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Abstract

We consider a multistage inventory system composed of a single warehouse that
receives a single product from a single supplier and replenishes the inventory of n
retailers through direct shipments. Fixed costs are incurred for each truck dispatched
and all trucks have the same capacity limit. Costs are stationary, or more generally
monotone as in Lippman (1969). Demands for the n retailers over a planning horizon of
T periods are given. The objective is to find the shipment quantities over the planning
horizon to satisfy all demands at minimum system-wide inventory and transportation
costs without backlogging. Using the structural properties of optimal solutions, we
develop (1) an O(T?) algorithm for the single-stage dynamic lot sizing problem; (2)
an O(T?) algorithm for the case of a one-warehouse single-retailer system; and (3) a
nested shortest-path algorithm for the one-warehouse multi-retailer problem that runs
in polynomial time for a given number of retailers. To overcome the computational
burden when the number of retailers is large, we propose aggregated and disaggregated
Lagrangian decomposition methods that make use of the structural properties and
the efficient single-stage algorithm. Computational experiments show the effectiveness
of these algorithms and the gains associated with coordinated versus decentralized
systems. Finally, we show that the decentralized solution is asymptotically optimal.

1 Introduction

The most common mode of transportation in industry applications is the full truckload
mode. Large consumer product companies, such as Kimberly-Clark, Wal-Mart and Proc-
ter&Gamble, use 53 footers almost exclusively to move goods through their distribution

systems. Some companies use their own fleet of vehicles, others contract out to outside
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providers. In either case, significant savings can be achieved by coordinating inventory and
shipment decisions across the entire system to facilitate load consolidation.

The Single- Warehouse Multi-Retailer Problem with Full Truckload (FTL) Shipments can
be stated as follows: A number of retail facilities faces known demands of a single product
over a finite planning horizon. They order goods from a warehouse whose inventory is in turn
replenished by an external supplier. All shipments from warehouse to retailers are direct;
that is, trucks travel directly from the warehouse to a single retailer and back, see Gallego
and Simchi-Levi (1990) [12]. There is no limit on the quantity ordered each period, but
there are cargo constraints that require additional trucks to be dispatched when exceeded.
There is a fixed cost per truck dispatched from supplier to warehouse and from warehouse to
retailers, and linear holding costs at the warehouse and retailers. The objective is to decide
when and how many units to ship from supplier to warehouse and from warehouse to retailers
each period so as to minimize total transportation and holding costs over the finite horizon
without any shortages. We consider the administrative ordering setup costs to be negligible
relative to the fixed costs of dispatching a truck. In certain business environments, the full
demand for a particular retailer and time period, di, may be required to travel together from
supplier to warehouse and then from warehouse to retailer. We refer to this more restrictive
version of the problem as the Non-Splitting Single-Warehouse Multi-Retailer Problem. In
the general Single-Warehouse Multi-Retailer Problem, however, demands are allowed to be
split over two or more shipments to avoid sending additional trucks.

In this paper, we consider the Single-Warehouse Multi-Retailer Problem with FTL Ship-
ments and stationary costs; i.e., the fixed and variable transportation charges and the linear
holding costs do not change over time. As a result, linear transportation costs do not affect
the optimal shipping strategy and are thus ignored. We also assume, as is the case in much
of the multistage inventory literature, that holding costs are no higher at the warehouse than
at any of the retail locations. All the properties and dynamic programming algorithms pre-
sented are also valid in the case of monotone shipping cost functions introduced by Lippman
(1969)[21].

The Single-Warehouse Multi-Retailer Problem with fixed charge costs (i.e., unlimited
truck capacity) and stationary costs (SWMRP) has been shown to be NP-complete by Arkin,



Joneja and Roundy (1989) [5]. The Joint Replenishment Problem (JRP), see also Joneja
(1990) [18], can be modeled as a special case of the SWMRP by making the holding costs
at the warehouse identical to those at the retailers. In the JRP, a single facility replenishes
a set of items over a finite horizon. Whenever the facility places an order for a subset of
the items, two types of costs are incurred: A joint set-up cost and an item-dependent set-up
cost. These costs are stationary. The objective in the joint replenishment problem is to
decide when and how many units to order for each item so as to minimize inventory holding
and ordering costs over the planning horizon. Since the joint replenishment problem is NP-
hard, the Single-Warehouse Multi-Retailer problem under consideration in this paper is also
NP-hard even if all costs are stationary, inventory costs at the warehouse are required to be
no higher than those at the retailers, and all transportation cost functions are fixed charge
cost functions.

The complexity of optimizing the discontinuous step functions, also referred to as staircase
or multiple setup cost functions, associated with Full TruckLoad (FTL) transportation has
slowed research in this area. Other cost functions, such as fixed-charge' (see Gendron, Crainic
and Frangioni (1999) [13] for a review), incremental discount (e.g. Muriel and Simchi-Levi
(2004) [24], Balakrishnan and Graves (1989) [6], Amiri and Pirkul (1997) [2]) or modified all
unit discount (Chan et al. (2002a, 2002b) [8] [9]), have been more widely studied.

A number of papers do explicitly consider staircase functions. In what follows, we first
review the literature tackling single-stage and then multiple-stage systems.

For the basic single-stage dynamic lot sizing problem with multiple setups and station-
ary (or more generally monotone) costs, Lippman (1969) [21] shows that there is an optimal
solution such that (1) no partially filled trucks are shipped in periods with positive initial
inventory, and (2) the inventory in each period is less than the truck capacity. These two
properties have been the cornerstone for much of the posterior research, including the present
work. Lippman develops an O(7?) dynamic programming algorithm. In Section 3, we pro-
pose a backwards-recursion dynamic programming algorithm that reduces the computational

complexity to O(T?). For general time-varying costs, Pochet and Wolsey (1993) use extreme

LObserve that the capacitated fixed-charge network design problem would generalize the single-warehouse
multi-retailer problem if parallel arcs with capacity equal to truck capacity are considered.



flow arguments to show that there is at most one partially filled truck between two regen-
eration points (points with zero inventory), and develop a forward dynamic programming
algorithm that runs in O(7T? min(7T, W)), where T is the number of periods and W the batch
size. When applied to the stationary case, its complexity remains the same.

Lipmann (1969) [21] also considers a more general problem where multiple truck sizes to
choose from are available in a single period, and an infinite horizon stationary model. Alp,
Erkip and Giillii (2003) [1] characterize optimal policies and develop a dynamic programming
algorithm for the problem with stochastic lead times. Li, Hsu and Xiao (2004) [20] consider a
very general model that allows for demand backlogging and includes time-varying fixed and
practical transportation-related ordering costs representing both fixed costs per full truck
dispatched and linear costs associated with Less-than-Truckload (LTL) shipments. They
develop a O(T3logT) algorithm based on a related dynamic lot-sizing model with batch
ordering. Anily and Tzur (2004, 2005) [3] [4] consider multiple products to be delivered
from warehouse to retailer in capacitated vehicles, each incurring a fixed cost per trip, and
propose both a dynamic programming algorithm [3] and a search algorithm [4] to solve the
problem optimally.

In recent years, the focus on integrated logistics management has led to the increased
study of systems with multiple stages. The model recently studied by Lee, Cetinkaya and
Jaruphongsa (2003) [23], focuses on the coordination of inventory replenishments and dis-
patch schedules at a warehouse that serves a single retailer. The warehouse orders incur a
fixed cost and the outbound transportation cost function consists of a fixed cost per delivery
plus a cost per vehicle dispatched. Jaruphongsa, Cetinkaya and Lee (2005) [16] consider a
similar model with two available outbound shipment modes: one with a fixed setup cost
structure and the other with a multiple setup cost structure. Diaby and Martel (1993) [11]
develop a Lagrangian relaxation based procedure to solve a more general problem for multi-
echelon distribution systems (each facility has a single predecessor) with general piece-wise
linear ordering and transportation cost functions.

The Non-Splitting Single-Warehouse Multi-Retailer Problem has been addressed in Levi,
Roundy and Shmoys (2005) [19] who develop constant approximation algorithms for the

problem with fixed-charge ordering costs and later extend them to accommodate the multiple



setup cost structure. This results in a 4.796-approximation algorithm for the problem under
consideration in this paper. Their LP-rounding approach constructs non-splitting solutions
where the entire demand of a retailer at a particular time period (d!) must travel together
(i.e., in the same time period) from supplier to warehouse and then again together from
warehouse to retailer. More general piece-wise linear transportation costs, which include
both FTL and LTL (Less than TruckLoad) realistic cost functions, have been considered in
Croxton, Gendron and Magnanti (2003) [10] to model the selection of different transportation
modes and shipment routes in merge-in-transit operations, also under the assumption of
non-splitting shipments. In this case, a set of warehouses coordinates the flow of goods
from a number of suppliers to multiple retailers with the objective of reducing costs through
consolidation.

Staircase or step cost functions have also been considered in facility location applications;
see Holmberg (1994) [14] and Holmberg and Ling (1997) [15].

One-Warehouse Multi-Retailer systems with stationary fixed charge costs and constant
demand over an infinite horizon have been extensively studied. The seminal work of Schwarz
(1973) [28] and Roundy (1985) [27] analyzes the problem with fixed ordering costs at both the
warehouse and retailer locations. Schwarz (1973) [28] characterizes the properties of optimal
solutions: retailers only order when their inventory is down to zero and the warehouse only
orders when both its inventory and that of one of the retailers is down to zero. For the more
complex dynamic problem with cargo constraints, these results hold for partial shipments;
see Property 2.4 and Property 4.1. Roundy (1985) shows that Power-of-T'wo policies are
highly effective (within 2%). Lu and Posner (1994) [22] present approximation algorithms
that further improve the quality of the solutions.

The paper is organized as follows. Section 2 describes the model under consideration and
presents the main structural properties of optimal solutions. In Sections 3 and 4, we de-
velop exact algorithms for the one-warehouse multi-retailer system under decentralized and
centralized management, respectively. Under decentralized management of the system, each
member makes their own self-optimizing decisions and thus solves a single-stage problem.
For that purpose, we develop an algorithm for the single-stage dynamic lot sizing problem

with stationary costs with complexity O(T?). In Section 4.1, we develop a O(T?) algorithm



for the two-stage, single-retailer case. This algorithm is then generalized to any number of
retailers in Section 4.2. Due to the exponential growth of the complexity of the algorithm
as the number of retailers increases, Section 5 introduces alternative algorithms based on
Lagrangian decomposition that make use of the structural properties of optimal solutions
and the efficient single-stage algorithm to solve large-scale problems effectively. Finally, we
demonstrate the effectiveness of the heuristic Lagrangian-based algorithms and compare the
performance of centralized versus decentralized management of the system through com-
putational experiments. The outstanding performance of the decentralized solution as the
number of retailers grows then lead us to show, in Section 7, that it is indeed asymptotically

optimal.

2 Model

Consider the single-warehouse multi-retailer system with full truckload shipments described
above. Let T be the time horizon over which demands from n retailers are known, and let
the demand of retailer 7 at time ¢ be di, i = 1,2,...,n,t=1,2,...,T. All demand must be
satisfied without backorders at the end of each period. We assume that the transportation
and inventory cost parameters are stationary, with A° denoting the fixed cost of dispatching
a truck from supplier to warehouse, A the cost of dispatching a truck from the warehouse
to retailer ¢, and A’ the inventory cost per unit left over in inventory at retailer i at the end
of each period. Inventory can be carried at the warehouse as well, at a rate h°, h® < h? for
all 4. All trucks are identical with capacity of W units.

The optimal solution will be determined by the quantities 2 and i, for t = 1,2,...,T
and ¢ = 1,...,n, to ship from supplier to warehouse and warehouse to retailer 7, respec-

tively. For simplicity we will denote a solution vector by z, = = (2% 2',... 2") and

' = (28,25, ..., 2%). We denote the resulting inventory at the beginning of period ¢ at
the warehouse by I? and at retailer ¢ by I}, t = 1,2,...,T + 1. To simplify the exposition
of the algorithms, we assume w.l.o.g. that the initial inventory at warehouse and retailers
is zero; i.e., It = 0 for i = 0,1,...,n. The extension to positive initial inventories at the

retailers is straightforward, by reducing the retailer demand in the initial period(s). As we



shall see, the structural properties and thus the resulting algorithms are easily extended for
positive initial inventories at the warehouse.

Let a warehouse (retailer) regeneration point be a period where initial inventory at the
warehouse (retailer) is zero. A warehouse (retailer) LTL period is a period in which a partial,
less than full, truckload is shipped from supplier to warehouse (warehouse to retailer). In
the reminder of this section, we characterize the relationship between regeneration points
and LTL periods in optimal solutions to the Single-Warehouse Multi-Retailer Problem. We
first present the basic properties of the optimal solutions to the single-stage problem that
have been presented in the literature and then we generalize them to the one-warehouse
multi-retailer setting. These properties are the foundation for the algorithms developed in

the paper under both centralized and decentralized management of the system.

2.1 Single-Stage Problem: Known Results

For the general single-stage economic lot sizing problem with multiple setups and non-
stationary (fixed plus linear) costs, Pochet and Wolsey (1993) show the following property

using extreme flow arguments.

Proposition 2.1 Between two consecutive regeneration points, there is at most one LTL

period.

Lippman (1969) had earlier showed this and further properties, Property 2.2 and Prop-
erty 2.3 below, under the assumption of a “monotone cost model,” which generalizes our
stationary cost assumptions. A monotone cost model is characterized by shipping cost func-

tions, ¢ (z), for t = 1,2,...,T, that satisfy the following three conditions. Let W; > 0 be

the capacity of the truck at time ¢, t = 1,2,...,T, and ¢;(-) a non-negative, non-decreasing,
concave function on [0, W;] with ¢;(0) = 0. Then ¢;(z) = %‘WCI(W,:) + ¢;(z mod W),

where © mod W; is the unique number r such that 0 < r < W, and x = r + kW, for some
integer k. Observe that ¢;(W;) represents the cost associated with dispatching a full truck.
Let A; be the magnitude of the jump at zero, that is, A; = ¢f(0+).

L. ¢ (ut+e)—c;(u) > i (v+e€)—ciy (v), forall 0 <u <ute < W, 0 <v < wvte < Wiy,
andt=1,2,..., T —1;



2. Ay > Ay, forallt=1,2,....T — 1,
3. My < Myyq, forallt=1,2,...,T —1.

Inventory costs, h;(+) are only required to be nondecreasing, left continuous functions of the
inventory at the end of period ¢. In what follows, we use the same notation presented in the
previous section, but omit the superindex indicating the facility and add the time subindex

when needed.

Property 2.2 Inventory in each period is less than one cargo capacity. That is I, < Wy for
t=1,...,T.

Property 2.3 A partial shipment, 0 < x; < Wy is dispatched only in periods where initial

inventory is zero. That is, I;(x; mod Wy) = 0.

Consequently, between two consecutive regeneration points there is at most one LTL period,
as later shown for the more general? case by Pochet and Wolsey. Furthermore, if there is

one, it must be the first of the regeneration points.

2.2 Single-Warehouse Multi-Retailer Problem: Extended Properties

Pochet and Wolsey discuss the extension of the concept of regeneration points and their
extreme flow arguments to directed subtrees: “based on the structure of the extreme flows
there is at most one node in each regeneration subtree in which production is below capacity,
an thus it is possible to find the minimum cost solution for each subtree in polynomial time.”
Consequently, Property 2.1 above holds for the Single-warehouse Multi-retailer Problem with

Full Truckload non-stationary costs as stated in the following property.

Property 2.4 Between two consecutive warehouse or retailer regeneration points there is at

most one LTL period.

2Pochet and Wolsey (1993) consider non-stationary fixed plus linear shipping costs and linear inventory
costs, and stationary capacity. The monotone cost functions (Lippman (1969)) place more restrictions on
how costs change over time, but consider more general fixed plus concave shipping costs and general non-
decreasing inventory costs, and allow the capacity to possibly increase from period to period.



Now, for the more restrictive case of stationary, or more generally monotone costs as de-
fined above, we can easily extend the properties in Lippman (1969) to the single-warehouse
multi-retailer scenario. In using the concept of monotone costs in a multi-facility environ-
ment, we require that the truck capacity be the same for all shipping links in the same period,
while it can still increase from period to period, and that holding goods at the warehouse in

a particular period be always no higher than holding them at the retailer.

Property 2.5 Inventory at the warehouse and each of the retailers in each period is less

than one cargo capacity. That is I} < W} for alli=10,1,2,...,n, andt =1,...,T.

This is true since otherwise a full truckload shipment could be delayed without incurring

any additional shipping costs while saving holding costs.

Property 2.6 A partial shipment, 0 < 8 < Wi, i =0,1,...,n is dispatched only in periods

where initial inventory is zero. That is, I} (zimodW}) = 0.

This is true since otherwise the shipment in that period should be increased and the previous
shipment reduced to reduce inventory holding costs and possibly save shipping costs (given
the monotone cost structure). Therefore, between two consecutive warehouse (retailer) re-
generation points there is at most one LTL period, as shown for the non-stationary case by
Pochet and Wolsey. Furthermore, if there is one, it must be the first of the regeneration
points. We must note that if initial inventory is positive, I} > 0, the first period in the
horizon behaves as a first regeneration point and can have a partial shipment.

For simplicity in what follows we consider the case of stationary fixed plus linear shipping
costs, stationary and linear inventory costs, and identical truck capacities throughout the
network and over time, as described in the model introduction. The dynamic programming
algorithms can be easily extended to Lippman’s monotone cost model, since all the properties
hold in that more general case.

Without loss of generality, we assume that the demand at each retailer in each period is
less than a full truckload. Otherwise, an optimal solution would send the full truckload(s)
directly from supplier to warehouse to retailer in that period and coordinate the remaining

less than truckload demands.
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Finally, we let |a] be the maximum integer less than or equal to a and [a] be the

minimum integer greater than or equal to a.

3 Decentralized System

The single-warehouse multi-retailer system could be managed in a decentralized fashion,
where each of the individual members makes its own decisions based on its local demands
and costs. In this setting, retailer ¢ observes its demands di, for t = 1,2, ..., T, and minimizes
its total transportation and inventory costs, which are composed of a fixed cost A; per vehicle
dispatched and a linear holding cost of h; per unit left over at the end of each period. The
retailer then places its cost-minimizing orders, !, t = 1,2,...,T, to the warchouse. As a
result, the warehouse faces demands dY = Y, z!. Given transportation costs of Ay per
truck dispatched and a linear holding cost hg, the warehouse finds its corresponding cost-
minimizing ordering quantities. Observe that we can assume that d? < W in solving the
problem, as we did for retailer demands, since otherwise, if d) > W, it is optimal to send a

full truckload in period ¢ and consider an equivalent problem with dY « d? — W.

Thus, the Decentralized Problem at facility ¢, ¢ = 0,1,...,n, can be written as:
T . .
Problem DP,:  Min Y (Awy; + hili.,)
t=1
s.t.

vl < Wyl Vt=1,2,...,T,

g+ I =d + I, vt=12,...T,
Iy =0,

v >0, Vt=1,2,...,T,
yi€{0,1}, vt=1,2,...,T,

II'>0, vVt=1,2,...,T, (1)

As in Lippman (1969) and Pochet and Wolsey (1993), the single-stage Decentralized

Problem at facility ¢, ¢ = 0,1,...,n, can be modeled as a shortest path problem from node
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1 to node T'+ 1 on a network with nodes 1,2,...,7 4+ 1 and arcs (u,v), l <u<ov <T+1,
representing two consecutive regenerations points. The length of arc (u, v), which we denote
by L!,, is the minimum transportation and holding cost at facility 7 associated with covering
all of its demands between periods v and v — 1 without shortages, given that u and v are
consecutive regeneration points (that is, given that I' = I! =0 and I} > 0 for all u < t < v).
We denote the problem of calculating the length of arc (u,v) as the Decentralized Subproblem
DSi .

The following proposition and the subsequent algorithm show that all the arc lengths in
the network can be calculated in time O(7?). Consequently, the single-stage Decentralized
Problem at facility 4, « = 0,1,...,n, can be solved in O(T?) and the system-wide solu-
tion under decentralized management can be found in O(nT?). This is in contrast to the
algorithms of Lippman (1969) and Pochet and Wolsey (1993), which run in time O(T?)
and O(T? min(T,W)), respectively. Note that our algorithm is valid under the more gen-
eral monotone cost assumption in Lippman (1969) and that the complexity of the forward

dynamic programming algorithm by Pochet and Wolsey (1993) remains the same under

stationary costs.

Proposition 3.1 Given two consecutive regeneration points u and v, the optimal transporta-
tion and inventory quantities for any period t between them, u < t < v, can be determined
independent of the exact timing of u. That is, the optimal quantities and costs in period t

are identical for problems DS, and DS;,_, , for any 0 <k < u.

Proof. As long as there are no regeneration points between ¢ and v, the optimal action
is to send full trucks to the retailer as late as possible while ensuring that (1) the final
inventory is I’ = 0, and (2) the less-than-truckload quantity required to meet demand
without backlogging must be carried in inventory from previous periods. |

This proposition allows us to solve the Decentralized Subproblems efficiently. In partic-
ular, for each period v, 1 < v < T + 1, the following algorithm calculates the costs on arcs

(u,v) for all 1 < u < v in time O(T).

Algorithm to solve Decentralized Subproblems DS’ :
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Let Li, denote the transportation and holding cost between period ¢ (u < t < v) and v — 1
in the optimal solution for arc (u,v), given that u and v are consecutive regeneration points.
Using a backwards recursion for t =v —1,...,1, we can calculate the costs between periods

t and v — 1 simultaneously for both the case where ¢ is not a regeneration point, i.e., Zf;v,

and the case where t = u is a regeneration point, i.e., LI, as follows:
1. Initialize Li, = 0, I! = 0 and Li_,, = A,[%=1].
2. Recursively, backwards in time for periods u =v —2,v —3,..., 1 and t = u + 1:

(a) Calculate Li, and I'.

o If dj+ I}y > W, then 2} = W.
A full truck has to be dispatched to retailer ¢ since ¢ is not an LTL period and the
inventory carried in any period is below cargo capacity (Observation 2.5).

e Otherwise, zi = 0.
That is, di + I} 1 must be entirely covered by the initial inventory I} and no

shipment is needed.

Thus,

o dis i . . S - 7 L
o= [P EWL L= Ly di =, and L, = At il + L,

(b) Calculate L!,. Since u is a regeneration point and ¢ = u + 1,
I[=0, ai=d +1I and L\, = AJ%} + L

If the sum d’, + I/, exceeds a full truckload W, periods u and v cannot be consecutive
regeneration points in the overall optimal solution: a lower cost solution can be constructed
by sending !, = d, and shipping a partial truckload with I!,, when needed. This saves
inventory costs without dispatching any more trucks, but adds an intermediate regeneration
point u + 1, contradicting the initial assumption that v and v are consecutive regeneration

points. The associated arc (u,v) can thus be removed from the shortest path network.
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4 Centralized System

We now consider the case where the single-warehouse multi-retailer system is managed by
a centralized decision maker whose objective is to minimize system-wide transportation and
inventory costs over the planning horizon. The Centralized Single- Warehouse Multi- Retailer

Problem, Problem CP, can be written as follows.

T n
Problem CP: Min Y > (Ay; + ki)
t=1 i=0
s.t.

i<Wyl Vt=1,2,...,T,i=0,1,...,n,
gi+ I =di+ 1, vt=1,2....Ti=12,...n,
W1 = w410, Vi—12.....T.

=1
IIl=0,i=0,1,...,n,
ri>0, Vt=1,2,...,T,i=0,1,...,n,
yie{0,1}, vt=1,2,....Ti=1,...,n,
0<y’<n, integer Vt=12,...,T,

II'>0, vt=1,2,...,T,i=0,1,...,n, (2)

Observe that the number of shipments to the warehouse in any period ¢ is bounded by
the number of retailers, n, since in period t at most one truckload shipment will be sent to
each retailer (recall that we have assumed w.l.o.g. that the demand at each retailer in each
time period is less than a truckload).

As mentioned in the introduction, this problem is NP-hard. However, the following
section shows that the single-retailer problem can be solved in polynomial time O(T?). The
exact algorithms for the centralized system developed in the next two sections rely on the
fact that only regeneration points can be LTL periods and thus they are the only ones that
need to be coordinated, since full truckloads are shipped on the same period from supplier

to warehouse to retailer.
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4.1 Single-Retailer System

The single-retailer problem has additional properties that we can exploit in the development

of an exact algorithm.

Property 4.1 In the optimal solution, if one period is a warehouse LTL period, it must be

a retailer LTL period. That is, if 0 < 20 < W, then 0 < z} < W.

This is easy to show by contradiction; since the LTL period must be a warehouse regeneration
period, if the retailer shipment is either 0 or a full truckload, then the partial shipment to

the warehouse can and must be postponed to reduce inventory costs.

Property 4.2 In the optimal solution, if one period is a warehouse LTL period, it must be
a system regeneration point, i.e. a period in which the initial inventories at both warehouse

and retailer are zero, or the first period in the horizon.

Property 4.3 Between two consecutive system regeneration points, there is at most one
warehouse LTL period. If there is one, it must be the first period between the two consecutive

system regeneration points.

Again, by the same argument, there is at most one warehouse LTL period between the
first period in the horizon and the following system regeneration point. Furthermore, the
LTL period, if there is one, must be period 1.

The Single-Warehouse Single-Retailer problem can be modelled as a shortest path prob-
lem in a network with 7'+ 1 nodes, indexed 1,2,..., T + 1, and arcs (s,[) for each 1 < s <
I < T+ 1. The cost of an arc from period s to [, Cy, for all 1 < s <1 < T + 1, is the
optimal cost to cover the demands from periods s to [ — 1 assuming both s and [ are system
regeneration points. The shortest path from node 1 to node T + 1 provides the optimal
solution to the Single-Warehouse Single-Retailer problem.

Given the lengths of all arcs, the shortest path can be found in time O(T?). The only
issue remaining is how to calculate the cost of each arc, Cy.

Since s and [ are two consecutive system regeneration points, we know that I° = I? = 0

and the quantity shipped to the warehouse in period s, the only possible LTL period, must
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be,

-1 Z L
0 1 t t
Asl = Z dt - I‘/}? JW
t=s
Between the two consecutive system regeneration points there may be several retailer
regeneration points. Let u be a retailer regeneration point between system regeneration
points s and [. The inventory at the warehouse at the beginning of period u, s < u <[, is

-1 ledl
t

=2 di - [Z W

Therefore, the initial warehouse inventory at a retailer regeneration point w within con-
secutive system regeneration points does not depend on the timing of the initial system
regeneration point, s. To reflect the dependence on the second system regeneration point, [,
we will denote it by I9(1).

We calculate the cost, Cy;, associated with each pair of consecutive system regeneration
points s and [, as a shortest path on a network with nodes s, s+1,...,[. An arc from node u
tonode v, s < u < v <[, represents the optimal system ordering policy to cover the demands
from period u to period v — 1, given that s and [ are two consecutive system regeneration
points, and u and v are two consecutive retailer regeneration points. The length of the arc is
the minimum cost, which we denote by Fy(u,v). Since the initial warehouse inventory I9(1)
does not depend on s for s < u < v <[, the value of Fy(u,v) remains the same for all s < u.
Using this property, we develop an exact algorithm for the Single-Warehouse Single-Retailer
problem that runs in time O(T?).

4.1.1 Single-Retailer Algorithm

Step 1: For all w and v, 1 < u < v < T + 1, solve a Decentralized Subproblem DS} (see
Section 3) and let z} (u, v), for u < ¢ < v, be the optimal replenishment quantities and
L!, be the optimal cost. Compute also the quantities Yy, = 771 | w

Step 2: For all w and [, 1 <u <[ < T + 1, calculate I2(1).

Step 3: For each [, uw and v, 1 < u < v <[ < T + 1, calculate the following quanti-

ties, assuming that u and v are consecutive retailer regeneration points, [ is a system
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regeneration point and there are no other system regeneration points between v and [.

1. The inventory costs, H., (1), at the warehouse between retailer regeneration points

w and v: HY, (1) = ho(v — u)I2(1).
2. The total supplier-warehouse transportation cost from v+ 1 to v — 1 : AgY,, ,.
3. The supplier-warehouse shipment quantities in period w.

(a) Assuming u is not a system regeneration point,
i If 2l (u,v) + I2(1) > W, then 29 = W.
ii. Otherwise, 20 = 0.
(b) Assuming u is a system regeneration point, a (possibly) partially loaded truck

with 20 = z! (u,v) + I9(1) units is dispatched to the warehouse.

4. The total resulting supplier-warehouse transportation cost in periods u through
v — 1, which we refer to as TC,(l) when u is not a warehouse regeneration point,

and as T, Y (1) when u is a warehouse regeneration point.
5. Fy(u,v) =L, + HY (1) +T2,(I). (Observe that Fy(u,v) = F(u,v) for all s < u.)
6. Fulu,v) = Ly, + H, (1) + T3, (1)

Step 4: Calculate the arc cost Cy for each | = 2,3,..., T +1,, and 1 < s < [ in O(T?)
as follows. Let R;; be the cost associated with periods ¢ through [, given that ¢ is a
retailer regeneration point, [ is a system regeneration point, and there are no other
system regeneration points in between ¢ and [.

1. Initialize Ry = 0.

2. Foreach s=1—-1,1—2,...,1,

Ry = k}sgi]flg{Fz(S, k) + Ry}

Cy = kfsrii;?g{Fsl(S’ k) + Ry}

Step 5: Calculate the shortest path between 1 and 7'+1 in a network with nodes 1,2, ...,T+
1 and arcs (s,1) for each 1 < s <1 < T + 1 with length Cy.
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4.2 Multi-Retailer System

In the general case of n > 1 retailers, a warehouse regeneration point is not necessarily a
system regeneration point. In this section, we show that we can still use a network (shortest
path) approach to solve the Centralized Single-Warehouse Multi-Retailer Problem. However,
the network is far more complex since details on the status of each retailer at each warehouse
regeneration point need to be specified in order to calculate the costs associated with two
consecutive warehouse regeneration points.

Construct an acyclic graph G = (V, A), where

V={u=<upu - u,> |1<uy<u;<T+1,i=0,1,---,n} =T xT x---xT,

n+ 1 times

A={<wug,uy, -, Uy, >=>< 0,01, -, 0, > |ug <wvp,u; <v;fori=12....n}
Each node < ug,u;, ---,u, > represents a warehouse regeneration point, ug, along with
the earliest regeneration points for each retailer on or after that point, u; > ug, 2 =1,2,...n.
We define the length of arc w — v, where t =< ug -+, u, > and v =< vy, - - -, v, >, as the
minimum system-wide transportation and holding costs between periods ug and vy — 1 given
that they are consecutive warchouse regeneration points. Observe that the pairs (u;, v;) are
needed so that we can calculate the LTL quantities required by retailer ¢« and subsequently

the LTL quantity A that should be carried to the warehouse in period ug. Specifically,

i=1t=u; ' W .

It is easy to see that the shortest path from < 1,1,---,1 >to<T+1,T+1,---, T+1>
in G = (V, A) corresponds to finding the optimal system ordering policy. Unfortunately, the
network grows exponentially as the number of retailers increases.

In what follows we focus on calculating the cost of arc @ — ©. For that purpose, we
break time up in smaller increments such that there are no retailer regeneration points in

between. We construct a new network Gg—zs = (Via—s), A@—v)), where

Viaos) = {0 =<p1,--,pn> |u <p; <},
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Ao ={<p1, -, pn >=<q, ", ¢ > | pi < ¢ if p; = ming py, and p; = ¢; otherwise.}

The nodes represent successive regeneration points for each retailer, i.e. if we let p,, =
ming—; 2. Pk, then for each retailer, say ¢, p; is the earliest regeneration point on or after
Dmin- The cost on arc < py ---,p, >—< q1, -, ¢, > is the minimum system-wide cost
between periods pyin and @i, —1 (where gy, = min; ¢;), under the assumption that there are
no regeneration points at any intermediate time in any facility in the system. Consequently,

the associated costs can be calculated as follows.
1. For each retailer 7, 2 =1,2,... n:

o If p; = Ppin, solve the Decentralized Subproblem DS;iqi (see Section 3) and con-

sider only the optimal cost and replenishment quantities between p; and ¢ < ¢;.

e If p; > piin, solve the Decentralized Subproblem DSIZW_F1 and consider only

»Pi

the optimal cost and replenishment quantities between p,,;, and ¢,i,.

2. Given the retailer replenishment quantities, calculate the coordinated warehouse ship-

ping quantities and cost between p,,;, and ¢, as in Step 3 in Section 4.1.1.

The cost associated with arc w — v is the shortest path between nodes < uy, us, ..., u, >
and < vy, vs,...,v, > in network G _z). We refer to this type of algorithms, which consist
of solving a shortest path on a network where the cost of each arc is calculated as the shortest

path on a related network, as nested shortest-path algorithms.

5 Lagrangian Decomposition

The dynamic programming algorithm for Problem C'P becomes computationally expensive
as the number of retailers increases. Solving the associated single retailer problems using the
properties derived above, however, is relatively fast. As a result, the problem appears well
suited for a Lagrangian Decomposition approach that would allow us to break the problem
down into a subproblem for each retailer while maintaining the coordination between them

through Lagrangian multipliers. The solutions to these subproblems will provide both a
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lower bound on the cost of an optimal solution and a starting point to construct good
feasible solutions to the problem effectively.

Observe that the only constraints that link all the retailer facilities together are z) + I =
Styai+ 1P, Vi=1,2,...,T. We develop two algorithms, which we denote by Aggregated
and Disaggregated Lagrangian Decomposition, respectively, by adding the following variables

and constraints:

o Aggregated: For each t, t =1,2,...,T, we add a new variable z? and a new constraint

z) = Y I, x;. The linking constraint is then written as xj + I} = 2 + I}, .

e Disaggregated: For each t and ¢, t = 1,2,...,7, and ¢« = 1,2,...,n, we add a new
variable 2! and a new constraint z; = z!. The linking constraint is then written as

0 0_ «—n i 0
r+ Iy =300 2+ Ly

These new constraints will be relaxed so that the problem can be decomposed into one
warehouse and n retailer subproblems. As we shall see in the computational section, the
disaggregated method provides stronger lower bounds and better feasible solutions. However,
it increases the computational time required to generate solutions. This trade-off needs to
be considered when deciding which one to use in each particular case.

Let )\; denote the Lagrangian Multipliers for the aggregated decomposition and \¢ those
for the disaggregated counterpart. The objective functions of the resulting Lagrangian prob-
lems are:

Aggregated Lagrangian Decomposition Objective:

M=
I\gE

Min (Awyi + il ) + Z Ae(z th
t=1i=0 t=1
Disaggregated Lagrangian Decomposition Objective:
T n T n
Min > (A, + hil )+ D> Ni(=
t=1i=0 t=1i=1

The following sections study the subproblems associated with the two decompositions.



20

5.1 Retailer Subproblem

For each retailer ¢:

T
Problem RSP : Min Y (Aw; + hill, — M\x})
=1
s.1.

vt < Wyl Vt=1,2,...,T,

g+ I =d + 1, Vt=12,...T,
Il =0,

vt >0, Vt=1,2,...,T,

yi € {0,1}, vt=1,2,...,T,

I'>0, vt=1,2...,T. (3)

The corresponding subproblem in the disaggregated Lagrangian decomposition technique
is identical except that the multipliers are denoted by AL

For this subproblem, the first part of Theorem 2.4 still holds. That is, between two
consecutive retailer regeneration points, there is at most one LTL period in the optimal
solution. If there were two LTL periods s and ¢ (s < t), we can move a unit forward from s
to ¢t with an additional cost of —(t — s)h; + As — A\; or backward from ¢ to s with an additional
cost of (t —s)h; — As+ Ay. At least one of them should be non-positive. Thus, there is always
an optimal solution with a single LTL period. The second part of the theorem, however, does
not necessarily hold. The period to send the LTL shipment will depend on the new value of
“transporting” it, A\;, which now varies from period to period. It may thus be suboptimal
for the subproblem to have the first period between regeneration points as the LTL period.

Observe, however, that the optimal solution to the original problem does satisfy both
properties and thus we can restrict the feasible set to solutions that satisfy them. This
strengthens the lower bound obtained through the Lagrangian decomposition and allows us
to solve the subproblem using the shortest path algorithm presented in Section 3. The only

i

'v» 18 now composed of the transportation and holding costs

difference is that the arc cost, L

plus the costs associated with A;.
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5.2 Warehouse Subproblem

The warehouse subproblem is where the aggregated and disaggregated methods differ, with
the latter becoming stronger.

The aggregated subproblem for the warehouse can be written as follows:

T
Problem WSPA: Min Y (Agy; + holfes + M\e2y)
=1
s.t.

o) < Wyl Vt=1,2,...,T

? Y

W+ =d) + 1., Vt=12,...,T,
I =0,

0<z2)<nW, Vt=1,2,...,T,
0<y)<n, integer, Vt=1,2,....T,

>0 vt=12,...,T. (4)

This warehouse subproblem can be strengthened by adding inequalities always satisfied
in optimal solutions to the original problem. In particular, the total quantity sent to retailer
7 up to time k in an optimal solution must be greater than or equal to the total demand up to
k. In fact, it will be equal to that demand plus a portion of the demand in a certain number
of succeeding periods up to the next regeneration period, say [, that cannot be consolidated
into full trucks. That is, >F 27 = 3L df — L%ﬂ/{/ for some [ such that k <1 < T.
Hence, we must have that:

N i Zf‘,:kJrl d,
DA<y a4 < maX{Zd =W} (5)
t=1

— E<I<T W

Consequently,

n k k n
SS ey <3 3 - 1 Ha )

Solving the subproblem directly and repeatedly with an MIP solver in the Lagrangian
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routine becomes computationally expensive for relatively large instances. To improve the
computational efficiency of the Lagrangian decomposition algorithm, we solve the LP relax-
ation of WSPA first. Let ¢! denote the value of ¢ in the solution of the LP relaxation. We
substitute y? with |7?] + 02 (b) € {0,1}) to convert the general integer variable 3? into a
binary variable 9. The modified problem can then be solved with an MIP solver in a much
shorter time. The resulting lower bounds are the same as those obtained when solving the
subproblem directly in most cases and the differences observed in the remaining cases are
very small. The justification behind this manipulation is that the full truck shipments sent in
a particular period, (|7?]), in the relaxed problem will also be in the optimal integer solution
for most instances because the costs of sending a full truck are the same in each period and
correspond to the linear costs. This modification to gain computational speed, may result
in intermediate Lagrangian iterations where the so-called lower bound is not so. In the last
iteration of the Lagrangian technique we solve the original mixed integer program for the
warehouse subproblem directly to ensure that we have a true lower bound and quantify the
distance from optimality of the final solution obtained.

The disaggregated subproblem for the warehouse is

T n
Problem WSPD :  Min > (Aoyy + holliy + > Aiz))
t=1 i=1
s.t.

o) < Wy Vt=1,2,...,T,

W1 = I, Vi=1,2,...T,
=1

Iy =0,

0<z<W, W=1,2,...,T,i=0,1,...,n,

0<a) <nW, Vi=1,2,...

T

? Y

e}

< yto <n, integer, Vt=1,2,...,T,

>0, vt=1,2,...,T. (6)

We again strengthen the subproblem by adding constraints (5). To improve computational

efficiency, we resort once more to the linear-programming-based approximation to a binary
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problem described above. That is, we first solve the LP relaxation of this problem, then
substitute y? with |77 | + 0 (where ¢! is the value of 3 in the solution of the LP relaxation
and bY € {0,1}), and finally solve the modified subproblem. The disaggregated subproblem
has more variables and takes significantly longer to solve than its aggregated counterpart,

but it provides a better lower bound.

5.3 Lagrangian-Based Upper Bound

For both decomposition forms, a feasible solution can be easily constructed by fixing the op-
timal shipments obtained through each of the retailer subproblems and solving the associated

decentralized problem for the warehouse.

5.4 Subgradient Optimization

After solving the subproblems and constructing the feasible solution, the Lagrangian Multi-
pliers are updated using the following subgradient method.

For the aggregated form, in iteration k, the multipliers are updated as
N =N (e = Y )
i=1

where t, is a scalar step size such that £, — 0 and Zle tp, — oo for k — o0, in order to

assure convergence (Polyak (1967) [26]). Generally, we set

- O./k(UiB - LB)
23:1(219 — i x%)Q

Lk

where oy, € (0,2] is a scalar parameter, UB is the best upper bound available and LB is the
current lower bound.

For the disaggregated form, in iteration k, the Lagrangian multipliers are updated as

(ADEFHL = (NDF + t5 (2 — o), where t; = ay(UB-LB)

S o (i)
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6 Computational Results

The focus of our computational experiments is to assess the quality of the solutions obtained
through the two Lagrangian decomposition methods, determine the time required, and eval-
uate the gains obtained through system coordination. We consider 3 different problem scales:
Small with 8 periods and 7 retailers, Medium with 10 periods and 20 retailers, Large with
12 periods and 50 retailers. We solve a total of 768 problem instances generated as follows.

Let U(a,b) denote the uniform distribution over the range (a,b). We construct 192 test
instances of the One-Warehouse Multi-Retailer Problem with Full Truckload Shipments as
follows.

We fix the cargo capacity constraint to W = 25 and test the algorithms over 4 different
demand patterns: Low with data generated from U(0,6), Medium with U(6,12), High with
U(12,20), and Wide Range with U(0, 25). The fourth pattern represents the scenarios where
demands change wildly over the time horizon.

To consider the trade-off between the fixed transportation costs per vehicle and the
linear inventory holding costs, we generate the cost of dispatching a truck to retailer 7, A;,
i=1,2,...,n, from U(10,20), for i = 1,...,n, and consider 4 different holding cost rates,
h;: High with data generated from U(1.2,2), Medium with U(0.8,1.2), Low with U(0.4,0.8)
and Very Low with U(0.1,0.4).

The supplier-warehouse fixed cost per truck dispatched, Ay, is generated as the product
of a random number drawn from U(10,20) and a factor f; that captures the relative dif-
ference between supplier-warehouse and warehouse-retailer transportation costs. Normally,
the warehouse is much closer to the retailers than to the supplier. Thus the transportation
cost per cargo from the supplier to the warehouse is considered to be higher than or equal
to that from the warehouse to the retailers. We use two factors: f; = 4 for a relatively high
supplier-warehouse transportation cost and f; = 1 for a relatively low one.
ho is randomly generated using the same distribution as for the h;, i = 1,2, ..., n, described
above, and f, is a factor that accounts for the relative difference between warehouse and

retailer inventory holding rates. In our computational tests we consider fo = 1 for a relatively
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high warehouse holding cost and fo = 1/2 for a relatively low one.
The values of the parameters used in the computational study are summarized in Table 1.
They result in a total of 192 combinations for the base case (Case 1). For each combination

of the parameter values, we generate a single instance.

Table 1: Values of the parameters used in the Base Case (W = 25, A; € U(10,20))

T| N d hi | 1] [f2
8| 7| UM, 6)| U122 1
10120 U, 12) | U8, 12) | 1] 2

) )
) )
12 | 50 | U(12, 20) | U(0.4, 0.8)
) | U(0.1, 0.4)

We also explore scenarios with different types of retailers in three additional cases of 192
instances each. For this purpose, we first randomly generate 192 instances of the problem,
each with a different combination of the parameter values, using the same parameters as in
Table 1. In Case 2, we halve the transportation cost per truck A; for half of the retailers.
In Case 3, we halve the holding cost per unit per unit time h; for half of the retailers. The
holding cost per unit per unit time at the warehouse hg is then set equal to the lowest of the
holding costs at the retailers. In Case 4, we halve the demand in each period d! for half of
the retailers.

In the Lagrangian Decomposition procedure, we start with a = 2. If there is no improve-
ment in the upper or lower bounds in 10 iterations, we halve the value of a. We initialize
all Lagrangian Multipliers as 0. We consider three termination criteria: 1) o < 0.0001; 2)
(UB — LB)/LB < 0.001; 3) running time is more than 1800s.

To benchmark the quality and speed of the solutions, we also solve Problem FTL for each
of the instances generated with CPLEX MIP solver with a time limit of 1800s. Furthermore,
to investigate possibly stronger formulations, we also solve the MIP version of the formulation
introduced in Levi et al. (2005).

In Table 6, we summarize the quality of the solutions obtained by CPLEX using both the
FTL and Levi’s formulations, the aggregated and disaggregated Lagrangian Decomposition

methods and the decentralized system. For that purpose, we report the relative difference
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Table 2: Average and maximum percent relative gap of the feasible solutions (upper bounds)
and the lower bounds generated with each method.

Upper Bound Lower Bound
T N Levi FTL Lag Agglag Decomp Levi FTL Lag Agglag
Case 1

Average 8 7 0.03% 0.01% 0.21% 0.36% 0.87% 0.26% 0.10% 0.45% 0.64%
10 20 0.19% 0.15% 0.19%% 0.26% 0.44% 0.46% 0.55% 0.12% 0.14%
12 50 0.32% 0.34% 0.14% 0.17% 0.24% 0.50% 0.70% 0.01% 0.01%
Max 8 7 0.66% 0.12% 3.54% 2.60% 6.65% 3.86% 2.74% 1.99% 2.49%
10 20 1.10% 0.60% 0.76% 0.90% 1.82% 1.81% 3.88% 0.51% 0.62%
12 50 1.89% 2.43% 0.53% 0.65% 0.98% 2.26% 3.95% 0.20% 0.14%

Case 2
Average 8 7 0.01% 0.01% 0.18% 0.28% 0.79% 0.10% 0.02% 0.57% 0.82%
10 20 0.15% 0.10% 0.21% 0.31% 0.49% 0.30% 0.32% 0.17% 0.20%
12 50 0.31% 027% 0.17% 0.19% 0.26% 0.45% 0.60% 0.03% 0.03%
Max 8 7 0.05% 0.05% 1.65% 2.41% 4.95% 2.05% 0.89% 2.13% 3.42%
10 20 0.96% 0.37% 0.81% 1.39% 1.80% 1.63% 2.63% 0.53% 0.65%
12 50 2.60% 1.26% 0.84% 0.91% 1.07% 2.40% 3.85% 0.23% 0.21%

Case 3
Average 8 7 0.03% 0.02% 0.13% 0.25% 0.63% 0.35% 0.11% 0.38% 0.54%
10 20 0.27% 0.19% 0.14% 0.18% 0.27% 0.67% 0.73% 0.05% 0.08%
12 50 0.42% 0.39% 0.09% 0.11% 0.14% 0.71% 0.99% 0.00% 0.00%
Max 8 7 0.34% 0.15% 1.15% 1.89% 5.46% 3.43% 1.74% 1.68% 2.46%
10 20 1.26% 1.00% 0.57% 0.63% 0.80% 2.66% 6.08% 0.61% 0.88%
12 50 2.36% 1.53% 0.41% 0.56% 0.68% 3.15% 5.08% 0.02% 0.04%

Case 4
Average 8 7 0.01% 0.02% 0.17% 0.32% 0.91% 0.16% 0.04% 0.45% 0.71%
10 20 0.52% 0.53% 0.55% 0.57% 0.73% 0.93% 1.26% 0.57% 0.62%
12 50 0.44% 0.49% 0.30% 0.41% 0.34% 0.72% 1.45% 0.27% 0.40%
Max 8 7 0.20% 0.20% 1.32% 2.69% 3.89% 2.14% 1.39% 1.53% 3.06%
10 20 4.26% 4.21% 4.21% 3.74% 4.21% 4.98% 7.23% 4.28% 3.82%
12 50 2.16% 2.29% 2.66% 2.70% 2.66% 3.45% 7.27T% 2.68% 2.75%

of both the lower bounds and the feasible solutions (upper bounds on total cost) generated
by each method to the largest of the lower bounds obtained. Observe that CPLEX and the
Lagrangian Decomposition methods provide both the current best feasible solution found and
the current lower bound when they are terminated. The decentralized approach, however,
does not provide a lower bound. Let LBX be the lower bound provided by method X,
X = Levi, FTL, Aggregated, Disaggregated, and UB* be the feasible solution generated
by method X, X = Levi, FTL, Aggregated, Disaggregated, Decentralized. Let MaxLB =
Mazx (LBX, X € {Levi, FTL, Aggregated, Disaggregated}). We report the relative percent
difference UBZ=MazLEB , 1()) (%) and MesLB_LBEZ , 10 (%).

MaxLB MaxLB

While the performance of CPLEX deteriorates as the problem size increases, the quality



Table 3: Running time (s)

T N Levi FTL Lag Agglag

Case 1
Average 8 7 343.03 183.75 21.39 10.60
10 20 1262.59 1389.48  114.52 10.49
12 50 1797.75 1765.71 917.54 11.80
Max 8 7 1801.03 1800.39 40.56 21.27
10 20 1800.63 1800.44  257.84 29.33
12 50 1806.36 1800.56 1811.92 29.44

Case 2
Average 8 7 219.06 77.89 22.59 10.63
10 20 1043.65 1048.02 126.83 11.17
12 50 1686.92 1651.20 1078.87 12.76
Max 8 7 1800.70 1800.23 35.72 19.28
10 20 1800.95 1800.84  246.45 20.50
12 50 1824.62 1802.50 1811.81 31.39

Case 3
Average 8 7 52859  313.06 20.18 9.59
10 20 1585.20 1654.34 98.08 9.46
12 50 1800.47 1800.15 632.84 9.61
Max 8 7 1802.80 1815.53 41.59 19.83
10 20 1802.66 1800.42  261.88 21.81
12 50 1802.48 1801.45 1811.47 28.25

Case 4
Average 8 7 28152 134.39 21.14 10.19
10 20 1228.62 1448.94  124.58 11.27
12 50 1800.47 1799.76 1036.05 12.30
Max 8 7 1800.09 1800.28 36.98 19.49
10 20 1803.78 1800.42  256.64 20.77
12 50 1802.70 1800.66 1813.42 27.36

27
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of the solutions generated by the Lagrangian methods improves. This suggests that the
proposed Lagragian Decomposition algorithms are superior to tackle large instances. The
comparison of their running times in Table 6 further supports this finding. Recall that all
algorithms are restricted by a running-time limit of 1800 seconds. The running time of
CPLEX quickly reaches the limit, while the Lagrangian methods are very rarely constrained
by it. The computational complexity of the Aggregate Lagrangian method grows very slowly
with problem size, making it especially attractive to solve large-scale instances.

The difference in cost associated with the decentralized versus the centralized manage-
ment of the system in the instances tested is rather small. We would like to point out,
however, that there are examples where the relative difference can be as large as %: Con-
sider a single retailer with demands over a planning horizon of two periods of d; = aWW and
dy = (1 — )W, 0 < o < 1. Assume that 24; < Ay + hidy and Ay + hody < 2A, (that
is, A; < hydy but Ay > hods). In the decentralized solution, the retailer will order d; and
ds separately in their respective periods while the warehouse will order d; and ds together
in period 1, with a total cost of 24; + Ag + hods. If hg ~ hq, the optimal solution under
centralized management is to ship d; and dy directly from supplier to warehouse to retailer
and keep the inventory at the retailer. The total cost is A; 4+ Ag+hids. The gap is m
which can get as close to % as desired by taking Ay = hidy — €, Ay = hidy + € and € — 0.

Finally, we would like to compare the quality of our solutions with that of the solutions
generated by algorithms that require the demand for each retailer in each particular time
period to be satisfied by a single shipment, such as the 4.796-approximation algorithm of
Levi, Roundy and Shmoys (2005) [19] and the cutting-plane procedure proposed by Croxton,
Gendron and Magnanti (2003) [10] for more general settings. We refer to these solutions
as non-splitting policies. To obtain a lower bound on the cost associated with non-splitting
policies, we solved the integer programming formulation presented in [19] for small-size
instances with 3 retailers and 5 time periods, randomly generated as described above. In
a first group of 8 instances where demand is large, U(12,20), relative to truck capacity of
W = 25, the solutions are on average 3.3% over the optimal cost and reach a maximum
deviation of 7%. In contrast, our algorithm provides the optimal policies in those cases and

decentralized management of the system produces solutions that are on average 0.3% away
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from optimality, with a maximum deviation of 1.7%. In a second group of 8 instances where
demand is wide-ranging, U(1,24), relative to the truck capacity of W = 25, the solutions are
on average 1.65% over the optimal cost and reach a maximum deviation of 5%. In contrast,
our algorithm provides the optimal policies in those cases and decentralized management
of the system produces solutions that are on average 0.64% away from optimality, with a
maximum deviation of 3.97%. For more details and examples where the best non-splitting
policies lead to costs that are as much as 3/2 times the optimal cost, we refer the reader to

Jin (2006) [17].

7 Asymptotic Optimality of the Decentralized Approach

The computational results suggest that the performance of the decentralized solution in-
creases as the problem size, in particular the number of retailers, increases. In fact, the

following theorem shows that the decentralized solution is asymptotically optimal.

Theorem 7.1 Let retailer demands di be i.i.d. with a mean of E[d}] = d > 0, and let Z* and
ZPC denote the cost of the optimal and decentralized solutions, respectively. With probability

one,
r ZDC’ _ 7
m ———— =

n—oo 7*

0,

where n is the number of retailers.

Proof. Observe that the total warehouse-retailer transportation and retailer inventory costs
will be minimized by the decentralized solution, and can thus be ignored when upper-
bounding the difference between decentralized and optimal solutions. We can then con-
struct a lower bound for the optimal solution and an upper bound for the difference between
decentralized and optimal solutions as follows.

The cost of the optimal solution is bounded below by the minimum possible cost to
transport all demands from supplier to warehouse, associated with full truckload shipments
at a cost per unit of Ag/W; that is, Z* > (Ay/W) >, d;.

The difference in cost between the decentralized and optimal solutions is bounded above

by the difference between the costs associated with supplier-warehouse shipments and ware-
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house inventory in the decentralized solution and the lower bound on those in the optimal
solution, i.e., (Ag/W) >, d;. Observe that in the decentralized solution: (1) the inventory
carried by the warehouse in any period will not exceed the truck capacity, W, since otherwise
a full truckload could be postponed, and thus total warehouse inventory costs are bounded
by ThoW; and (2) supplier-warehouse transportation costs will consist of a number of full
truckloads and possibly one less than full truckload each period, at a cost that can thus be
bounded by (Ag/W) X, di + T Ay.

Therefore, we have that:

ZP¢ — 7" _ TAg+ThoW _ W(Ay+ holV)

Z (Ao/W) i d; nAoéi’:;dt
This is true with probability one by the law of large numbers, since E[d!] = d > 0. |

8 Conclusions

In this paper, we use structural properties of the optimal solutions to the one-warehouse

multi-retailer problem with stationary full truckload costs to develop:

e an algorithm for the single-stage problem with complexity O(T?), which translates into
solving the one-warehouse multi-retailer problem under decentralized management of

the system in time O(nT?),

e an algorithm for the one-warehouse single-retailer problem with complexity O(7?), and
its extension to the multi-retailer case with polynomial computation time for a fixed

number of retailers, and

e heuristic algorithms based on two different Lagrangian decompositions of the problem:

aggregated and disaggregated.

The structural properties and dynamic programming algorithms are valid as long as
costs are nondecreasing over time so that it is always optimal to send the full truck as late as
possible, i.e. under the monotonicity conditions in Lippman (1969). For more general non-

stationary costs, Pochet and Wolsey (1993) showed that there is only one partial shipment
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between consecutive regeneration points, but our algorithms fail because they also rely on
the following two properties that do not hold in the general case: (1) the LTL shipment (if
any) occurs in the first period between consecutive regeneration points; (2) inventory at any
facility is always below truck capacity.

Our computational experiments show that the two Lagrangian Decomposition methods
offer good solutions within reasonable time. For small and medium scale instances, the
disaggregated Lagrangian Decomposition method offers better solutions. For large scale in-
stances, however, the computational expense makes its aggregated counterpart more prefer-
able. Finally, our computational experiments show that the gap between the centralized and
decentralized solutions decreases as the problem scale increases. For large scale instances,
managing the system in a decentralized fashion offers near-optimal solutions. In fact, we

show analytically that the decentralized heuristic is asymptotically optimal.
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