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Abstract

We consider a multistage inventory system composed of a single warehouse that
receives a single product from a single supplier and replenishes the inventory of n
retailers through direct shipments. Fixed costs are incurred for each truck dispatched
and all trucks have the same capacity limit. Costs are stationary, or more generally
monotone as in Lippman (1969). Demands for the n retailers over a planning horizon of
T periods are given. The objective is to find the shipment quantities over the planning
horizon to satisfy all demands at minimum system-wide inventory and transportation
costs without backlogging. Using the structural properties of optimal solutions, we
develop (1) an O(T 2) algorithm for the single-stage dynamic lot sizing problem; (2)
an O(T 3) algorithm for the case of a one-warehouse single-retailer system; and (3) a
nested shortest-path algorithm for the one-warehouse multi-retailer problem that runs
in polynomial time for a given number of retailers. To overcome the computational
burden when the number of retailers is large, we propose aggregated and disaggregated
Lagrangian decomposition methods that make use of the structural properties and
the efficient single-stage algorithm. Computational experiments show the effectiveness
of these algorithms and the gains associated with coordinated versus decentralized
systems. Finally, we show that the decentralized solution is asymptotically optimal.

1 Introduction

The most common mode of transportation in industry applications is the full truckload

mode. Large consumer product companies, such as Kimberly-Clark, Wal-Mart and Proc-

ter&Gamble, use 53 footers almost exclusively to move goods through their distribution

systems. Some companies use their own fleet of vehicles, others contract out to outside
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providers. In either case, significant savings can be achieved by coordinating inventory and

shipment decisions across the entire system to facilitate load consolidation.

The Single-Warehouse Multi-Retailer Problem with Full Truckload (FTL) Shipments can

be stated as follows: A number of retail facilities faces known demands of a single product

over a finite planning horizon. They order goods from a warehouse whose inventory is in turn

replenished by an external supplier. All shipments from warehouse to retailers are direct;

that is, trucks travel directly from the warehouse to a single retailer and back, see Gallego

and Simchi-Levi (1990) [12]. There is no limit on the quantity ordered each period, but

there are cargo constraints that require additional trucks to be dispatched when exceeded.

There is a fixed cost per truck dispatched from supplier to warehouse and from warehouse to

retailers, and linear holding costs at the warehouse and retailers. The objective is to decide

when and how many units to ship from supplier to warehouse and from warehouse to retailers

each period so as to minimize total transportation and holding costs over the finite horizon

without any shortages. We consider the administrative ordering setup costs to be negligible

relative to the fixed costs of dispatching a truck. In certain business environments, the full

demand for a particular retailer and time period, di
t, may be required to travel together from

supplier to warehouse and then from warehouse to retailer. We refer to this more restrictive

version of the problem as the Non-Splitting Single-Warehouse Multi-Retailer Problem. In

the general Single-Warehouse Multi-Retailer Problem, however, demands are allowed to be

split over two or more shipments to avoid sending additional trucks.

In this paper, we consider the Single-Warehouse Multi-Retailer Problem with FTL Ship-

ments and stationary costs; i.e., the fixed and variable transportation charges and the linear

holding costs do not change over time. As a result, linear transportation costs do not affect

the optimal shipping strategy and are thus ignored. We also assume, as is the case in much

of the multistage inventory literature, that holding costs are no higher at the warehouse than

at any of the retail locations. All the properties and dynamic programming algorithms pre-

sented are also valid in the case of monotone shipping cost functions introduced by Lippman

(1969)[21].

The Single-Warehouse Multi-Retailer Problem with fixed charge costs (i.e., unlimited

truck capacity) and stationary costs (SWMRP) has been shown to be NP-complete by Arkin,
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Joneja and Roundy (1989) [5]. The Joint Replenishment Problem (JRP), see also Joneja

(1990) [18], can be modeled as a special case of the SWMRP by making the holding costs

at the warehouse identical to those at the retailers. In the JRP, a single facility replenishes

a set of items over a finite horizon. Whenever the facility places an order for a subset of

the items, two types of costs are incurred: A joint set-up cost and an item-dependent set-up

cost. These costs are stationary. The objective in the joint replenishment problem is to

decide when and how many units to order for each item so as to minimize inventory holding

and ordering costs over the planning horizon. Since the joint replenishment problem is NP-

hard, the Single-Warehouse Multi-Retailer problem under consideration in this paper is also

NP-hard even if all costs are stationary, inventory costs at the warehouse are required to be

no higher than those at the retailers, and all transportation cost functions are fixed charge

cost functions.

The complexity of optimizing the discontinuous step functions, also referred to as staircase

or multiple setup cost functions, associated with Full TruckLoad (FTL) transportation has

slowed research in this area. Other cost functions, such as fixed-charge1 (see Gendron, Crainic

and Frangioni (1999) [13] for a review), incremental discount (e.g. Muriel and Simchi-Levi

(2004) [24], Balakrishnan and Graves (1989) [6], Amiri and Pirkul (1997) [2]) or modified all

unit discount (Chan et al. (2002a, 2002b) [8] [9]), have been more widely studied.

A number of papers do explicitly consider staircase functions. In what follows, we first

review the literature tackling single-stage and then multiple-stage systems.

For the basic single-stage dynamic lot sizing problem with multiple setups and station-

ary (or more generally monotone) costs, Lippman (1969) [21] shows that there is an optimal

solution such that (1) no partially filled trucks are shipped in periods with positive initial

inventory, and (2) the inventory in each period is less than the truck capacity. These two

properties have been the cornerstone for much of the posterior research, including the present

work. Lippman develops an O(T 3) dynamic programming algorithm. In Section 3, we pro-

pose a backwards-recursion dynamic programming algorithm that reduces the computational

complexity to O(T 2). For general time-varying costs, Pochet and Wolsey (1993) use extreme

1Observe that the capacitated fixed-charge network design problem would generalize the single-warehouse
multi-retailer problem if parallel arcs with capacity equal to truck capacity are considered.
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flow arguments to show that there is at most one partially filled truck between two regen-

eration points (points with zero inventory), and develop a forward dynamic programming

algorithm that runs in O(T 2 min(T, W )), where T is the number of periods and W the batch

size. When applied to the stationary case, its complexity remains the same.

Lipmann (1969) [21] also considers a more general problem where multiple truck sizes to

choose from are available in a single period, and an infinite horizon stationary model. Alp,

Erkip and Güllü (2003) [1] characterize optimal policies and develop a dynamic programming

algorithm for the problem with stochastic lead times. Li, Hsu and Xiao (2004) [20] consider a

very general model that allows for demand backlogging and includes time-varying fixed and

practical transportation-related ordering costs representing both fixed costs per full truck

dispatched and linear costs associated with Less-than-Truckload (LTL) shipments. They

develop a O(T 3logT ) algorithm based on a related dynamic lot-sizing model with batch

ordering. Anily and Tzur (2004, 2005) [3] [4] consider multiple products to be delivered

from warehouse to retailer in capacitated vehicles, each incurring a fixed cost per trip, and

propose both a dynamic programming algorithm [3] and a search algorithm [4] to solve the

problem optimally.

In recent years, the focus on integrated logistics management has led to the increased

study of systems with multiple stages. The model recently studied by Lee, Çetinkaya and

Jaruphongsa (2003) [23], focuses on the coordination of inventory replenishments and dis-

patch schedules at a warehouse that serves a single retailer. The warehouse orders incur a

fixed cost and the outbound transportation cost function consists of a fixed cost per delivery

plus a cost per vehicle dispatched. Jaruphongsa, Çetinkaya and Lee (2005) [16] consider a

similar model with two available outbound shipment modes: one with a fixed setup cost

structure and the other with a multiple setup cost structure. Diaby and Martel (1993) [11]

develop a Lagrangian relaxation based procedure to solve a more general problem for multi-

echelon distribution systems (each facility has a single predecessor) with general piece-wise

linear ordering and transportation cost functions.

The Non-Splitting Single-Warehouse Multi-Retailer Problem has been addressed in Levi,

Roundy and Shmoys (2005) [19] who develop constant approximation algorithms for the

problem with fixed-charge ordering costs and later extend them to accommodate the multiple
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setup cost structure. This results in a 4.796-approximation algorithm for the problem under

consideration in this paper. Their LP-rounding approach constructs non-splitting solutions

where the entire demand of a retailer at a particular time period (di
t) must travel together

(i.e., in the same time period) from supplier to warehouse and then again together from

warehouse to retailer. More general piece-wise linear transportation costs, which include

both FTL and LTL (Less than TruckLoad) realistic cost functions, have been considered in

Croxton, Gendron and Magnanti (2003) [10] to model the selection of different transportation

modes and shipment routes in merge-in-transit operations, also under the assumption of

non-splitting shipments. In this case, a set of warehouses coordinates the flow of goods

from a number of suppliers to multiple retailers with the objective of reducing costs through

consolidation.

Staircase or step cost functions have also been considered in facility location applications;

see Holmberg (1994) [14] and Holmberg and Ling (1997) [15].

One-Warehouse Multi-Retailer systems with stationary fixed charge costs and constant

demand over an infinite horizon have been extensively studied. The seminal work of Schwarz

(1973) [28] and Roundy (1985) [27] analyzes the problem with fixed ordering costs at both the

warehouse and retailer locations. Schwarz (1973) [28] characterizes the properties of optimal

solutions: retailers only order when their inventory is down to zero and the warehouse only

orders when both its inventory and that of one of the retailers is down to zero. For the more

complex dynamic problem with cargo constraints, these results hold for partial shipments;

see Property 2.4 and Property 4.1. Roundy (1985) shows that Power-of-Two policies are

highly effective (within 2%). Lu and Posner (1994) [22] present approximation algorithms

that further improve the quality of the solutions.

The paper is organized as follows. Section 2 describes the model under consideration and

presents the main structural properties of optimal solutions. In Sections 3 and 4, we de-

velop exact algorithms for the one-warehouse multi-retailer system under decentralized and

centralized management, respectively. Under decentralized management of the system, each

member makes their own self-optimizing decisions and thus solves a single-stage problem.

For that purpose, we develop an algorithm for the single-stage dynamic lot sizing problem

with stationary costs with complexity O(T 2). In Section 4.1, we develop a O(T 3) algorithm
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for the two-stage, single-retailer case. This algorithm is then generalized to any number of

retailers in Section 4.2. Due to the exponential growth of the complexity of the algorithm

as the number of retailers increases, Section 5 introduces alternative algorithms based on

Lagrangian decomposition that make use of the structural properties of optimal solutions

and the efficient single-stage algorithm to solve large-scale problems effectively. Finally, we

demonstrate the effectiveness of the heuristic Lagrangian-based algorithms and compare the

performance of centralized versus decentralized management of the system through com-

putational experiments. The outstanding performance of the decentralized solution as the

number of retailers grows then lead us to show, in Section 7, that it is indeed asymptotically

optimal.

2 Model

Consider the single-warehouse multi-retailer system with full truckload shipments described

above. Let T be the time horizon over which demands from n retailers are known, and let

the demand of retailer i at time t be di
t, i = 1, 2, . . . , n, t = 1, 2, . . . , T . All demand must be

satisfied without backorders at the end of each period. We assume that the transportation

and inventory cost parameters are stationary, with A0 denoting the fixed cost of dispatching

a truck from supplier to warehouse, Ai the cost of dispatching a truck from the warehouse

to retailer i, and hi the inventory cost per unit left over in inventory at retailer i at the end

of each period. Inventory can be carried at the warehouse as well, at a rate h0, h0 ≤ hi for

all i. All trucks are identical with capacity of W units.

The optimal solution will be determined by the quantities x0
t and xi

t, for t = 1, 2, . . . , T

and i = 1, . . . , n, to ship from supplier to warehouse and warehouse to retailer i, respec-

tively. For simplicity we will denote a solution vector by x, x = (x0, x1, . . . , xn) and

xi = (xi
1, x

i
2, . . . , x

i
T ). We denote the resulting inventory at the beginning of period t at

the warehouse by I0
t and at retailer i by I i

t , t = 1, 2, . . . , T + 1. To simplify the exposition

of the algorithms, we assume w.l.o.g. that the initial inventory at warehouse and retailers

is zero; i.e., I i
1 = 0 for i = 0, 1, . . . , n. The extension to positive initial inventories at the

retailers is straightforward, by reducing the retailer demand in the initial period(s). As we
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shall see, the structural properties and thus the resulting algorithms are easily extended for

positive initial inventories at the warehouse.

Let a warehouse (retailer) regeneration point be a period where initial inventory at the

warehouse (retailer) is zero. A warehouse (retailer) LTL period is a period in which a partial,

less than full, truckload is shipped from supplier to warehouse (warehouse to retailer). In

the reminder of this section, we characterize the relationship between regeneration points

and LTL periods in optimal solutions to the Single-Warehouse Multi-Retailer Problem. We

first present the basic properties of the optimal solutions to the single-stage problem that

have been presented in the literature and then we generalize them to the one-warehouse

multi-retailer setting. These properties are the foundation for the algorithms developed in

the paper under both centralized and decentralized management of the system.

2.1 Single-Stage Problem: Known Results

For the general single-stage economic lot sizing problem with multiple setups and non-

stationary (fixed plus linear) costs, Pochet and Wolsey (1993) show the following property

using extreme flow arguments.

Proposition 2.1 Between two consecutive regeneration points, there is at most one LTL

period.

Lippman (1969) had earlier showed this and further properties, Property 2.2 and Prop-

erty 2.3 below, under the assumption of a “monotone cost model,” which generalizes our

stationary cost assumptions. A monotone cost model is characterized by shipping cost func-

tions, ct(x), for t = 1, 2, . . . , T , that satisfy the following three conditions. Let Wt > 0 be

the capacity of the truck at time t, t = 1, 2, . . . , T, and c∗t (·) a non-negative, non-decreasing,

concave function on [0, Wt] with c∗t (0) = 0. Then ct(x) = x−x mod Wt

Wt
c∗t (Wt) + c∗t (x mod Wt),

where x mod Wt is the unique number r such that 0 ≤ r ≤ Wt and x = r + kWt for some

integer k. Observe that c∗t (Wt) represents the cost associated with dispatching a full truck.

Let At be the magnitude of the jump at zero, that is, At = c∗t (0+).

1. c∗t (u+ε)−c∗t (u) ≥ c∗t+1(v+ε)−c∗t+1(v), for all 0 < u ≤ u+ε ≤ Wt, 0 < v ≤ v+ε ≤ Wt+1,

and t = 1, 2, . . . , T − 1;
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2. At ≥ At+1, for all t = 1, 2, . . . , T − 1;

3. Mt ≤Mt+1, for all t = 1, 2, . . . , T − 1.

Inventory costs, ht(·) are only required to be nondecreasing, left continuous functions of the

inventory at the end of period t. In what follows, we use the same notation presented in the

previous section, but omit the superindex indicating the facility and add the time subindex

when needed.

Property 2.2 Inventory in each period is less than one cargo capacity. That is It < Wt for

t = 1, . . . , T .

Property 2.3 A partial shipment, 0 < xt < Wt is dispatched only in periods where initial

inventory is zero. That is, It(xt mod Wt) = 0.

Consequently, between two consecutive regeneration points there is at most one LTL period,

as later shown for the more general2 case by Pochet and Wolsey. Furthermore, if there is

one, it must be the first of the regeneration points.

2.2 Single-Warehouse Multi-Retailer Problem: Extended Properties

Pochet and Wolsey discuss the extension of the concept of regeneration points and their

extreme flow arguments to directed subtrees: “based on the structure of the extreme flows

there is at most one node in each regeneration subtree in which production is below capacity,

an thus it is possible to find the minimum cost solution for each subtree in polynomial time.”

Consequently, Property 2.1 above holds for the Single-warehouse Multi-retailer Problem with

Full Truckload non-stationary costs as stated in the following property.

Property 2.4 Between two consecutive warehouse or retailer regeneration points there is at

most one LTL period.

2Pochet and Wolsey (1993) consider non-stationary fixed plus linear shipping costs and linear inventory
costs, and stationary capacity. The monotone cost functions (Lippman (1969)) place more restrictions on
how costs change over time, but consider more general fixed plus concave shipping costs and general non-
decreasing inventory costs, and allow the capacity to possibly increase from period to period.
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Now, for the more restrictive case of stationary, or more generally monotone costs as de-

fined above, we can easily extend the properties in Lippman (1969) to the single-warehouse

multi-retailer scenario. In using the concept of monotone costs in a multi-facility environ-

ment, we require that the truck capacity be the same for all shipping links in the same period,

while it can still increase from period to period, and that holding goods at the warehouse in

a particular period be always no higher than holding them at the retailer.

Property 2.5 Inventory at the warehouse and each of the retailers in each period is less

than one cargo capacity. That is I i
t < W i

t for all i = 0, 1, 2, . . . , n, and t = 1, . . . , T .

This is true since otherwise a full truckload shipment could be delayed without incurring

any additional shipping costs while saving holding costs.

Property 2.6 A partial shipment, 0 < xi
t < W i

t , i = 0, 1, . . . , n is dispatched only in periods

where initial inventory is zero. That is, I i
t(x

i
tmodW i

t ) = 0.

This is true since otherwise the shipment in that period should be increased and the previous

shipment reduced to reduce inventory holding costs and possibly save shipping costs (given

the monotone cost structure). Therefore, between two consecutive warehouse (retailer) re-

generation points there is at most one LTL period, as shown for the non-stationary case by

Pochet and Wolsey. Furthermore, if there is one, it must be the first of the regeneration

points. We must note that if initial inventory is positive, I i
0 > 0, the first period in the

horizon behaves as a first regeneration point and can have a partial shipment.

For simplicity in what follows we consider the case of stationary fixed plus linear shipping

costs, stationary and linear inventory costs, and identical truck capacities throughout the

network and over time, as described in the model introduction. The dynamic programming

algorithms can be easily extended to Lippman’s monotone cost model, since all the properties

hold in that more general case.

Without loss of generality, we assume that the demand at each retailer in each period is

less than a full truckload. Otherwise, an optimal solution would send the full truckload(s)

directly from supplier to warehouse to retailer in that period and coordinate the remaining

less than truckload demands.
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Finally, we let bac be the maximum integer less than or equal to a and dae be the

minimum integer greater than or equal to a.

3 Decentralized System

The single-warehouse multi-retailer system could be managed in a decentralized fashion,

where each of the individual members makes its own decisions based on its local demands

and costs. In this setting, retailer i observes its demands di
t, for t = 1, 2, . . . , T, and minimizes

its total transportation and inventory costs, which are composed of a fixed cost Ai per vehicle

dispatched and a linear holding cost of hi per unit left over at the end of each period. The

retailer then places its cost-minimizing orders, xi
t, t = 1, 2, . . . , T, to the warehouse. As a

result, the warehouse faces demands d0
t =

∑n
i=1 xi

t. Given transportation costs of A0 per

truck dispatched and a linear holding cost h0, the warehouse finds its corresponding cost-

minimizing ordering quantities. Observe that we can assume that d0
t < W in solving the

problem, as we did for retailer demands, since otherwise, if d0
t ≥ W, it is optimal to send a

full truckload in period t and consider an equivalent problem with d0
t ← d0

t −W .

Thus, the Decentralized Problem at facility i, i = 0, 1, . . . , n, can be written as:

Problem DPi : Min
T∑

t=1

(Aiy
i
t + hiI

i
t+1)

s.t.

xi
t ≤ Wyi

t, ∀t = 1, 2, . . . , T,

xi
t + I i

t = di
t + I i

t+1, ∀t = 1, 2, . . . , T,

I i
1 = 0,

xi
t ≥ 0, ∀t = 1, 2, . . . , T,

yi
t ∈ {0, 1}, ∀t = 1, 2, . . . , T,

I i
t ≥ 0, ∀t = 1, 2, . . . , T, (1)

As in Lippman (1969) and Pochet and Wolsey (1993), the single-stage Decentralized

Problem at facility i, i = 0, 1, . . . , n, can be modeled as a shortest path problem from node
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1 to node T + 1 on a network with nodes 1, 2, . . . , T + 1 and arcs (u, v), 1 ≤ u < v ≤ T + 1,

representing two consecutive regenerations points. The length of arc (u, v), which we denote

by Li
uv, is the minimum transportation and holding cost at facility i associated with covering

all of its demands between periods u and v − 1 without shortages, given that u and v are

consecutive regeneration points (that is, given that I i
u = I i

v = 0 and I i
t > 0 for all u < t < v).

We denote the problem of calculating the length of arc (u, v) as the Decentralized Subproblem

DSi
uv.

The following proposition and the subsequent algorithm show that all the arc lengths in

the network can be calculated in time O(T 2). Consequently, the single-stage Decentralized

Problem at facility i, i = 0, 1, . . . , n, can be solved in O(T 2) and the system-wide solu-

tion under decentralized management can be found in O(nT 2). This is in contrast to the

algorithms of Lippman (1969) and Pochet and Wolsey (1993), which run in time O(T 3)

and O(T 2 min(T, W )), respectively. Note that our algorithm is valid under the more gen-

eral monotone cost assumption in Lippman (1969) and that the complexity of the forward

dynamic programming algorithm by Pochet and Wolsey (1993) remains the same under

stationary costs.

Proposition 3.1 Given two consecutive regeneration points u and v, the optimal transporta-

tion and inventory quantities for any period t between them, u < t < v, can be determined

independent of the exact timing of u. That is, the optimal quantities and costs in period t

are identical for problems DSi
uv and DSi

u−k,v for any 0 < k < u.

Proof. As long as there are no regeneration points between t and v, the optimal action

is to send full trucks to the retailer as late as possible while ensuring that (1) the final

inventory is I i
v = 0, and (2) the less-than-truckload quantity required to meet demand

without backlogging must be carried in inventory from previous periods.

This proposition allows us to solve the Decentralized Subproblems efficiently. In partic-

ular, for each period v, 1 < v ≤ T + 1, the following algorithm calculates the costs on arcs

(u, v) for all 1 ≤ u < v in time O(T ).

Algorithm to solve Decentralized Subproblems DSi
.v:
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Let L̃i
tv denote the transportation and holding cost between period t (u < t < v) and v − 1

in the optimal solution for arc (u, v), given that u and v are consecutive regeneration points.

Using a backwards recursion for t = v− 1, . . . , 1, we can calculate the costs between periods

t and v − 1 simultaneously for both the case where t is not a regeneration point, i.e., L̃i
tv,

and the case where t = u is a regeneration point, i.e., Li
uv, as follows:

1. Initialize L̃i
vv = 0, I i

v = 0 and Li
v−1v = Aid

di
v−1

W
e.

2. Recursively, backwards in time for periods u = v − 2, v − 3, . . . , 1 and t = u + 1:

(a) Calculate L̃i
tv and I i

t .

• If di
t + I i

t+1 > W , then xi
t = W .

A full truck has to be dispatched to retailer i since t is not an LTL period and the

inventory carried in any period is below cargo capacity (Observation 2.5).

• Otherwise, xi
t = 0.

That is, di
t + Ii

t+1 must be entirely covered by the initial inventory Ii
t and no

shipment is needed.

Thus,

xi
t = b

di
t + I i

t+1

W
cW, I i

t = I i
t+1 + di

t − xi
t, and L̃i

tv = Ai
xi

t

W
+ hiI

i
t + L̃i

t+1,v

(b) Calculate Li
uv. Since u is a regeneration point and t = u + 1,

I i
u = 0, xi

u = di
u + I i

t , and Li
uv = Aid

xi
u

W
e+ L̃i

tv

If the sum di
u + I i

u+1 exceeds a full truckload W , periods u and v cannot be consecutive

regeneration points in the overall optimal solution: a lower cost solution can be constructed

by sending xi
u = di

u and shipping a partial truckload with I i
u+1 when needed. This saves

inventory costs without dispatching any more trucks, but adds an intermediate regeneration

point u + 1, contradicting the initial assumption that u and v are consecutive regeneration

points. The associated arc (u, v) can thus be removed from the shortest path network.
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4 Centralized System

We now consider the case where the single-warehouse multi-retailer system is managed by

a centralized decision maker whose objective is to minimize system-wide transportation and

inventory costs over the planning horizon. The Centralized Single-Warehouse Multi-Retailer

Problem, Problem CP, can be written as follows.

Problem CP : Min
T∑

t=1

n∑
i=0

(Aiy
i
t + hiI

i
t+1)

s.t.

xi
t ≤ Wyi

t, ∀t = 1, 2, . . . , T, i = 0, 1, . . . , n,

xi
t + I i

t = di
t + I i

t+1, ∀t = 1, 2, . . . , T, i = 1, 2, . . . , n,

x0
t + I0

t =
n∑

i=1

xi
t + I0

t+1, ∀t = 1, 2, . . . , T,

I i
1 = 0, i = 0, 1, . . . , n,

xi
t ≥ 0, ∀t = 1, 2, . . . , T, i = 0, 1, . . . , n,

yi
t ∈ {0, 1}, ∀t = 1, 2, . . . , T, i = 1, . . . , n,

0 ≤ y0
t ≤ n, integer ∀t = 1, 2, . . . , T,

I i
t ≥ 0, ∀t = 1, 2, . . . , T, i = 0, 1, . . . , n, (2)

Observe that the number of shipments to the warehouse in any period t is bounded by

the number of retailers, n, since in period t at most one truckload shipment will be sent to

each retailer (recall that we have assumed w.l.o.g. that the demand at each retailer in each

time period is less than a truckload).

As mentioned in the introduction, this problem is NP-hard. However, the following

section shows that the single-retailer problem can be solved in polynomial time O(T 3). The

exact algorithms for the centralized system developed in the next two sections rely on the

fact that only regeneration points can be LTL periods and thus they are the only ones that

need to be coordinated, since full truckloads are shipped on the same period from supplier

to warehouse to retailer.
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4.1 Single-Retailer System

The single-retailer problem has additional properties that we can exploit in the development

of an exact algorithm.

Property 4.1 In the optimal solution, if one period is a warehouse LTL period, it must be

a retailer LTL period. That is, if 0 < x0
t < W , then 0 < x1

t < W .

This is easy to show by contradiction; since the LTL period must be a warehouse regeneration

period, if the retailer shipment is either 0 or a full truckload, then the partial shipment to

the warehouse can and must be postponed to reduce inventory costs.

Property 4.2 In the optimal solution, if one period is a warehouse LTL period, it must be

a system regeneration point, i.e. a period in which the initial inventories at both warehouse

and retailer are zero, or the first period in the horizon.

Property 4.3 Between two consecutive system regeneration points, there is at most one

warehouse LTL period. If there is one, it must be the first period between the two consecutive

system regeneration points.

Again, by the same argument, there is at most one warehouse LTL period between the

first period in the horizon and the following system regeneration point. Furthermore, the

LTL period, if there is one, must be period 1.

The Single-Warehouse Single-Retailer problem can be modelled as a shortest path prob-

lem in a network with T + 1 nodes, indexed 1, 2, . . . , T + 1, and arcs (s, l) for each 1 ≤ s <

l ≤ T + 1. The cost of an arc from period s to l, Csl, for all 1 ≤ s < l ≤ T + 1, is the

optimal cost to cover the demands from periods s to l− 1 assuming both s and l are system

regeneration points. The shortest path from node 1 to node T + 1 provides the optimal

solution to the Single-Warehouse Single-Retailer problem.

Given the lengths of all arcs, the shortest path can be found in time O(T 2). The only

issue remaining is how to calculate the cost of each arc, Csl.

Since s and l are two consecutive system regeneration points, we know that I0
s = I0

l = 0

and the quantity shipped to the warehouse in period s, the only possible LTL period, must
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be,

∆0
sl =

l−1∑
t=s

d1
t − b

∑l−1
t=s+1 d1

t

W
cW.

Between the two consecutive system regeneration points there may be several retailer

regeneration points. Let u be a retailer regeneration point between system regeneration

points s and l. The inventory at the warehouse at the beginning of period u, s < u < l, is

I0
u =

l−1∑
t=u

d1
t − b

∑l−1
t=u d1

t

W
cW.

Therefore, the initial warehouse inventory at a retailer regeneration point u within con-

secutive system regeneration points does not depend on the timing of the initial system

regeneration point, s. To reflect the dependence on the second system regeneration point, l,

we will denote it by I0
u(l).

We calculate the cost, Csl, associated with each pair of consecutive system regeneration

points s and l, as a shortest path on a network with nodes s, s+1, . . . , l. An arc from node u

to node v, s ≤ u < v ≤ l, represents the optimal system ordering policy to cover the demands

from period u to period v − 1, given that s and l are two consecutive system regeneration

points, and u and v are two consecutive retailer regeneration points. The length of the arc is

the minimum cost, which we denote by Fsl(u, v). Since the initial warehouse inventory I0
u(l)

does not depend on s for s < u < v ≤ l, the value of Fsl(u, v) remains the same for all s < u.

Using this property, we develop an exact algorithm for the Single-Warehouse Single-Retailer

problem that runs in time O(T 3).

4.1.1 Single-Retailer Algorithm

Step 1: For all u and v, 1 ≤ u < v ≤ T + 1, solve a Decentralized Subproblem DS1
uv (see

Section 3) and let x1
t (u, v), for u ≤ t < v, be the optimal replenishment quantities and

L1
uv be the optimal cost. Compute also the quantities Yuv ≡

∑v−1
t=u+1

x1
t (u,v)

W
.

Step 2: For all u and l, 1 ≤ u < l ≤ T + 1, calculate I0
u(l).

Step 3: For each l, u and v, 1 ≤ u < v ≤ l ≤ T + 1, calculate the following quanti-

ties, assuming that u and v are consecutive retailer regeneration points, l is a system
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regeneration point and there are no other system regeneration points between u and l.

1. The inventory costs, H0
uv(l), at the warehouse between retailer regeneration points

u and v: H0
uv(l) = h0(v − u)I0

v (l).

2. The total supplier-warehouse transportation cost from u + 1 to v − 1 : A0Yu,v.

3. The supplier-warehouse shipment quantities in period u.

(a) Assuming u is not a system regeneration point,

i. If x1
u(u, v) + I0

v (l) ≥ W , then x0
u = W .

ii. Otherwise, x0
u = 0.

(b) Assuming u is a system regeneration point, a (possibly) partially loaded truck

with x0
u = x1

u(u, v) + I0
v (l) units is dispatched to the warehouse.

4. The total resulting supplier-warehouse transportation cost in periods u through

v − 1, which we refer to as T 0
uv(l) when u is not a warehouse regeneration point,

and as T̃ 0
uv(l) when u is a warehouse regeneration point.

5. F.l(u, v) ≡ L1
uv + H0

uv(l) + T 0
uv(l). (Observe that Fsl(u, v) = F.l(u, v) for all s < u.)

6. Ful(u, v) = L1
uv + H0

uv(l) + T̃ 0
uv(l).

Step 4: Calculate the arc cost Csl for each l = 2, 3, . . . , T + 1,, and 1 ≤ s < l in O(T 2)

as follows. Let Rt,l be the cost associated with periods t through l, given that t is a

retailer regeneration point, l is a system regeneration point, and there are no other

system regeneration points in between t and l.

1. Initialize Rll = 0.

2. For each s = l − 1, l − 2, . . . , 1,

Rsl = min
k,s<k≤l

{F·l(s, k) + Rkl}

Csl = min
k,s<k≤l

{Fsl(s, k) + Rkl}

Step 5: Calculate the shortest path between 1 and T+1 in a network with nodes 1, 2, . . . , T+

1 and arcs (s, l) for each 1 ≤ s < l ≤ T + 1 with length Csl.
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4.2 Multi-Retailer System

In the general case of n > 1 retailers, a warehouse regeneration point is not necessarily a

system regeneration point. In this section, we show that we can still use a network (shortest

path) approach to solve the Centralized Single-Warehouse Multi-Retailer Problem. However,

the network is far more complex since details on the status of each retailer at each warehouse

regeneration point need to be specified in order to calculate the costs associated with two

consecutive warehouse regeneration points.

Construct an acyclic graph G = (V, A), where

V = {u =< u0, u1, · · · , un > | 1 ≤ u0 ≤ ui ≤ T +1, i = 0, 1, · · · , n} = T × T × · · · × T︸ ︷︷ ︸,
n + 1 times

A = {< u0, u1, · · · , un >→< v0, v1, · · · , vn > | u0 < v0, ui ≤ vi for i = 1, 2, . . . , n}

Each node < u0, u1, · · · , un > represents a warehouse regeneration point, u0, along with

the earliest regeneration points for each retailer on or after that point, ui ≥ u0, i = 1, 2, . . . n.

We define the length of arc u→ v, where u =< u0, · · · , un > and v =< v0, · · · , vn >, as the

minimum system-wide transportation and holding costs between periods u0 and v0−1 given

that they are consecutive warehouse regeneration points. Observe that the pairs (ui, vi) are

needed so that we can calculate the LTL quantities required by retailer i and subsequently

the LTL quantity ∆ that should be carried to the warehouse in period u0. Specifically,

∆ =
n∑

i=1

vi−1∑
t=ui

di
t − b

∑n
i=1

∑vi−1
t=ui

di
t

W
c.

It is easy to see that the shortest path from < 1, 1, · · · , 1 > to < T +1, T +1, · · · , T +1 >

in G = (V, A) corresponds to finding the optimal system ordering policy. Unfortunately, the

network grows exponentially as the number of retailers increases.

In what follows we focus on calculating the cost of arc u → v. For that purpose, we

break time up in smaller increments such that there are no retailer regeneration points in

between. We construct a new network G(u→v) = (V(u→v), A(u→v)), where

V(u→v) = {p =< p1, · · · , pn > | ui ≤ pi ≤ vi},
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A(u→v) = {< p1, · · · , pn >→< q1, · · · , qn > | pi < qi if pi = mink pk, and pi = qi otherwise.}

The nodes represent successive regeneration points for each retailer, i.e. if we let pmin =

mink=1,2,...,n pk, then for each retailer, say i, pi is the earliest regeneration point on or after

pmin. The cost on arc < p1, · · · , pn >→< q1, · · · , qn > is the minimum system-wide cost

between periods pmin and qmin−1 (where qmin = mini qi), under the assumption that there are

no regeneration points at any intermediate time in any facility in the system. Consequently,

the associated costs can be calculated as follows.

1. For each retailer i, i = 1, 2, . . . , n:

• If pi = pmin, solve the Decentralized Subproblem DSi
piqi

(see Section 3) and con-

sider only the optimal cost and replenishment quantities between pi and qmin ≤ qi.

• If pi > pmin, solve the Decentralized Subproblem DSi
pmin−1,pi

and consider only

the optimal cost and replenishment quantities between pmin and qmin.

2. Given the retailer replenishment quantities, calculate the coordinated warehouse ship-

ping quantities and cost between pmin and qmin as in Step 3 in Section 4.1.1.

The cost associated with arc u→ v is the shortest path between nodes < u1, u2, . . . , un >

and < v1, v2, . . . , vn > in network G(u→v). We refer to this type of algorithms, which consist

of solving a shortest path on a network where the cost of each arc is calculated as the shortest

path on a related network, as nested shortest-path algorithms.

5 Lagrangian Decomposition

The dynamic programming algorithm for Problem CP becomes computationally expensive

as the number of retailers increases. Solving the associated single retailer problems using the

properties derived above, however, is relatively fast. As a result, the problem appears well

suited for a Lagrangian Decomposition approach that would allow us to break the problem

down into a subproblem for each retailer while maintaining the coordination between them

through Lagrangian multipliers. The solutions to these subproblems will provide both a
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lower bound on the cost of an optimal solution and a starting point to construct good

feasible solutions to the problem effectively.

Observe that the only constraints that link all the retailer facilities together are x0
t +I0

t =∑n
i=1 xi

t + I0
t+1 ∀t = 1, 2, . . . , T . We develop two algorithms, which we denote by Aggregated

and Disaggregated Lagrangian Decomposition, respectively, by adding the following variables

and constraints:

• Aggregated: For each t, t = 1, 2, . . . , T, we add a new variable z0
t and a new constraint

z0
t =

∑n
i=1 xi

t. The linking constraint is then written as x0
t + I0

t = z0
t + I0

t+1.

• Disaggregated: For each t and i, t = 1, 2, . . . , T, and i = 1, 2, . . . , n, we add a new

variable zi
t and a new constraint zi

t = xi
t. The linking constraint is then written as

x0
t + I0

t =
∑n

i=1 zi
t + I0

t+1.

These new constraints will be relaxed so that the problem can be decomposed into one

warehouse and n retailer subproblems. As we shall see in the computational section, the

disaggregated method provides stronger lower bounds and better feasible solutions. However,

it increases the computational time required to generate solutions. This trade-off needs to

be considered when deciding which one to use in each particular case.

Let λt denote the Lagrangian Multipliers for the aggregated decomposition and λi
t those

for the disaggregated counterpart. The objective functions of the resulting Lagrangian prob-

lems are:

Aggregated Lagrangian Decomposition Objective:

Min
T∑

t=1

n∑
i=0

(Aiy
i
t + hiI

i
t+1) +

T∑
t=1

λt(z
0
t −

n∑
i=1

xi
t)

Disaggregated Lagrangian Decomposition Objective:

Min
T∑

t=1

n∑
i=0

(Aiy
i
t + hiI

i
t+1) +

T∑
t=1

n∑
i=1

λi
t(z

i
t − xi

t)

The following sections study the subproblems associated with the two decompositions.
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5.1 Retailer Subproblem

For each retailer i:

Problem RSP : Min
T∑

t=1

(Aiy
i
t + hiI

i
t+1 − λtx

i
t)

s.t.

xi
t ≤ Wyi

t, ∀t = 1, 2, . . . , T,

xi
t + I i

t = di
t + I i

t+1, ∀t = 1, 2, . . . , T,

I i
1 = 0,

xi
t ≥ 0, ∀t = 1, 2, . . . , T,

yi
t ∈ {0, 1}, ∀t = 1, 2, . . . , T,

I i
t ≥ 0, ∀t = 1, 2, . . . , T. (3)

The corresponding subproblem in the disaggregated Lagrangian decomposition technique

is identical except that the multipliers are denoted by λi
t.

For this subproblem, the first part of Theorem 2.4 still holds. That is, between two

consecutive retailer regeneration points, there is at most one LTL period in the optimal

solution. If there were two LTL periods s and t (s < t), we can move a unit forward from s

to t with an additional cost of −(t−s)hi +λs−λt or backward from t to s with an additional

cost of (t−s)hi−λs +λt. At least one of them should be non-positive. Thus, there is always

an optimal solution with a single LTL period. The second part of the theorem, however, does

not necessarily hold. The period to send the LTL shipment will depend on the new value of

“transporting” it, λt, which now varies from period to period. It may thus be suboptimal

for the subproblem to have the first period between regeneration points as the LTL period.

Observe, however, that the optimal solution to the original problem does satisfy both

properties and thus we can restrict the feasible set to solutions that satisfy them. This

strengthens the lower bound obtained through the Lagrangian decomposition and allows us

to solve the subproblem using the shortest path algorithm presented in Section 3. The only

difference is that the arc cost, Li
uv, is now composed of the transportation and holding costs

plus the costs associated with λt.
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5.2 Warehouse Subproblem

The warehouse subproblem is where the aggregated and disaggregated methods differ, with

the latter becoming stronger.

The aggregated subproblem for the warehouse can be written as follows:

Problem WSPA : Min
T∑

t=1

(A0y
0
t + h0I

0
t+1 + λtz

0
t )

s.t.

x0
t ≤ Wy0

t , ∀t = 1, 2, . . . , T,

x0
t + I0

t = d0
t + I0

t+1, ∀t = 1, 2, . . . , T,

I0
1 = 0,

0 ≤ z0
t ≤ nW, ∀t = 1, 2, . . . , T,

0 ≤ y0
t ≤ n, integer, ∀t = 1, 2, . . . , T,

I0
t ≥ 0, ∀t = 1, 2, . . . , T. (4)

This warehouse subproblem can be strengthened by adding inequalities always satisfied

in optimal solutions to the original problem. In particular, the total quantity sent to retailer

i up to time k in an optimal solution must be greater than or equal to the total demand up to

k. In fact, it will be equal to that demand plus a portion of the demand in a certain number

of succeeding periods up to the next regeneration period, say l, that cannot be consolidated

into full trucks. That is,
∑k

t=1 xi
t =

∑l
t=1 di

t − b
∑l

t=k+1
di

t

W
cW for some l such that k ≤ l ≤ T .

Hence, we must have that:

k∑
t=1

di
t ≤

k∑
t=1

xi
t ≤ max

k≤l≤T
{

l∑
t=1

di
t − b

∑l
t=k+1 di

t

W
cW} (5)

Consequently,

n∑
i=1

k∑
t=1

di
t ≤

k∑
t=1

z0
t ≤

n∑
i=1

max
k≤l≤T

{
l∑

t=1

di
t − b

∑l
t=k+1 di

t

W
cW}

Solving the subproblem directly and repeatedly with an MIP solver in the Lagrangian
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routine becomes computationally expensive for relatively large instances. To improve the

computational efficiency of the Lagrangian decomposition algorithm, we solve the LP relax-

ation of WSPA first. Let ȳ0
t denote the value of y0

t in the solution of the LP relaxation. We

substitute y0
t with bȳ0

t c + b0
t (b0

t ∈ {0, 1}) to convert the general integer variable y0
t into a

binary variable b0
t . The modified problem can then be solved with an MIP solver in a much

shorter time. The resulting lower bounds are the same as those obtained when solving the

subproblem directly in most cases and the differences observed in the remaining cases are

very small. The justification behind this manipulation is that the full truck shipments sent in

a particular period, (bȳ0
t c), in the relaxed problem will also be in the optimal integer solution

for most instances because the costs of sending a full truck are the same in each period and

correspond to the linear costs. This modification to gain computational speed, may result

in intermediate Lagrangian iterations where the so-called lower bound is not so. In the last

iteration of the Lagrangian technique we solve the original mixed integer program for the

warehouse subproblem directly to ensure that we have a true lower bound and quantify the

distance from optimality of the final solution obtained.

The disaggregated subproblem for the warehouse is

Problem WSPD : Min
T∑

t=1

(A0y
0
t + h0I

0
t+1 +

n∑
i=1

λi
tz

i
t)

s.t.

x0
t ≤ Wy0

t , ∀t = 1, 2, . . . , T,

x0
t + I0

t =
n∑

i=1

zi
t + I0

t+1, ∀t = 1, 2, . . . , T,

I0
0 = 0,

0 ≤ zi
t ≤ W, ∀t = 1, 2, . . . , T, i = 0, 1, . . . , n,

0 ≤ x0
t ≤ nW, ∀t = 1, 2, . . . , T,

0 ≤ y0
t ≤ n, integer, ∀t = 1, 2, . . . , T,

I0
t ≥ 0, ∀t = 1, 2, . . . , T. (6)

We again strengthen the subproblem by adding constraints (5). To improve computational

efficiency, we resort once more to the linear-programming-based approximation to a binary



23

problem described above. That is, we first solve the LP relaxation of this problem, then

substitute y0
t with bȳ0

t c+ b0
t (where ȳ0

t is the value of y0
t in the solution of the LP relaxation

and b0
t ∈ {0, 1}), and finally solve the modified subproblem. The disaggregated subproblem

has more variables and takes significantly longer to solve than its aggregated counterpart,

but it provides a better lower bound.

5.3 Lagrangian-Based Upper Bound

For both decomposition forms, a feasible solution can be easily constructed by fixing the op-

timal shipments obtained through each of the retailer subproblems and solving the associated

decentralized problem for the warehouse.

5.4 Subgradient Optimization

After solving the subproblems and constructing the feasible solution, the Lagrangian Multi-

pliers are updated using the following subgradient method.

For the aggregated form, in iteration k, the multipliers are updated as

λk+1
t = λk

t + tk(z
0
t −

n∑
i=1

xi
t)

where tk is a scalar step size such that tk → 0 and
∑k

l=1 tk → ∞ for k → ∞, in order to

assure convergence (Polyak (1967) [26]). Generally, we set

tk =
αk(UB − LB)∑T

t=1(z
0
t −

∑n
i=1 xi

t)2

where αk ∈ (0, 2] is a scalar parameter, UB is the best upper bound available and LB is the

current lower bound.

For the disaggregated form, in iteration k, the Lagrangian multipliers are updated as

(λi
t)

k+1 = (λi
t)

k + tk(z
i
t − xi

t), where tk = αk(UB−LB)∑T

t=1

∑n

i=1
(zi

t−xi
t)

2
.
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6 Computational Results

The focus of our computational experiments is to assess the quality of the solutions obtained

through the two Lagrangian decomposition methods, determine the time required, and eval-

uate the gains obtained through system coordination. We consider 3 different problem scales:

Small with 8 periods and 7 retailers, Medium with 10 periods and 20 retailers, Large with

12 periods and 50 retailers. We solve a total of 768 problem instances generated as follows.

Let U(a, b) denote the uniform distribution over the range (a, b). We construct 192 test

instances of the One-Warehouse Multi-Retailer Problem with Full Truckload Shipments as

follows.

We fix the cargo capacity constraint to W = 25 and test the algorithms over 4 different

demand patterns: Low with data generated from U(0, 6), Medium with U(6, 12), High with

U(12, 20), and Wide Range with U(0, 25). The fourth pattern represents the scenarios where

demands change wildly over the time horizon.

To consider the trade-off between the fixed transportation costs per vehicle and the

linear inventory holding costs, we generate the cost of dispatching a truck to retailer i, Ai,

i = 1, 2, . . . , n, from U(10, 20), for i = 1, . . . , n, and consider 4 different holding cost rates,

hi: High with data generated from U(1.2, 2), Medium with U(0.8, 1.2), Low with U(0.4, 0.8)

and Very Low with U(0.1, 0.4).

The supplier-warehouse fixed cost per truck dispatched, A0, is generated as the product

of a random number drawn from U(10, 20) and a factor f1 that captures the relative dif-

ference between supplier-warehouse and warehouse-retailer transportation costs. Normally,

the warehouse is much closer to the retailers than to the supplier. Thus the transportation

cost per cargo from the supplier to the warehouse is considered to be higher than or equal

to that from the warehouse to the retailers. We use two factors: f1 = 4 for a relatively high

supplier-warehouse transportation cost and f1 = 1 for a relatively low one.

The warehouse holding cost rate is calculated as h0 = f2 min
{
h̃0, mini=1,...,n hi

}
, where

h̃0 is randomly generated using the same distribution as for the hi, i = 1, 2, . . . , n, described

above, and f2 is a factor that accounts for the relative difference between warehouse and

retailer inventory holding rates. In our computational tests we consider f2 = 1 for a relatively
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high warehouse holding cost and f2 = 1/2 for a relatively low one.

The values of the parameters used in the computational study are summarized in Table 1.

They result in a total of 192 combinations for the base case (Case 1). For each combination

of the parameter values, we generate a single instance.

Table 1: Values of the parameters used in the Base Case (W = 25, Ai ∈ U(10, 20))

T N d hi f1 f2

8 7 U(0, 6) U(1.2, 2) 4 1
10 20 U(6, 12) U(0.8, 1.2) 1 2
12 50 U(12, 20) U(0.4, 0.8)

U(0, 25) U(0.1, 0.4)

We also explore scenarios with different types of retailers in three additional cases of 192

instances each. For this purpose, we first randomly generate 192 instances of the problem,

each with a different combination of the parameter values, using the same parameters as in

Table 1. In Case 2, we halve the transportation cost per truck Ai for half of the retailers.

In Case 3, we halve the holding cost per unit per unit time hi for half of the retailers. The

holding cost per unit per unit time at the warehouse h0 is then set equal to the lowest of the

holding costs at the retailers. In Case 4, we halve the demand in each period di
t for half of

the retailers.

In the Lagrangian Decomposition procedure, we start with α = 2. If there is no improve-

ment in the upper or lower bounds in 10 iterations, we halve the value of α. We initialize

all Lagrangian Multipliers as 0. We consider three termination criteria: 1) α < 0.0001; 2)

(UB − LB)/LB < 0.001; 3) running time is more than 1800s.

To benchmark the quality and speed of the solutions, we also solve Problem FTL for each

of the instances generated with CPLEX MIP solver with a time limit of 1800s. Furthermore,

to investigate possibly stronger formulations, we also solve the MIP version of the formulation

introduced in Levi et al. (2005).

In Table 6, we summarize the quality of the solutions obtained by CPLEX using both the

FTL and Levi’s formulations, the aggregated and disaggregated Lagrangian Decomposition

methods and the decentralized system. For that purpose, we report the relative difference
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Table 2: Average and maximum percent relative gap of the feasible solutions (upper bounds)
and the lower bounds generated with each method.

Upper Bound Lower Bound
T N Levi FTL Lag AggLag Decomp Levi FTL Lag AggLag

Case 1
Average 8 7 0.03% 0.01% 0.21% 0.36% 0.87% 0.26% 0.10% 0.45% 0.64%

10 20 0.19% 0.15% 0.19% 0.26% 0.44% 0.46% 0.55% 0.12% 0.14%
12 50 0.32% 0.34% 0.14% 0.17% 0.24% 0.50% 0.70% 0.01% 0.01%

Max 8 7 0.66% 0.12% 3.54% 2.60% 6.65% 3.86% 2.74% 1.99% 2.49%
10 20 1.10% 0.60% 0.76% 0.90% 1.82% 1.81% 3.88% 0.51% 0.62%
12 50 1.89% 2.43% 0.53% 0.65% 0.98% 2.26% 3.95% 0.20% 0.14%

Case 2
Average 8 7 0.01% 0.01% 0.18% 0.28% 0.79% 0.10% 0.02% 0.57% 0.82%

10 20 0.15% 0.10% 0.21% 0.31% 0.49% 0.30% 0.32% 0.17% 0.20%
12 50 0.31% 0.27% 0.17% 0.19% 0.26% 0.45% 0.60% 0.03% 0.03%

Max 8 7 0.05% 0.05% 1.65% 2.41% 4.95% 2.05% 0.89% 2.13% 3.42%
10 20 0.96% 0.37% 0.81% 1.39% 1.80% 1.63% 2.63% 0.53% 0.65%
12 50 2.60% 1.26% 0.84% 0.91% 1.07% 2.40% 3.85% 0.23% 0.21%

Case 3
Average 8 7 0.03% 0.02% 0.13% 0.25% 0.63% 0.35% 0.11% 0.38% 0.54%

10 20 0.27% 0.19% 0.14% 0.18% 0.27% 0.67% 0.73% 0.05% 0.08%
12 50 0.42% 0.39% 0.09% 0.11% 0.14% 0.71% 0.99% 0.00% 0.00%

Max 8 7 0.34% 0.15% 1.15% 1.89% 5.46% 3.43% 1.74% 1.68% 2.46%
10 20 1.26% 1.00% 0.57% 0.63% 0.80% 2.66% 6.08% 0.61% 0.88%
12 50 2.36% 1.53% 0.41% 0.56% 0.68% 3.15% 5.08% 0.02% 0.04%

Case 4
Average 8 7 0.01% 0.02% 0.17% 0.32% 0.91% 0.16% 0.04% 0.45% 0.71%

10 20 0.52% 0.53% 0.55% 0.57% 0.73% 0.93% 1.26% 0.57% 0.62%
12 50 0.44% 0.49% 0.30% 0.41% 0.34% 0.72% 1.45% 0.27% 0.40%

Max 8 7 0.20% 0.20% 1.32% 2.69% 3.89% 2.14% 1.39% 1.53% 3.06%
10 20 4.26% 4.21% 4.21% 3.74% 4.21% 4.98% 7.23% 4.28% 3.82%
12 50 2.16% 2.29% 2.66% 2.70% 2.66% 3.45% 7.27% 2.68% 2.75%

of both the lower bounds and the feasible solutions (upper bounds on total cost) generated

by each method to the largest of the lower bounds obtained. Observe that CPLEX and the

Lagrangian Decomposition methods provide both the current best feasible solution found and

the current lower bound when they are terminated. The decentralized approach, however,

does not provide a lower bound. Let LBX be the lower bound provided by method X,

X = Levi, FTL, Aggregated, Disaggregated, and UBX be the feasible solution generated

by method X, X = Levi, FTL, Aggregated, Disaggregated, Decentralized. Let MaxLB =

Max
(
LBX , X ∈ {Levi, FTL, Aggregated, Disaggregated}

)
. We report the relative percent

difference UBX−MaxLB
MaxLB

∗ 100 (%) and MaxLB−LBX

MaxLB
∗ 100 (%).

While the performance of CPLEX deteriorates as the problem size increases, the quality
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Table 3: Running time (s)

T N Levi FTL Lag AggLag
Case 1

Average 8 7 343.03 183.75 21.39 10.60
10 20 1262.59 1389.48 114.52 10.49
12 50 1797.75 1765.71 917.54 11.80

Max 8 7 1801.03 1800.39 40.56 21.27
10 20 1800.63 1800.44 257.84 29.33
12 50 1806.36 1800.56 1811.92 29.44

Case 2
Average 8 7 219.06 77.89 22.59 10.63

10 20 1043.65 1048.02 126.83 11.17
12 50 1686.92 1651.20 1078.87 12.76

Max 8 7 1800.70 1800.23 35.72 19.28
10 20 1800.95 1800.84 246.45 20.50
12 50 1824.62 1802.50 1811.81 31.39

Case 3
Average 8 7 528.59 313.06 20.18 9.59

10 20 1585.20 1654.34 98.08 9.46
12 50 1800.47 1800.15 632.84 9.61

Max 8 7 1802.80 1815.53 41.59 19.83
10 20 1802.66 1800.42 261.88 21.81
12 50 1802.48 1801.45 1811.47 28.25

Case 4
Average 8 7 281.52 134.39 21.14 10.19

10 20 1228.62 1448.94 124.58 11.27
12 50 1800.47 1799.76 1036.05 12.30

Max 8 7 1800.09 1800.28 36.98 19.49
10 20 1803.78 1800.42 256.64 20.77
12 50 1802.70 1800.66 1813.42 27.36
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of the solutions generated by the Lagrangian methods improves. This suggests that the

proposed Lagragian Decomposition algorithms are superior to tackle large instances. The

comparison of their running times in Table 6 further supports this finding. Recall that all

algorithms are restricted by a running-time limit of 1800 seconds. The running time of

CPLEX quickly reaches the limit, while the Lagrangian methods are very rarely constrained

by it. The computational complexity of the Aggregate Lagrangian method grows very slowly

with problem size, making it especially attractive to solve large-scale instances.

The difference in cost associated with the decentralized versus the centralized manage-

ment of the system in the instances tested is rather small. We would like to point out,

however, that there are examples where the relative difference can be as large as 1
3
: Con-

sider a single retailer with demands over a planning horizon of two periods of d1 = αW and

d2 = (1 − α)W , 0 < α < 1. Assume that 2A1 < A1 + h1d2 and A0 + h0d2 < 2A0 (that

is, A1 < h1d2 but A0 > h0d2). In the decentralized solution, the retailer will order d1 and

d2 separately in their respective periods while the warehouse will order d1 and d2 together

in period 1, with a total cost of 2A1 + A0 + h0d2. If h0 ' h1, the optimal solution under

centralized management is to ship d1 and d2 directly from supplier to warehouse to retailer

and keep the inventory at the retailer. The total cost is A1+A0+h1d2. The gap is A1

A1+A0+h1d2

which can get as close to 1
3

as desired by taking A1 = h1d2 − ε, A2 = h1d2 + ε and ε→ 0.

Finally, we would like to compare the quality of our solutions with that of the solutions

generated by algorithms that require the demand for each retailer in each particular time

period to be satisfied by a single shipment, such as the 4.796-approximation algorithm of

Levi, Roundy and Shmoys (2005) [19] and the cutting-plane procedure proposed by Croxton,

Gendron and Magnanti (2003) [10] for more general settings. We refer to these solutions

as non-splitting policies. To obtain a lower bound on the cost associated with non-splitting

policies, we solved the integer programming formulation presented in [19] for small-size

instances with 3 retailers and 5 time periods, randomly generated as described above. In

a first group of 8 instances where demand is large, U(12,20), relative to truck capacity of

W = 25, the solutions are on average 3.3% over the optimal cost and reach a maximum

deviation of 7%. In contrast, our algorithm provides the optimal policies in those cases and

decentralized management of the system produces solutions that are on average 0.3% away
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from optimality, with a maximum deviation of 1.7%. In a second group of 8 instances where

demand is wide-ranging, U(1,24), relative to the truck capacity of W = 25, the solutions are

on average 1.65% over the optimal cost and reach a maximum deviation of 5%. In contrast,

our algorithm provides the optimal policies in those cases and decentralized management

of the system produces solutions that are on average 0.64% away from optimality, with a

maximum deviation of 3.97%. For more details and examples where the best non-splitting

policies lead to costs that are as much as 3/2 times the optimal cost, we refer the reader to

Jin (2006) [17].

7 Asymptotic Optimality of the Decentralized Approach

The computational results suggest that the performance of the decentralized solution in-

creases as the problem size, in particular the number of retailers, increases. In fact, the

following theorem shows that the decentralized solution is asymptotically optimal.

Theorem 7.1 Let retailer demands di
t be i.i.d. with a mean of E[di

t] = d̄ > 0, and let Z∗ and

ZDC denote the cost of the optimal and decentralized solutions, respectively. With probability

one,

lim
n→∞

ZDC − Z∗

Z∗ = 0,

where n is the number of retailers.

Proof. Observe that the total warehouse-retailer transportation and retailer inventory costs

will be minimized by the decentralized solution, and can thus be ignored when upper-

bounding the difference between decentralized and optimal solutions. We can then con-

struct a lower bound for the optimal solution and an upper bound for the difference between

decentralized and optimal solutions as follows.

The cost of the optimal solution is bounded below by the minimum possible cost to

transport all demands from supplier to warehouse, associated with full truckload shipments

at a cost per unit of A0/W ; that is, Z∗ ≥ (A0/W )
∑

i,t d
i
t.

The difference in cost between the decentralized and optimal solutions is bounded above

by the difference between the costs associated with supplier-warehouse shipments and ware-
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house inventory in the decentralized solution and the lower bound on those in the optimal

solution, i.e., (A0/W )
∑

i,t d
i
t. Observe that in the decentralized solution: (1) the inventory

carried by the warehouse in any period will not exceed the truck capacity, W , since otherwise

a full truckload could be postponed, and thus total warehouse inventory costs are bounded

by Th0W ; and (2) supplier-warehouse transportation costs will consist of a number of full

truckloads and possibly one less than full truckload each period, at a cost that can thus be

bounded by (A0/W )
∑

i,t d
i
t + TA0.

Therefore, we have that:

ZDC − Z∗

Z∗ ≤ TA0 + Th0W

(A0/W )
∑

i,t d
i
t

=
W (A0 + h0W )

nA0

∑
i,t

di
t

nT

−→n→∞ 0

This is true with probability one by the law of large numbers, since E[di
t] = d̄ > 0.

8 Conclusions

In this paper, we use structural properties of the optimal solutions to the one-warehouse

multi-retailer problem with stationary full truckload costs to develop:

• an algorithm for the single-stage problem with complexity O(T 2), which translates into

solving the one-warehouse multi-retailer problem under decentralized management of

the system in time O(nT 2),

• an algorithm for the one-warehouse single-retailer problem with complexity O(T 3), and

its extension to the multi-retailer case with polynomial computation time for a fixed

number of retailers, and

• heuristic algorithms based on two different Lagrangian decompositions of the problem:

aggregated and disaggregated.

The structural properties and dynamic programming algorithms are valid as long as

costs are nondecreasing over time so that it is always optimal to send the full truck as late as

possible, i.e. under the monotonicity conditions in Lippman (1969). For more general non-

stationary costs, Pochet and Wolsey (1993) showed that there is only one partial shipment
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between consecutive regeneration points, but our algorithms fail because they also rely on

the following two properties that do not hold in the general case: (1) the LTL shipment (if

any) occurs in the first period between consecutive regeneration points; (2) inventory at any

facility is always below truck capacity.

Our computational experiments show that the two Lagrangian Decomposition methods

offer good solutions within reasonable time. For small and medium scale instances, the

disaggregated Lagrangian Decomposition method offers better solutions. For large scale in-

stances, however, the computational expense makes its aggregated counterpart more prefer-

able. Finally, our computational experiments show that the gap between the centralized and

decentralized solutions decreases as the problem scale increases. For large scale instances,

managing the system in a decentralized fashion offers near-optimal solutions. In fact, we

show analytically that the decentralized heuristic is asymptotically optimal.
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