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ABSTRACT
We consider the problem of scheduling wireless data in sys-
tems such as 802.16 (WIMAX). Each scheduling decision
involves constructing a frame of one or more time slots.
Within each time slot multiple carriers must be assigned to
users. The important aspect of our problem is that a sched-
uler knows the channel rates across all users and all carriers
whenever a scheduling decision is made. Hence there is no
need to treat each carrier in complete isolation. This gives a
potential for enhancing performance by allocating multiple
carriers simultaneously.

We analyze this problem in a situation where finite queues
are fed by a data arrival process. We generalize the well-
known MaxWeight algorithm for the single-carrier setting
to accommodate a number of natural optimization prob-
lems in the multi-carrier setting. We state the hardness
of these problems and present simple algorithmic solutions
with provable performance bounds. We also validate our
algorithms via numerical examples.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; F.2.m
[Analysis of Algorithms and Problem Complexity]:
Miscellaneous

General Terms
Algorithms, Design, Theory

Keywords
Scheduling, multiple carriers, stability, queue performance,
Max Weight, wireless communication, WIMAX

1. INTRODUCTION
The advent of wireless data systems has led to renewed

interest in scheduling data in multiuser systems. In recent
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years a large body of work has looked at the problem of
scheduling over time-varying user-dependent channels in a
cellular wireless system. (See Figure 1.) This work ex-
amines a number of different models. For example, in the
finite-queue model (e.g. [26, 27]) the aim is to keep the sys-
tem stable assuming the queues are fed by an exogenous
arrival process. Alternatively, in the infinitely-backlogged
model (e.g. [28, 25, 17]) the aim is to maximize the system
utility assuming the queues are permanently backlogged.
Other work examines the difference between models where
the channel rates are governed by some stationary stochastic
process and models where a worst-case adversarial channel
process is assumed, e.g. [2, 7]. However, most of the previ-
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Figure 1: A cellular wireless system.

ous work looks at a situation with a single wireless carrier
in which we can make a scheduling decision on a time slot
by time slot basis. Some wireless systems however, have
multiple carriers in which we can assign different carriers
to different users. Examples include multi-carrier CDMA
systems and also systems such as IEEE 802.16 (WIMAX),
EV-DO Revision C and the Long-Term Evolution (LTE) of
UMTS that use an OFDMA (orthogonal frequency division
multiple access) physical layer in which different “tones” can
be assigned to different users at each time. Another feature
of most OFDMA-based systems is that we cannot schedule
each time slot in isolation. Time is divided into frames of
multiple time slots and we must populate the entire next
frame whenever a frame ends. (See Figure 2.)
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Figure 2: Schedule for a multi-carrier and frame-
based wireless system.



In this paper we study the problem of scheduling in multi-
carrier and frame-based systems. We focus on the issue of
multiple carriers since as we argue later multiple timeslots
per frame can be regarded as a special case of multiple car-
riers.

A straightforward approach for multiple carriers is to sched-
ule carriers one by one independently by using an existing
scheduling algorithm for each carrier in turn. Under such a
simple adaptation, it is unclear a priori if the performance
of a scheduling algorithm can be directly translated from a
single-carrier system to a multi-carrier system. For exam-
ple, all carriers could favor the same user which could lead
to an excessive amount of service to one user. A main goal of
this paper is to examine how to adapt the popular algorithm
known as MaxWeight to the case of multiple carriers. We
present a number of natural analogues of MaxWeight in the
multi-carrier setting and prove their performance bounds
against different objective functions. We show the trade-
off between the complexity of the variants and their perfor-
mance.

Our approach is based on the natural assumption that
a multi-carrier scheduler knows the channel rates across all
users and all carriers whenever a scheduling decision is made.
This “global” information may give a potential for enhanc-
ing performance via an optimized allocation of carriers to
users. Another purpose of this paper is to investigate the
benefits of jointly allocating multiple carriers versus the iso-
lated local optimization of each carrier.

1.1 The Model
We consider a single basestation transmitting data to a

set of N wireless users. The basestation can transmit on a
set of C carriers. At each time step, multiple carriers may
be assigned to the same user; each carrier however can be
assigned to at most one user. We use the indicator variable
x(i, c, t) to indicate whether or not carrier c is assigned to
user i at time t. Due to the wireless nature of the chan-
nel, the channel rate depends on the user and the time slot.
The channel rate can also depend on the carrier since the
radio propagation environment may be different for differ-
ent carriers, e.g. when carriers are on different frequencies.
Hence, we use r(i, c, t) to denote the channel rate of carrier
c for user i at time step t. If x(i, c, t) = 1, then data of size
r(i, c, t) can be transmitted to user i at time t on carrier c.

Our goal is to schedule the system, i.e. to choose the values
x(i, c, t) in the most advantageous way. In a frame-based
system such as 802.16, time is divided into frames of length
T . We focus on the case that the frame-size is one time slot
since we can convert our arguments to the situation with
larger frames by treating the carriers in subsequent time
slots as “new carriers”. (Note that since the schedule for a
frame needs to be constructed before the frame starts, and
we need to know the channel rate for all tuples (i, c, t), this
only makes sense under the assumption that the channel rate
does not vary significantly over the duration of the frame.
However, we believe that this is a natural assumption since
in order for efficient frame-based scheduling to be possible,
the frame size would need to chosen so that this assumption
holds.)

1.2 Problems and Results
We first consider a finite-queue model with an external

arrival process. Let ai(t) be the amount of data that ar-

rives for user i in time slot t. One objective is to keep the
system stable, i.e. to keep queues bounded whenever this
is achievable. In the single carrier situation, the well stud-
ied MaxWeight algorithm always serves the user that max-
imizes Qs

i (t)r(i, t) at each time step t. Here Qs
i (t) denotes

the queue size of user i at the beginning of time slot t. The
MaxWeight algorithm is known to have desirable stability
properties. The proof relies on showing that if the queue
sizes are large then MaxWeight creates a negative drift in
the Lyapunov function

P

i
(Qs

i (t))
2.

We consider a number of ways to emulate the Max-Weight
algorithm in multi-carrier systems. Let µ(i, t) =

P

c
r(i, c, t)·

x(i, c, t) be the amount of service user i receives at time t.
We consider three objective functions when scheduling time
slot t.

max
X

i

Qs
i (t)µ(i, t); (1)

max
X

i

Qs
i (t)min{Qs

i (t), µ(i, t)}; (2)

max
X

i

(Qs
i (t))

2 − (Qe
i (t))

2. (3)

Objective (1) is the simplest analogue of MaxWeight which
maximizes

P

i
Qs

i (t)r(i, t)x(i, t) for the single-carrier case.
However, optimizing (1) has the potential shortcoming of
assigning more service to a user than it can actually use.1

Hence, although this effect may not change the stability
properties of MaxWeight, it can lead to much larger queue
sizes (and hence packet delays) than are necessary. Objec-
tive (2) offers a natural fix by replacing µ(i, t) with min{Qs

i (t),
µ(i, t)} in the objective function. Objective (3) explicitly
maximizes the negative drift of the Lyapunov function, where
Qs

i (t) and Qe
i (t) denote the queue size of user i at the be-

ginning and at the end of time slot t. Both objectives (2)
and (3) are more sensitive to maintaining small queues than
objective (1). We propose five variations of the MaxWeight
algorithm, and refer to them as MaxWeight-Alg1 through
MaxWeight-Alg5 (or Alg1 through Alg5 in short). In this
paper we prove a collection of results regarding these five
algorithms in relation to the three objectives.

1. We describe MaxWeight-Alg1 that assigns each car-
rier c to the user that maximizes Qs

i (t)r(i, c, t). This
carrier-by-carrier algorithm optimizes objective (1).

2. Somewhat surprisingly, both objectives (2) and (3) are
NP-hard to optimize. Furthermore they cannot be ap-
proximated2 to within a factor of 1 − δ for some con-
stant δ.

3. Since we cannot hope for optimum solutions to ob-
jectives (2) and (3) we focus on developing approxi-
mation algorithms. We present MaxWeight-Alg2 and
MaxWeight-Alg3 that are variations of MaxWeight-Alg1.
They provide a 1

2
-approximation and a 1

3
-approximation

for objectives (2) and (3) respectively.
1Although this problem exists for the single-carrier setting,
we believe that it is particularly acute for multi-carrier sys-
tems where the amount of service that can be assigned in a
single time slot is relatively large.
2If opt is the optimal value of a maximization problem, we
say an algorithm is an α-approximation algorithm if it al-
ways returns a solution whose value is at least αopt. If for
every algorithm, there are instances for which the algorithm
cannot guarantee an α approximation then we say that the
problem cannot be approximated to within a factor α.



4. We present MaxWeight-Alg4 which, unlike Alg1, Alg2
and Alg3, operates by considering each user in turn
and choosing an optimal set of carriers for that user.
This user-by-user algorithm gives an alternative 1

2
-

approximation for objective (2). Alg2 and Alg4 are
special instances of a powerful algorithm for maximiz-
ing a submodular function over a matroid.

5. We show that there are scenarios for which Max-Weight-
Alg2, Alg 3 and Alg4 achieve at most a 1

2
+ ε fraction

of their respective optimal objective values.

6. We present a more complex algorithm MaxWeight-
Alg5 that is based on a recent algorithm for the Gen-
eralized Assignment Problem [12]. It improves the ap-
proximation ratio for objective (2) to 1 − 1

e
− ε for

any ε > 0. Although we believe that Alg5 is not sim-
ple enough to be practical for wireless systems, we feel
that it does provide theoretical insight into the multi-
carrier scheduling problem.

7. We show that the stability properties of the single-
carrier MaxWeight algorithm also apply to the multi-
carrier algorithms MaxWeight-Alg1 through Alg5.

8. We show how to adapt our algorithms to the case
in which the weights are more general than simple
queue sizes. This is important if we wish to address
objectives such as fairness in addition to maintaining
small queues. In particular we define multi-carrier ana-
logues of well-known weight-based algorithms such as
the Proportional Fair algorithm [28, 15].3

9. We present simulation results to show that although
MaxWeight-Alg2, Alg3 and Alg4 may not optimize ob-
jectives (2) and (3), they still significantly outperform
MaxWeight-Alg1 due to the fact that they are trying
to optimize better objectives. The reason for the im-
proved performance is that MaxWeight-Alg1 will often
try to assign more service to a user than it can actu-
ally use. This behavior does not occur for algorithms
MaxWeight-Alg2, Alg3 and Alg4. We also observe that
although Alg2, Alg3 and Alg4 have similar approxi-
mation ratios for a single time slot in isolation, their
performance can be dramatically different over longer
timescales.

1.3 Related work
The MaxWeight algorithm was first shown to perform well

in wireless networks by Tassiulas and Ephremides [26, 27].
Other papers that study Max-Weight include [4, 3, 21]. Two
algorithms that are similar to MaxWeight are MaxDelay [4,
3] and Exp [22, 23]. MaxDelay allocates service to user
arg maxi ∆i(t)ri(t) where ∆i(t) denotes the Head-of-Line
delay for user i at time t. Exp is a more complex algorithm
that provides more control over the relative delays that the
users experience.

The above algorithms were designed for the case in which
the finite queues are fed by an arrival process. For the case
in which the queues are infinitely backlogged and we wish
to maximize a system utility function the Proportional Fair
algorithm was introduced by [28, 15] and studied in [25, 17,
1]. It was shown in [2] that Proportional Fair does not work

3The single carrier Proportional Fair algorithm always
serves the user that maximizes (1/Ri(t))r(i, t), where Ri(t)
is an estimate of the average service rate provided to user i.

so well when the queues are fed by an arrival process. In par-
ticular it can cause the queues to be unstable. Algorithms
for optimizing utility functions subject to fairness require-
ments and constraints on minimum/maximum throughput
have been studied by [18, 19, 5]. Algorithms that combine
the goals of system utility maximization and queue stability
have recently been presented by [24, 10, 20]. In [6] it was
shown that unless these problems are studied jointly, system
oscillations can occur. We remark that all of this previous
work on wireless scheduling has looked at a single carrier in
isolation.

2. CANDIDATE ALGORITHMS
In this section we define a number of algorithms that aim

to emulate the MaxWeight algorithm in the multi-carrier
scenario. We focus on constructing a schedule for a single
timeslot. It is not difficult to adapt our techniques to a
frame with multiple timeslots by simply considering each
(time slot, carrier) pair as a separate carrier. As mentioned
in the Introduction, the reason that the problem differs from
the single carrier problem is that we know the channel rates
for all the carriers and users at the beginning of the time step
and hence there is a potential benefit to jointly optimizing
the allocation of carriers.

We utilize the following notation. For convenience, the
dependence on t is omitted.

Qs
i = queue size for user i at the beginning of time t

which includes the arrival ai(t) for time t.

Qe
i = queue size for user i at the end of time t

r(i, c) = rate for user i, carrier c during time t

µi = total service to user i during time t

Qc
i = queue size for user i after carrier c is assigned

Two equations that relate the above quantities are:

Qc+1
i = max{0, Qc

i − r(i, c)}

Qe
i = max{0, Qs

i − µi}

Recall the objectives (1), (2) and (3) defined in Section 1.
We analyze the following five algorithms with respect to
these three objectives. The first three algorithms go through
the carriers in order. At time t carrier c serves user î defined
below.

• MaxWeight-Alg1: î = argmaxiQ
s
i r(i, c), where argmax

means î is the index that maximizes Qs
i r(i, c).

• MaxWeight-Alg2: î = argmaxiQ
s
i min{r(i, c), Qc

i}.

• MaxWeight-Alg3: î = argmaxiQ
c
i min{r(i, c), Qc

i}.

• MaxWeight-Alg4 does not locally optimize each carrier
in isolation. It considers each user one by one and
finds the best carrier(s) for the user. However, this
assignment can be modified if there is more benefit for
a carrier to serve a later user. We defer the detailed
description of this algorithm to Section 5

• MaxWeight-Alg5 begins by approximately solving a re-
laxation of an integer linear program for objective (2)
followed by rounding the fractional approximate solu-
tion. We defer the detailed description to Section 6.



We conclude this section with two simple results. The fol-
lowing theorem follows directly from the definition of Max-
Weight-Alg1.

Theorem 1. MaxWeight-Alg1 optimizes objective (1).

Our second result shows that objectives (2) and (3) are re-
lated.

Lemma 2. Any α-approximation algorithm for objective
(2) provides a α

2
-approximation for objective (3).

Proof. Since 0 ≤ Qe
i ≤ Qs

i we have,

Qs
i (Q

s
i −Qe

i ) ≤ (Qs
i + Qe

i )(Q
s
i −Qe

i )

= (Qs
i )

2 − (Qe
i )

2

≤ 2Qs
i (Q

s
i −Qe

i ).

In addition, min{Qs
i (t), µ(i, t)} = Qs

i (t) −Qe
i (t). Therefore

objectives (2) and (3) are always within a factor of two of
each other.

3. HARDNESS OF OBJECTIVES (2) AND
(3)

As we discussed in the Introduction, optimizing objective
(1) is not ideal since it could lead to more service being
allocated to a user than it is able to use and hence the queue
sizes (and packet delays) may become larger than necessary.
Hence it would be preferable to use objectives (2) and (3).
In this section we show that unfortunately, we cannot hope
for an efficient algorithm that optimizes objectives (2) and
(3) in general.

Theorem 3. For some δ > 0, there is no (1−δ)-approxi-
mation algorithm for objectives (2) and (3) unless P=NP.

Proof. We use a reduction from the 3-bounded 3-dimen-
sional matching problem. In this problem we are given a set
T ⊆ X×Y ×Z where |X| = |Y | = |Z| = n. A 3-dimensional
matching M is a subset M ⊆ T such that no elements in
M agree in any coordinate. In a 3-bounded instance each
element in X ∪ Y ∪ Z appears at most three times in T .
The goal is to find a matching M of maximum cardinality.
Kann [16] showed that there exists an ε such that it is NP-
hard to decide whether the maximum size matching equals
n or is at most (1− ε)n.

We now convert this into an instance of our problem. We
use a reduction similar to that of [9] for a problem known as
the Generalized Assignment Problem. For each hyperedge
e ∈ T we are given a user ie. For each element w ∈ X∪Y ∪Z
we have a carrier cw . We call these 3n carriers regular carri-
ers. We set the channel rate r(ie, cw) = 1 if w is a component
of e, and r(ie, cw) = 0 otherwise. We have another set of
|T | − n dummy carriers c′ for which r(i, c′) = 2 + ε for all
users i. Let Qs

i = 3 for all users i.
Given a scheduling solution, we partition the users into

three sets A, B and C. Each user in A is assigned 3 regular
carriers only. Note that the users in A correspond to a 3-
dimensional matching and hence |A| ≤ n. Each user in B
is assigned 1 dummy carrier and possibly 1 regular carrier;
each user in C is assigned 1 or 2 regular carriers only. To see
that A, B and C form a partition of the users that receive
service, we observe that there is no benefit to assigning 1
dummy carrier and x ≥ 2 regular carriers to a user since
Qs

i = 3. There is also no benefit to assigning 2 dummy

carriers to a user since there is more benefit to reassigning
one dummy carrier to a user with x ≤ 2 regular carriers.
Such a user always exists since the number of users in T −A
is at least |T |−n, the number of dummy carriers. Therefore,
|B| = |T | − n and |C| = n − |A|.

Consider the 3n − 3|A| regular carriers not assigned to
users in A. With respect to objectives (2) and (3), there is
more benefit to assigning them to users in C than assigning
them to users in B. However, we can assign at most 2 regular
carriers to each user in C. Hence at least 3n−3|A|−2|C| =
n−|A| regular carriers are assigned to users in B. Therefore,
objectives (2) and (3) can be upper bounded as follows.4

OBJ2

=
X

i

Qs
i min{Qs

i , µi}

≤ 3 · (3|A| + (2 + ε)|B| + (1 − ε)(n− |A|) + 2|C|)

= 3 · (ε|A|+ (2 + ε)(|T | − n) + (3− ε)n) (4)

and

OBJ3

=
X

i

(Qs
i )

2 − (Qe
i )

2

≤ 9|A| + (9− (1− ε)2)(|B| − (n − |A|))

+ 9(n − |A|) + 8|C|

≤ (2ε− ε2)|A| + (9 − (1− ε)2)|T |

+ (2(1 − ε)2 − 1)n (5)

We now consider two cases. If the size of the maximum 3-
dimensional matching is indeed n, then |A| = n and |C| = 0.
In this case the upper bounds on objectives (2) and (3)
that we have just derived are actually tight, i.e. OBJ2|A|=n

equals (4) and OBJ3|A|=n equals (5). If the maximum
3-dimensional matching has size at most (1 − ε)n, then
|A| ≤ (1 − ε)n. For both objectives, the drop in value is
at least ε2n, i.e. OBJ2|A|=n − OBJ2|A|≤(1−ε)n ≥ ε2n and

OBJ3|A|=n −OBJ3|A|≤(1−ε)n ≥ ε2n.
We note that |T | ≤ 3n since the matching instance is 3-

bounded. Therefore, both objectives (2) and (3) are at most
27n. This means that the relative difference in the objective
values between the two cases is at least ε2/27. By setting
δ = ε2/27, we obtain our result.

4. APPROXIMATION RATIOS OF ALG2AND
ALG3

In this section we show that algorithms MaxWeight-Alg2
and Alg3 are constant-factor approximations for objectives
(2) and (3). The hardness results of Section 3 implies that
for these objectives, constant-factor approximation algorithms
are the best that we can hope for. Moreover, in Section 9
we present simulation results to show that although these
algorithms may not optimize objectives (2) and (3), they
still signficantly outperform MaxWeight-Alg1 due to the fact
that MaxWeight-Alg1 will often try to assign more service
to a user than it can actually use.

4In this section we use OBJ2 and OBJ3 to denote objectives
(2) and (3). We also use the subscript |A| = n to denote the
case in which the maximum size matching has size n and
the subscript |A| ≤ (1− ε)n to denote the case in which the
maximum size matching has size at most (1 − ε)n.



Theorem 4. MaxWeight-Alg2 is a 1
2
-approximation al-

gorithm for objective (2). By Lemma 2, this immediately
implies that it is a 1

4
-approximation algorithm for objective

(3).

Proof. We show thatMaxWeight-Alg2 is a special case of
the greedy algorithm for maximizing a nondecreasing sub-
modular function over a matroid. In order to clarify this
relationship we first define the following terms.

• Consider a ground set Ω and let I be a set of subsets
of Ω. The set I is a matroid if,

– ∅ ∈ I.

– If A ∈ I and B ⊆ A then B ∈ I.

– If A, B ∈ I and |A| > |B|, then there exists an
element a ∈ A\B such that B ∪ {a} ∈ I.

• A special case of a matroid is a partition matroid. We
say that a matroid is a partition matroid if there is
a partition of Ω into components Γ1, Γ2, . . . such that
A ∈ I if and only if |A ∩ Γk| ≤ 1, for all k.

• Let f(·) be a function on sets in I.

– It is a submodular function on I if for all a, A, B
such that (A ∪ {a}) ∈ I and B ⊆ A,

f(A ∪ {a}) − f(A) ≤ f(B ∪ {a})− f(B).

– It is a non-decreasing submodular function if in
addition f(∅) = 0 and for all a, A such that (A ∪
{a}) ∈ I,

f(A ∪ {a}) − f(A) ≥ 0.

• The Greedy algorithm for maximizing a nondecreasing
submodular function over a matroid works as follows.

– Initially let A = ∅.

– Repeat the following procedure for as long as pos-
sible. Let a = arg maxa∈Ω A∪{a}∈I f(A ∪ {a}) −
f(A). Set A← A ∪ {a}.

For partition matroids the algorithm can be simplified.
At step k, instead of considering all elements in Ω, we
only need to find a = arg maxa∈Γk

f(A∪ {a})− f(A).

• Fisher, Nemhauser and Wolsey [11] proved the follow-
ing property of the above Greedy algorithm.

Lemma 5. The Greedy Algorithm gives a 1
2
- approx-

imation to the problem of maximizing a non-decreasing
submodular function over a matroid.

We now show that MaxWeight-Alg2 is special case of the
above Greedy Algorithm for partition matroids. The ground
set Ω = {(i, c) : 1 ≤ i ≤ N, 1 ≤ c ≤ C}. A subset A ∈ I
if and only if there is at most one element in A for each
carrier. In other words, A defines a valid schedule. Let
Γc = {(i, c) : 1 ≤ i ≤ N}. This clearly defines a partition
matroid. The function f(·) is defined by,

f(A) =
X

i

Qs
iνi(A),

where νi(A) = min{
P

c:(i,c)∈A
r(i, c), Qs

i}. Note that if B ⊆

A then νi(B) ≤ νi(A). From this it is easy to see that for

any element (i, c) where A ∪ {(i, c)} forms a valid sched-
ule, f(A ∪ {(i, c)}) − f(A) ≤ f(B ∪ {(i, c)}) − f(B), i.e.
the function f(·) is submodular. Moreover, it is clear that
function f(·) corresponds directly to objective (2). Hence
when we try to optimize objective (2) we are trying to find
an assignment (which corresponds to an element of a parti-
tion matroid) that maximizes a submodular function. Re-
call that MaxWeight-Alg2 goes through each carrier in turn
and assigns it to the user that maximizes the increase in
the objective. Hence MaxWeight-Alg2 corresponds to the
Greedy algorithm and so by the result of Fisher et al. it is
a 1

2
-approximation algorithm for objective (2).

We now provide an analysis of algorithm MaxWeight-Alg3.

Theorem 6. MaxWeight-Alg3 is a 1
3
-approximation for

objective (3).

Proof. Recall that Qc
i is the queue size for user i after

algorithm MaxWeight-Alg3 has assigned carrier c. Let Q̂c
i be

the analogous queue size for the optimum algorithm, which
we denote OPT. Consider any carrier c. Suppose that OPT
assign carrier c to user k and MaxWeight-Alg3 assigns it to
user j. We first show that the gain obtained by algorithm
MaxWeight-Alg3 due to carrier c is at least one half of the
gain obtained by OPT due to carrier c that is never obtained
by MaxWeight-Alg3. More precisely, we show

(Qc−1
j )2 − (Qc

j)
2

≥
1

2
((min{Q̂c−1

k , Qe
k})

2 − (min{Q̂c
k, Qe

k})
2). (6)

Suppose that Q̂c
k ≤ Qe

k. We have,

(Qc−1
j )2 − (Qc

j)
2

≥ Qc−1
j (Qc−1

j −Qc
j)

≥ Qc−1
k min{Qc−1

k , r(i, c)} by defn of Alg3

≥ Qc−1
k min{Qc−1

k , Q̂c−1
k − Q̂c

k} by choice of OPT

= min{(Qc−1
k )2, Qc−1

k (Q̂c−1
k − Q̂c

k)}

≥ min{(Qe
k)2, min{Q̂c−1

k , Qe
k}(Q̂

c−1
k − Q̂c

k)}

≥ min{(Qe
k)2,

min{Q̂c−1
k , Qe

k}(min{Q̂c−1
k , Qe

k} − Q̂c
k)}

≥ min{(min{Q̂c−1
k , Qe

k})
2,

1

2
((min{Q̂c−1

k , Qe
k})

2 − (Q̂c
k)2)}

by assumption that Q̂c
k ≤ Qe

k

≥
1

2
((min{Q̂c−1

k , Qe
k})

2 − (Q̂c
k)2)

Inequality (6) also holds true for the case that Q̂c
k > Qe

k

since then there is no gain obtained by OPT that is not
obtained by MaxWeight-Alg3. Algebraically, the inequality
holds trivially in this case since the right-hand-side is zero.
Note that the inequality also holds when k = j.

Now that we have verified Inequality (6), we proceed to
prove the lemma. For clarity of the rest of the proof, we let
jc be the user that carrier c serves under Alg3 and let kc

be the user that c serves under OPT. Note that kc can be
the same as jc. We know that Qc

i = Qc−1
i for i 6= jc and



Q̂c
i = Q̂c−1

i for i 6= kc. We therefore have,
X

i

(Qs
i )

2 − (Qe
i )

2

=
X

i

X

c

(Qc−1
i )2 − (Qc

i )
2 Telescoping on c

=
X

c

(Qc−1
jc

)2 − (Qc
jc

)2

since Qc
i = Qc−1

i for i 6= jc

≥
X

c

1

2
((min{Q̂c−1

kc
, Qe

kc
})2 − (min{Q̂c

kc
, Qe

kc
})2)

by Inequality (6)

=
X

c

X

i

1

2
((min{Q̂c−1

i , Qe
i})

2 − (min{Q̂c
i , Q

e
i})

2)

since Q̂c
i = Q̂c−1

i for i 6= kc

=
X

i

1

2
((min{Q̂s

i , Q
e
i})

2 − (min{Q̂e
i , Q

e
i})

2)

≥
1

2

X

i

(Qe
i )

2 − (Q̂e
i )

2

=
1

2

X

i

((Q̂s
i )

2 − (Q̂e
i )

2)− ((Qs
i )

2 − (Qe
i )

2)

This immediately implies,

X

i

(Qs
i )

2 − (Qe
i )

2 ≥
1

3

X

i

(Q̂s
i )

2 − (Q̂e
i )

2,

which completes the proof.

We conclude this section by showing that our analysis
of MaxWeight-Alg2 is essentially tight and our analysis of
MaxWeight-Alg3 cannot be significantly improved.

Theorem 7. For any constant ε > 0, there exists an in-
stance on which MaxWeight-Alg2 and Alg3 achieve at most
a 1/(2−ε) fraction of the optimal value of objectives (2) and
(3).

Proof. The example is as follows. There are 2 users,
each with Qs

i = 1. The channel rates are given by r(1, c) = 1
for c = 1, 2, r(2, 1) = 1 − ε, and r(2, 2) = 0. The optimal
algorithm assigns carrier 1 to user 2 and carrier 2 to user
1. Hence the optimal values of objectives (2) and (3) are
2−ε and 2−ε2 respectively. On the other hand, algorithms
MaxWeight-Alg2 and MaxWeight-Alg3 both assign carrier 1
to user 1 since r(1, 1) > r(2, 1).

5. MAXWEIGHT-ALG4: ALTERNATIVE 1/2
APPROXIMATION FOR OBJECTIVE (2)

We have so far considered algorithms that greedily as-
sign each carrier to the best user. Instead of the carrier-by-
carrier approach, we propose a new algorithm MaxWeight-
Alg4 which finds an optimal set of carriers for each user in
a user-by-user fashion.

5.1 Definition of MaxWeight-Alg4
MaxWeight-Alg4 operates by going through the users one-

by-one and making temporary assignments for carriers to
users. For each carrier c it also maintains a quantity β(c)
that measures the best allocation so far for c. (The value

of β(c) is initialized to zero.) These quantities are derived
from the following knapsack-like problem which is solved for
each user i. The variables in this problem are the b(i, c) and
they represent an assignment of b(i, c) bits from carrier c to
user i.

Knapsack max
X

c

(max{0, Qs
i b(i, c)− β(c)})

s.t.

b(i, c) ≤ r(i, c) ∀i, c
X

c

b(i, c) ≤ Qs
i ∀i

For each user i, MaxWeight-Alg4 first finds a solution to
this Knapsack problem. (We show how to do this in Sec-
tion 5.3.) If under this solution we have Qs

i b(i, c) > β(c)
for carrier c then this means that there is a benefit to be
gained by removing carrier c from its temporary assignment
and reassigning it to user i. In this case MaxWeight-Alg4
updates β(c) to Qs

i b(i, c)} and (re)assigns c to user i.
Remark. In order to simplify the analysis we assume

(without loss of generality) that in the optimum Knapsack
solution, at most one carrier is partially assigned to user
i and this carrier has the highest index among carriers as-
signed to user i. That is, if there exists a carrier ĉ such
that Qs

i b(i, ĉ) > β(ĉ) and b(i, ĉ) < r(i, ĉ) then ĉ = c′ :=
arg maxc{b(i, c) > 0}. To see why this is a legitimate as-
sumption, note that if it is not the case then we can in-
crease b(i, ĉ) and decrease b(i, c′) at a common rate until
either carrier ĉ is fully assigned (i.e. b(i, ĉ) = r(i, ĉ)) or else
b(i, c′) = 0 (in which case arg maxc{b(i, c) > 0} becomes a
different carrier). Hence we can continue this process until
our assumption is satisfied.

5.2 Analysis of MaxWeight-Alg4

Theorem 8. MaxWeight-Alg4 is a 1
2
-approximation al-

gorithm for objective (2). By Lemma 2, this immediately
implies that it is a 1

4
-approximation algorithms for objective

(3).

Proof. We follow the same approach as the proof for
Theorem 4 by showing that MaxWeight-Alg4 is equivalent
to the greedy algorithm for optimizing a non-decreasing sub-
modular function over a partition matroid. Consider the
ground set Ω = {(i, Si) : 1 ≤ i ≤ N, Si ∈ Λi}, where Λi is
the set of all assignments of carriers to user i. We partition
Ω into Γi = {(i, Si) : Si ∈ Λi}. We say that subset A ⊆ Ω
is in I if and only if there is at most one element in A for
each user i, i.e. |A ∩ Γi| ≤ 1 each i. This clearly defines a
partition matroid.

Suppose we have (i, Si) ∈ A ∈ I. If c ∈ Si we define
bA(i, c) = min{r(i, c), Qs

i −
P

c′<c:c′∈Si
bA(i, c′)}, otherwise

we set bA(i, c) = 0. Let βA(c) = maxi Qs
i bA(i, c). We define

a function f(·) by

f(A) =
X

c

βA(c).

Lemma 9. f(·) is a non-decreasing submodular function
over the above partition matroid.

Proof. Consider any B ⊆ A ∈ I and any (k, Sk) such
that user k is not assigned any carriers under A, i.e. |A ∩
Γk| = 0. Therefore, A′ = A ∪ {(k, Sk)} and B′ = B ∪



{(k, Sk)} are members of the partition matroid I. To see
f(A′) − f(A) ≤ f(B′) − f(B), we consider the following
cases.

• If βB(c) = βB′ (c), then βA(c) = βA′ (c). Therefore
βB′ (c)− βB(c) = βA′ (c)− βA(c) = 0.

• If βB(c) < βB′ (c), then βB′ (c) = Qs
kbB′ (k, c).

– If βA(c) = βA′ (c), then βB′ (c)−βB(c) > βA′ (c)−
βA(c) = 0.

– Otherwise, βA′ (c) = Qs
kbA′ (k, c). We know βB(c) ≤

βA(c) ≤ βA′ (c) since B ⊆ A ⊆ A′. Moreover,
βB′ (c) = βA′ (c) since (k, Sk) is in both A′ and B′.
Therefore βB′ (c)− βB(c) ≥ βA′ (c)− βA(c) ≥ 0.

Lemma 10. If the set A corresponds to an assignment of
carriers to users, function f(A) equals objective (2) for this
assignment.

Proof. Suppose set A corresponds to an assignment of
carriers of users. By the remark at the end of Section 5.1,
we can assume that for each user i there is at most one car-
rier that is only partially utilized by user i and this carrier
has the highest index among carriers that are assigned to
user i. This implies that the amount of service that car-
rier c provides to user i can be written as min{r(i, c), Qs

i −
P

c′<c:c′∈Si
bA(i, c′)} = bA(i, c). Hence the total service to

user i is
P

c
bA(i, c) ≤ Qs

i . Moreover, since each carrier is as-
signed to at most one user we have βA(c) = maxi Qs

i bA(i, c) =
P

i
Qs

i bA(i, c). Therefore,

f(A) =
X

c

βA(c)

=
X

c

max
i

Qs
i bA(i, c)

=
X

c

X

i

Qs
i bA(i, c)

=
X

i

Qs
i

X

c

bA(i, c).

The last line is equivalent to objective (2) for assignment A
since the total amount of service to user i is

P

c bA(i, c).

We are now ready to prove Theorem 8. By comparing the
Knapsack problem with the definition of f(·), we can see
that the aim of MaxWeight-Alg4 is to go through the users
one-by-one and assign to each user the set of carriers that
maximizes the increase in f(·). The equivalence is not exact
however because if a carrier c is reassigned from user j to
user i, the service that was provided by carrier c to user
j could potentially be replaced by a another carrier that
remains assigned to user j. However, this difference can
only increase the value of objective (2).

In other words we have shown that MaxWeight-Alg4 is
strictly better than the Greedy algorithm for optimizing the
non-decreasing submodular function f(·) over the partition
matroid. Hence by the result of Fisher et al. MaxWeight-
Alg4 is a 1

2
-approximation algorithm for function f(·). By

Lemma 10 and the fact that MaxWeight-Alg4 produces a
valid assignment of carriers, it is also a 1

2
-approximation

algorithm for objective (2).

We now show that this analysis is tight.

Theorem 11. For any constant ε > 0, there exists an in-
stance on which MaxWeight-Alg4 achieves at most a 1/(2−
ε) fraction of the optimal value of objective (2).

Proof. We use the same example as in Theorem 7. Re-
call that there are 2 users, each with Qs

i = 1. The chan-
nel rates are r(1, c) = 1 for c = 1, 2, r(2, 1) = 1 − ε and
r(2, 2) = 0. Recall also that the optimal value of objective
(2) is 2−ε. MaxWeight-Alg4 assigns carrier 1 to user 1 since
it sets b(1, 1) = 1 and b(2, 1) = 1 − ε. Therefore it achieves
value 1 for objective (2) which is at most a fraction 1/(2−ε)
from optimal.

5.3 Solution of the Knapsack problem
In this section we describe how to solve the Knapsack

problem that must be solved by MaxWeight-Alg4 for each
user i. The solution is similar to the standard algorithm
for Knapsack problems. (See e.g. [14].) The main difficulty
is due to the fact that there may be a carrier that is only
partially utilized by user i. (Recall that we can assume
there is at most one such carrier and it has the highest index
among all the carriers assigned to user i.)

The algorithm first guesses the identity of the partially
utilized carrier and denotes it by cK . (In reality this involves
trying all possible values of cK .) For k < K, let pk =
Qs

i r(i, ck) − β(ck) be the benefit of assigning ck to i; let
Fk(p) be the minimum size of Qs

i such that we can obtain
total benefit of at least p using the carriers c1, c2, . . . , ck.
We define

F1(p) =

8

<

:

0 for p ≤ 0
r(i, c1) for 0 < p ≤ p1

∞ for p > p1

and

Fk(p) = min{Fk−1(p− pk) + r(i, ck), Fk−1(p)}.

For the partial carrier cK , we define

FK(p) = min
b:Qs

i
b>β(cK)

{FK−1(p− (Qs
i b− β(cK)) + b,

FK−1(p)}.

The solution to the Knapsack formulation is the minimum
value of p such that FK(p) ≤ Qs

i .
The running time of the above dynamic program is poly-

nomial in C, the number of carriers, and bmax := maxc{r(i, c)−
β(c)}. We can improve the running time by using the stan-
dard technique of scaling down each value of r(i, c) − β(c)
by a factor of bmaxε/C for some parameter ε. (See e.g. [14].)
In this case we obtain a (1− ε)-approximation to the Knap-
sack problem in time polynomial in C and 1/ε. (This in
turn reduces the approximation ratio of MaxWeight-Alg4 by
a factor 1− ε.)

6. MAXWEIGHT-ALG5: IMPROVED
APPROXIMATION FOR OBJECTIVE (2)

In this section we show that for any ε > 0 it is actually
possible to obtain a randomized (1 − 1

e
− ε)-approximation

for objective (2). (Note that 1− 1
e

= 0.632 . . . > 1
2
.) The al-

gorithm, which we call MaxWeight-Alg5, is based on a recent
algorithm for the Generalized Assignment Problem (GAP)
due to Fleischer et al. [12]. (In the GAP problem we are



given a set of bins of different sizes. Each item has a bin-
dependent profit and a bin-dependent size. The goal is to
pack the items into bins so as to maximize the profit in
such a way that no bin-size is violated.) MaxWeight-Alg5
is somewhat complex, and so we feel that it is impractical
for scheduling wireless systems. However, we include it here
since we feel that it is of theoretical interest to understand
what are the limits regarding the approximability of objec-
tive (2).

Let Λi be the set of all possible subsets of carriers that
could be assigned to user i. For S ∈ Λi let fS

i = Qs
i ·

min{
P

c∈S
r(i, c), Qs

i}. For convenience we also calculate a
new set of rates r(i, c, S) such that r(i, c, S) ≤ r(i, c) and
fS

i = Qs
i ·
P

c∈S r(i, c, S). This can clearly be done in linear

time. The variable XS
i is used to indicate whether or not

subset S is assigned to user i. We could optimize objective
(2) by solving the following integer program.

Alg5-IP max
X

i,S∈Λi

fS
i XS

i

s.t
X

i∈U,S∈Λi:c∈S

XS
i ≤ 1 ∀c

X

S∈Λi

XS
i ≤ 1 ∀i

XS
i ∈ {0, 1}.

Note that since we showed in Theorem 3 that optimizing
objective (2) is NP hard, we cannot hope to solve the above
integer program exactly. Algorithm MaxWeight-Alg5 finds
an approximate solution as follows. It first finds a solution to
the linear relaxation of the above integer program in which
the constraint XS

i ∈ {0, 1} is replaced by XS
i ∈ [0, 1]. Note

that we cannot directly use a standard linear programming
algorithm for this relaxation since there are exponentially
many variables. However, following [12] we can apply stan-
dard iterative Lagrangian LP algorithms (e.g. [13]) to obtain
a (1 − ε)-approximation to the linear relaxation of Alg5-IP
in time polynomial in N , C and 1/ε.

MaxWeight-Alg5 then rounds the solution to this linear
relaxation by choosing a single set Si to assign to user i. In
particular, we set Si = S with probability Xi

S . We still do
not have a valid assignment since a carrier c may be assigned
to two different users. In this case we pick the user that gives
the maximum value of Qs

i r(i, c, Si).

Theorem 12. The value of the solution obtained by Max-
Weight-Alg5 is at least a 1 − 1

e
− ε fraction of the optimal

value of objective (2).

Proof. For each carrier c, we set (i1, S1) to be the user-
set pair that has the highest value of Qs

i r(i, c, S). We set
(i2, S2) to be the user-set pair that has the next highest value
of Qs

ir(i, c, S) etc. The definition of our rounding algorithm
means that carrier c is assigned to user ik as part of Sk with

probability at least
Q

k′<k
(1−X

S
k′

i
k′

)XSk

ik
.

The contribution of carrier c in the solution to the re-
laxation of Alg5-IP is

P

i,S Qs
i r(i, c, S)XS

i . By the above
argument the expected contribution in the rounded solution
is at least,

X

k

Qs
ik

r(ik, c, Sk)
Y

k′<k

(1−X
S

k′

i
k′

)XSk

ik
.

Fleischer et al. [12] show, using the arithmetic/geometric
mean inequality, that expressions of this form are at least,

(1−
1

e
)
X

i,S

Qs
ir(i, c, S)XS

i .

Hence we have obtained an assignment whose value with
respect to objective (2) is at least a (1 − 1

e
) fraction of the

solution to the fractional relaxation. Since this is in turn at
least a (1 − ε) fraction of the optimal solution to objective
(2), our final approximation ratio is at least (1− 1

e
)(1−ε) >

1 − 1
e
− ε.

7. STABILITY OF FIVE VARIANTS OF MAX-
WEIGHT

In this section we consider the stability of the five variants
of MaxWeight that we have proposed. Informally, an algo-
rithm is said to be stable if it keeps the queue sizes bounded
whenever this is achievable. More formally, we define sta-
bility as follows. Let ai(t) be the amount of data injected
for user i in time slot t. We say that a system is (w, ε)-
admissible if the adversary has a schedule y(i, c, t) such that
in any window [t0, t0 + w), we have,

t0+w
X

t=t0

r(i, c, t)y(i, c, t) ≤ (1 − ε)
t+w
X

t′=t

ai(t) ∀i.

We say that an algorithm is stable if it keeps the queues
bounded for any (w, ε)-admissible.

The single-carrier MaxWeight algorithm is known to be
stable as long as the channel rates for a user cannot be zero
for arbitrarily long periods. (This condition holds for ex-
ample when the rates are governed by a stationary stochas-
tic process with non-zero mean.) The following theorem
states that this property also holds for the five multi-carrier
MaxWeight algorithms presented in this paper. The proof
uses a standard technique (e.g. [26, 27]) of showing that the
Lyapunov function

P

i(Q
s
i )

2 has a negative drift when the
queues are large. For this reason we defer the proof to the
Appendix.

Theorem 13. If ε > 0, then algorithms MaxWeight-Alg1
through Alg5 are stable for any (w, ε)-admissible system as
long as for each i, c the rates r(i, c, t) cannot be zero for
arbitrarily long periods.

8. EXTENSIONS TO MORE GENERAL
WEIGHT DEFINITIONS

In this section we show how to extend the definitions of
algorithms MaxWeight-Alg1 through Alg5 in order to handle
more general definitions of weight. There are many schedul-
ing algorithms for single-carrier systems that always sched-
ule the user that maximizes Wi(t)r(i, t), for some weight
Wi that is not necessarily equal to the queue size. This is
important if we wish to achieve objectives such as fairness
in addition to maintaining small queues. For example, the
well-known Proportional Fair [28, 15] scheduler (that is used
in the EV-DO Rev 0 system [8]) has this form and uses a
weight that is the reciprocal of an estimate of the average
service rate provided to user i. We define multi-carrier ver-
sions of our five algorithms as follows. Consider a time step
t and let W s

i be the weight at the beginning of the time step,



W e
i be the weight at the end of the time step and W c

i after
carrier c has been assigned.

The changes to the first three algorithms are straightfor-
ward. They become,

• MaxWeight-Alg1:
î = argmaxiW

s
i r(i, c).

• MaxWeight-Alg2:
î = argmaxiW

s
i min{r(i, c), Qc

i}.

• MaxWeight-Alg3:
î = argmaxiW

c
i min{r(i, c), Qc

i}.

Two adaptations are required for MaxWeight-Alg4. First,
in the Knapsack problem defined in Section 5.1 we must
change the objective from max

P

c
(max{0, Qs

i b(i, c)−β(c)})
to max

P

c
(max{0, W s

i b(i, c)−β(c)}). Second, whenever we
(re)assign carrier c to user i we update β(c) to W s

i b(i, c)}.
For MaxWeight-Alg5 a single change is required. We redefine
fS

i by fS
i = W s

i ·min{
P

c∈S
r(i, c), Qs

i}.
We can also provide new definitions of objectives (1) and

(2). (We do not believe that objective (3) makes as much
sense for general weights since it does not provide a clear sep-
aration between Qs

i (t) and µ(i, t).) In particular, objective
(1) becomes max

P

i
W s

i (t)µ(i, t) and objective (2) becomes
max

P

i
W s

i (t)min{Qs
i (t), µ(i, t)}. Each of our analyses for

objectives (1) and (2) carry over directly to the case of more
general weights. In particular, MaxWeight-Alg1 optimally
solves objective (1), MaxWeight-Alg2 and MaxWeight-Alg4
are 1

2
-approxi-mations for objective (2) and MaxWeight-Alg5

is a (1− 1
e
− ε)-approximation for objective (2).

9. SIMULATIONS
We analyze the performance of the first three Max-Weight

algorithms in terms of queue sizes. We implement the algo-
rithms in simple homegrown programs written in Python.
We use a field trace that represents measured channel con-
ditions from a third-generation wireless system as well as
synthetic traces in which the channel rates fluctuate around
a mean value according to 3km/h Rayleigh fading. We as-
sume a constant rate arrival model. The number of users
vary between 5 and 10, and the number of carriers vary
between 4 and 8. In all cases MaxWeight-Alg2 and Alg3
have extremely similar performance and so we combine them
onto a single plot. Both of these algorithms significantly
outperform MaxWeight-Alg1. This is due to the fact that
MaxWeight-Alg1 is wasteful and often assigns more service
to a user than it can actually use. See Figures 3 and 4 for
total queue size plots under the simulated traces and Fig-
ure 5 for plots under the field trace. The figure captions
offer summary statistics for the mean, 95th percentile and
median queue sizes.

Recall that for a single time slot, the performance of
MaxWeight-Alg4 differs from the performance of algorithms
MaxWeight-Alg2 and MaxWeight-Alg3 by at most a small
constant factor. However, we now observe that this can lead
to dramatic differences over longer timescales. In particu-
lar we present an example in which MaxWeight-Alg4 out-
performs MaxWeight-Alg1 through Alg3 in terms of queue
sizes. In this example, we have an equal number of users
and carriers. For the first half of the users the arrival rate
is a parameter x and for the second half the arrival rate is
a parameter y > x. We have channel rates r(i, c) = x for
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Figure 3: Simulated trace: total queue size.
(Left) MaxWeight-Alg1. Mean: 3008, 95%: 5827, Me-
dian: 2744. (Right) Alg2 and Alg3. Mean: 1257,
95%: 2228, Median: 1104.
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Figure 4: Simulated trace: total queue size.
(Left) MaxWeight-Alg1. Mean: 151, 95%: 480, Me-
dian: 200. (Right) Alg2 and Alg3. Mean: 0.17, 95%:
0, Median: 0.
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Figure 5: Field trace: total queue size.
(Left) MaxWeight-Alg1. Mean: 2655, 95%: 3776, Me-
dian: 2600. (Right) Alg2 and Alg3. Mean: 1615,
95%: 1688, Median: 1600.
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Figure 6: MaxWeight-Alg4 outperforms Alg1

through Alg3.

c = i ≤ n/2; r(i, c) = y for c = i > n/2; and r(i, c) = y for
c = i − n/2. All other channel rates are zero. MaxWeight-
Alg4 manages to serve all arrivals during each time slot by
having carrier c serve user i = c. MaxWeight-Alg1 through
Alg3 let carrier c ≤ n/2 serve user i = c+n/2 since this gives
a larger value of the objective. However, this prevents carri-
ers c > n/2 from being of any use later on. Therefore, users
i ∈ [1, n/2] are initially not served by Alg1 through Alg3.
Once these n/2 users have built up large enough queues, ev-
ery carrier c starts to serve user i = c. The queues do not
grow further. However, the initial queues do not disappear.
The build up equals y2/x for each user i ≤ n/2. Figure 6
shows the total queue size during a simulation of this effect.

We can also create a similar example for which Max-
Weight-Alg1 through Alg3 outperform Alg4 in terms of queue
lengths. The arrival rate is x for the first half of the users
and y for the second half. We have channel rates r(i, c) = y
for c = i ≤ n/2; r(i, c) = y for c = i − n/2; and r(i, c) = x
for c = i + n/2. MaxWeight-Alg1 through Alg3 can serve all
arrivals during each timeslot; For Alg4, the carriers c ≤ n/2
serve users c +n/2. The curves for the resulting queue sizes
are identical in shape to Figure 6 except that the labels of
the two curves are flipped.

10. CONCLUSIONS
In this paper we studied a variety of scheduling algo-

rithms for multi-carrier, frame-based wireless data systems.
We presented a set of algorithms that aim to emulate the
MaxWeight algorithm for the single carrier case.

A number of open problems remain. First, we would like
to know if it is possible to improve on the 1

3
-approxi-mation

for objective (3). In particular we would like to know if
algorithm MaxWeight-Alg3 has a better approximation ratio
than 1

3
since in the worst example that we can construct,

the performance of MaxWeight-Alg3 only differs from the
optimum by a factor of 1

2
. We would also like to know if there

is a simple algorithm that improves on the 1
2
-approximation

for objective (2). We feel that MaxWeight-Alg5 is probably
too complex to be implemented in practice.
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APPENDIX

A. PROOF OF THEOREM 13
Proof. We assume that the channel rates are bounded.

Let Rsup be the supremum of these rates. For simplicity we
also assume that the channel rates are bounded away from
zero. Let Rinf be the infimum of these rates. By looking over
larger time windows it is straightforward to adapt the argu-
ment to the case where channel rates can be zero but only
for bounded periods of time. Consider the potential function
L(t) =

P

i
(Qs

i (t))
2. We first show that if the queues are suf-

ficiently large then this potential function has negative drift

for MaxWeight-Alg1. Recall that x(i, c, t)(t) ∈ {0, 1} indi-
cates whether or not carrier c serves user i at time t. If
Qs

i (t0) ≥
Pt0+w−1

t=t0

P

c
x(i, c, t)r(i, c, t), then

Qs
i (t0 + w)2 =

 

Qs
i (t0) +

t0+w−1
X

t=t0

ai(t)

−

t0+w−1
X

t=t0

X

c

x(i, c, t)r(i, c, t)

!2

,

and otherwise

Qs
i (t0 + w)2

≤

 

Qs
i (t0) +

t0+w−1
X

t=t0

ai(t)

!2

≤

 

t0+w−1
X

t=t0

x(i, c, t)r(i, c, t) +

t0+w−1
X

t=t0

ai(t)

!2

.

In both cases this implies,

L(t0 + w)− L(t0)

=
X

i

Qs
i (t0 + w)2 −

X

i

Qs
i (t0)

2

≤2
X

i

 

X

t

ai(t)

!2

(7)

+2
X

i

 

X

t

X

c

x(i, c, t)r(i, c, t)

!2

+2
X

i

Qs
i (t0)

 

X

t

ai(t)−
X

t

X

c

x(i, c, t)r(i, c, t)

!

Since the arrival process (w, ε)-admissible, the total ar-
rivals per user is upper bounded by a function of Rsup, C,
w and ε. In particular,

t0+w
X

t=t0

ai(t) ≤ (1 − ε)

t0+w
X

t=t0

X

c

r(i, c, t)y(i, c, t)

≤ (1 − ε)wCRsup.

Similarly the second term can be upper bounded by a func-
tion of Rsup, C, N and w. Let c1 denote an upper bound of
the first two terms. To bound the third term, we note that
for t0 ≤ t ≤ t0 + w,

Qs
i (t)− wCRsup ≤ qi(t0) ≤ qi(t) + wCRsup.

Hence,

L(t0 + w)− L(t0)

≤ c1 + 2wCRsup
X

i

X

t

 

ai(t) +
X

c

x(i, c, t)r(i, c, t)

!

+2
X

t

X

i

X

c

(qi(t)(1− ε)y(i, c, t)r(i, c, t)

−qi(t)x(i, c, t)r(i, c, t)
´

Again, the second term of the above expression can be up-
per bounded by a function of Rsup, C and w. Let c2 be this
constant. To bound the third term, let î = argmaxiQ

s
i (t)r(i, c, t)

for given time step t and carrier j. The definition of max



weight implies x(̂i, c, t) = 1 and x(i, c, t) = 0 for all i 6= î.
Therefore,
X

t,i,c

Qs
i (t)r(i, c, t)x(i, c, t) ≥

X

t,i,c

Qs
i (t)r(i, c, t)y(i, c, t).

Given t and c, let k = argmaxiQ
s
i (t). In other words Qs

k(t) =
Qmax(t). Therefore, given t and c, we have
X

i

Qs
i (t)r(i, c, t)x(i, c, t) ≥ Qs

k(t)r(k, c, t) ≥ Qmax(t)R
inf .

This implies,

L(t0 + w)− L(t0)

≤ c1 + c2 − 2
X

t,i,j

εQs
i (t)x(i, c, t)r(i, c, t)

≤ c1 + c2 − 2εRinf
X

t,c

Qmax(t)

= c1 + c2 − 2εRinfC
X

t

Qmax(t)

Hence when the queues are sufficiently large, i.e. larger than
Pt0+w

t=t0
(c1 +c2)/(2εRinfC), the potential function decreases.

This implies stability for MaxWeight-Alg1.

For algorithms MaxWeight-Alg2, Alg4 and Alg5, stability
follows from a similar argument to the above and the fact
that if Qs

i ≥ CRsup then each of these algorithms assigns
each carrier c to user arg maxi Qs

i (t)r(i, c, t). Hence in all
cases,

X

t,i,c

Qs
i (t)r(i, c, t)x(i, c, t)

≥
X

t,i,c

(Qs
i (t)− CRsup)r(i, c, t)y(i, c, t)

≥
X

t,i,c

Qs
i (t)r(i, c, t)y(i, c, t)− c3,

where c3 is a function of Rsup, C and w.
Similarly, if Qs

i ≥ CRsup then algorithm MaxWeight-Alg3
assigns carrier c to user arg maxi(Q

s
i (t)−B)r(i, c, t) for some

B ≤ (c− 1)Rsup. Therefore we once again have,
X

t,i,c

Qs
i (t)r(i, c, t)x(i, c, t) ≥

X

t,i,c

(Qs
i (t)−CRsup)r(i, c, t)y(i, c, t).


