a bound on the inte-
grality gap of LP1 for either the uniform or the non-uniform
cost model were known, via a constructive result analogous
to Lemma 2.9, we could generalize Theorems 3.7 and 3.9 –
and, ultimately, Theorem 3.10 – accordingly.
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4 Conclusions

Our main contributions are the formal introduction of the
protected buy-at-bulk network design problem and the first
approximation algorithms for it in the single-cable setting.
We remark that for edge-disjoint protection, the ideas in
Section 3 simplify and hold for connectivity requirements
larger than two. One important question is the approxima-
bility of the protected buy-at-bulk problem in the uniform
multiple-cable and non-uniform cost models. Our results in
Section 3 pertaining to the general FI model indicate that
it is sufficient to focus on the single-sink version of the
problem. We note that even the case of two cables is of
interest, as current techniques appear inadequate for tack-
ling it. From the practical perspective, we hope the con-
cepts of clustering and junction structures may inspire the
design of more effective heuristics for the design of real-
world DWDM networks.
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