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We investigate the profitability of offering remanufactured products for a monopoly firm in a single period

setting. We characterize a threshold for the remanufacturing cost below which it is optimal to offer reman-

ufactured products, and focus on analyzing its dependence on the consumer profile. This analysis allows us

to identify when it is customer segmentation, and not the cost difference, that drives the remanufacturing

decision. That is, we find conditions under which it is optimal to offer remanufactured products even if they

are as costly to produce as new products. Consequently, it becomes cost effective to substitute them and offer

new products under the remanufactured label when the latter are scarce. These results are also applicable

to the evaluation of the common marketing practices of branding, i.e, offering virtually identical products

under different brands, and generics, i.e. offering generic versions of a landmark label.
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1. Introduction

During the last decade, remanufacturing has become more and more popular in various

industries. Progress in ecological design, strict regulations (such as the European Union’s

WEEE directive (2003)) and the increasing number of environmentally conscious consumers

are bringing the handling of used products to the forefront of business priorities. Exam-

ples abound: Dell Outlet (www.delloutlet.com) and USA notebook (www.usanotebook.com) sell

refurbished computers. ReCellular (www.recellular.net) sells refurbished cell phones. Saint Vin-

cent de Paul (www.humstvincentdepaul.org/mattress.html) remanufactures mattresses. CycleTires

(www.cycletires.com/about.htm) remanufactures aircraft tires.
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Remanufacturing operations begin with the collection of products that have either been discarded

after use or found to be defective. These products are disassembled and their components cleaned

and checked to determine which ones to bring up to specification and which ones to replace. The

product is then reassembled and tested, ready for a second cycle of use with practically the same

level of performance (Hauser and Lund (2003)). Remanufacturing is beneficial for the environment.

It reduces the consumption of raw materials and energy from the environment, and the waste

stream back to the environment, such as solid waste that ends up at landfill sites.

Moreover, remanufacturing can also be profitable for the firms. The cost to produce a remanufac-

tured unit of a particular product is in general lower than the cost to produce a new unit because

of the savings in raw materials, energy, and manufacturing plant and equipment in the remanufac-

turing process. Furthermore, firms can attract new buyers into a market where new product prices

have been prohibitively high for them, by providing like-new products at prices that typically range

from 45% to 65% of comparable new products (Hauser and Lund (2003)). The overall size of the

market is thus increased.

Consider a monopoly firm that has the option to either offer only new products or offer both new

and remanufactured products to the market. Customers value new and remanufactured products

differently; that is, customers have different utilities on the same new product and a lower relative

utility for the remanufactured counterpart. This can be described by a utility distribution function

over the entire population of customers and a relative utility function for remanufactured products

as in Debo et al. (2005). Consumer utility for remanufactured products is modeled as a function

of the utility the consumer places on new products, which we refer to as a relative utility function,

and is thus identical for all customers that share the same utility for new products. The ratio of

the utility of the remanufactured product to the utility of the new product may vary as the utility

of the new product decreases. For example, a high-end customer may be willing to pay $100 for

the new product and $50 for the remanufactured one. The ratio is 50%. However, a price-sensitive,

low-end customer may be willing to pay $50 for the new product but $35 for the remanufactured

one. The ratio is 70%. As the example shows, the relative utility function is not necessarily linear;
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in general, it is expected to be concave. The combination of the utility distribution function for new

products and the relative utility function for remanufactured products is referred to as a consumer

profile. Customers will buy a product only if it is priced below their utilities. In addition, customers

decide whether to buy new or remanufactured products by comparing their surpluses, i.e., their

utilities minus the price of the product, from either of the two products. In turn, the firm has to

decide whether to offer only new products or offer both new and remanufactured products, and at

what prices.

In some situations, the amount available for remanufacture may be limited by a low stream of

returned products. This is particularly true at the early start of the remanufacturing operation,

when very few of the new products sold have reached the end-of-life stage. Given a scarce supply

of remanufactured products, the firm may consider labeling a certain amount of new products as

remanufactured (or simply including a minimal amount of used components into the remanufac-

tured product) to reap the full benefits of segmenting the market into high-paying new product

customers and low-paying remanufactured product customers. The consumer, oblivious to this

substitution taking place and to the extent to which used components are used, cannot tell the

difference between the substituted and the genuinely remanufactured products.

In the present paper, we address the problems of (1) whether or not to offer remanufactured

products in addition to new products and (2) whether or not to offer new products as substitutes

for remanufactured products, in a single-period monopoly setting. We focus on understanding

the impact of the consumer profile on the optimal decisions and profits of the firm. Our major

departure from the previous literature is the explicit study of nonlinear relative utility functions for

remanufactured products. We show that the concavity of these functions is a necessary condition

to efficiently segment the market under no cost differences in the production of the two products.

These problems are thus closely related to the classical literature on market segmentation. Mussa

and Rosen (1978) and Moorthy (1984) study the optimal pricing of independent products that are

differentiated by quality in a market of heterogeneous consumers whose valuations of quality vary.

Mussa and Rosen (1978) approximate the customer utility to be linear with the product quality.
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Moorthy (1984) assumes a finite number of consumer types. An extensive body of literature on

product assortment and pricing has followed their seminal work; see for instance Aydin and Ryan

(2000) and the references therein. More recently, new research has focused on the study of cus-

tomer segmentation in the remanufacturing context. Ferrer (1996) solves the market segmentation

problem for new and remanufactured products faced by a monopoly firm in a steady-state market.

The author examines the trade-offs between the customers utility and production cost variables

and identifies conditions under which the remanufactured product may coexist with the brand new

product. New and remanufactured product pricing decisions are linked not only by the product

substitution effects common in market segmentation, but also by the need of used components to

allow for remanufacturing of the same steady-state amount with the desired used part content in

the next period. The customer utility for remanufactured products is assumed to be linear in the

customer utility for new products. The customer valuation of new products is assumed to have a

distribution with increasing hazard rate when the used part content in remanufactured products is

fixed, and to be uniformly distributed when optimizing the used part content. Debo et al. (2005)

consider the problem of jointly determining the level of remanufacturability to invest in and the

prices at which to offer both new and remanufactured products over an infinite horizon to maximize

the net present value. In their general model, the utility for new products is given by a strictly

increasing and continuous function F on [0,1] and the utility of remanufactured products is a

nonnegative monotonically increasing function η(θ) of the utility for new products θ. Most of their

analysis and all of their numerical work and managerial conclusions, however, rely on the assump-

tion that the relative utility for remanufactured products is linear, η(θ) = (1− δ)θ, what they refer

to as a linear consumer profile. They first characterize the optimal solutions to the problem and

then use this to give conditions that render remanufacturing profitable. Under a linear consumer

profile, they show that the factors driving the remanufacturing potential are the manufacturing and

remanufacturing costs, the incremental (fixed and variable) cost of providing remanufacturability

and the discount factor. They also point out the importance of the consumer profile (F,η) on the
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remanufacturing potential, i.e., on the additional profit to be reaped from offering a remanufac-

tured product. Vorasayan and Ryan (2006) similarly consider a linear consumer profile, but with

stochastic demand and service times, in a queueing model that captures both manufacturing and

remanufacturing operations.

Our paper builds upon these findings and complements the previous studies by focusing on the

impact of the functional form of the relative consumer utility for remanufactured products on the

optimal decisions and profits of the firm. Our goal is to identify the role of customer segmenta-

tion as a driver of the remanufacturing decision. We show that whether or not remanufacturing is

profitable is highly dependent on the consumer profile (F,η). This contrasts the finding in Debo

et al. (2005), under the assumption of a linear consumer profile, that the distribution of consumer

types, F (θ), impacts the sign of the remanufacturing potential only when remanufacturing requires

a positive investment. The reason is that for nonlinear relative utility functions, the distribution

of consumer utilities, F, takes a more prominent role in determining the profitability of reman-

ufacturing. Moreover, we discuss the option of a firm to offer new products as substitutes for

remanufactured products, when the latter are scarce. This one-way substitution has been studied

before in Baymdir et al. (2003, 2005) in an inventory control setting where prices and demand

distributions for new and remanufactured products are exogenously given. In this case, the benefits

of substitution are derived from risk pooling effects. The impact of this substitution at the strategic

level to allow for customer segmentation, to our knowledge, has not been previously addressed.

Some papers study the substitution option in different contexts. Bassok et al. (1999) study

a single period multi-product inventory problem with substitution and proportional costs and

revenues. They consider N products and N corresponding demand classes with full downward

substitution, i.e., excess demand for product i can be satisfied using a higher quality product j.

For example, a car rental company uses mid-sized cars to satisfy unexpectedly high demand for

compact cars. They focus on finding the optimal inventory replenishment policy that maximizes

the firm’s profit. They show that the benefits of the substitution option are higher with high

demand variability, low substitution cost, low profit margins (or low price to cost ratio), high
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salvage values, and similarity of products in terms of prices and costs. Netessine et al. (2000)

consider the capacity investment problem for a firm that provides multiple services using both

specialized and flexible capacity. The demand can again be satisfied with downward substitution.

They analytically characterize the effects of increasing demand correlation on the optimal capacity

investment solution. For the case with two customer classes, they show that increasing correlation

induces a shift from flexible to dedicated capacity. Khouja (1999) offers a literature review on the

single-period (news-vendor) problem, including the case of multiple products with substitution,

and suggests some future directions for research.

The remainder of the paper is structured as follows. In Section 2, we introduce the profit maxi-

mization problems faced by a firm offering either both new and remanufactured products or only

a single product to the market. In Section 3, we analyze these models and derive the conditions

under which the firm should offer both new and remanufactured products. In Section 4, we allow

the firm to offer new products as substitutes for remanufactured products and derive conditions

under which this substitution is beneficial. In Section 5, we identify the form of the relative utility

function that leads to highest profits from customer segmentation. This provides a tight upper

bound on the potential profits that can be reaped through offering remanufactured products. Sec-

tion 6 presents the major results of an extensive computational study to illustrate the effect of

the consumer profile on remanufacturing decisions. Finally, in Section 7, we discuss the major

managerial insights and directions for future research.

2. Models

In this section, we model the pricing problems faced by the monopoly firm when offering either

both new and remanufactured products or only one of them to the market.

Throughout the paper we refer to a function as increasing (decreasing) when it is non-decreasing

(non-increasing). We will explicitly point out when a function is strictly increasing (decreasing),

otherwise.

As in Debo et al (2005), we consider a general utility distribution function defined on [0,1] to

model the customer’s willingness to pay for the new product. Let F (θ) denote the cumulative
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distribution function, that is the volume of customers that are willing to pay θ or less for the

new product, with F (0) = 0 and F (1) = 1. We use η(θ) to denote the relative customer utility

for remanufactured products when the customer utility for new products is θ. We assume η(θ)

to be increasing with η(0) = 0 and η′(θ) ≤ 1; that is, θ − η(θ) is increasing, to reflect the lower

relative preference for the remanufactured product associated with high-end, less price-sensitive

consumers, as discussed in Section 1. This assumption is weaker than concavity and is easily

justifiable in practice: if a consumer who is willing to pay $50 for the new product will switch to

the remanufactured one for a $10 price break, then a consumer that values the new product at

$100 will require at least a $10 break to switch.

We refer to the combination of the utility distribution function and the relative utility func-

tion for remanufactured products as a consumer profile. The customer chooses between new and

remanufactured products by comparing his surplus, i.e., his utility minus the product price, from

either of the products. This type of model is referred to as a self-selection model in the literature

(Moorhty (1984)).

Let pn and pr denote the price for new and remanufactured products, respectively. Let cn and

cr denote the unit cost to produce new and remanufactured products, respectively. We ignore

the investment required to acquire the capability to produce a remanufactured product. The cost

should be compared to the discounted profits over an appropriate time horizon, which is beyond

the scope of our single period problem. The problems faced by a profit maximizing firm offering

one or both of the products are described in the following subsections.

2.1 When the Firm Offers Only One Product

If the firm only offers new products, the customer purchases the product only when his utility

exceeds the price for new products, that is, θ ≥ pn. Let n denote the percent of customers that

purchase products in this case. We have

n(pn) =

∫ 1

pn

dF (θ) = 1−F (pn) (1)
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The profit maximization problem for the firm is

Problem N

max
pn

(pn − cn)n(pn) = (pn − cn)[1−F (pn)] (2)

We denote by ΠN the optimal solution to Problem N, and by pN and nN the optimal price and

sales volume, respectively.

Similarly, if the firm only offers remanufactured products, the customer purchases products only

when his utility exceeds the price for the products, that is, η(θ)≥ pr. Let r denote the percent of

customers that purchase the remanufactured products. We have

r(pr) =

∫ 1

η−1(pr)

dF (θ) = 1−F (η−1(pr)) (3)

The profit maximization problem for the firm is

Problem R

max
pr

(pr − cr)r(pr) = (pr − cr)[1−F (η−1(pr))] (4)

To facilitate the comparison with the model when both new and remanufactured products are

offered, define θr = η−1(pr) so that η(θr) = pr. The new variable θr represents the indifference point

between purchasing the remanufactured product or nothing at all, i.e., the lowest utility consumer

that will purchase the remanufactured product. The new formulation for Problem R is

Problem R

max
θr

[η(θr)− cr][1−F (θr)] (5)

We denote by ΠR the optimal solution to Problem R, and the optimal decision variables by θR, pR

and rR.

2.2 When the Firm Offers Both New and Remanufactured Products

Let γ(θ) denote the difference between the customer’s utility for new and remanufactured products;

that is, γ(θ) = θ − η(θ), an increasing function of θ. If the customer surplus from new products is
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positive and no lower than that from remanufactured products, that is, θ−pn ≥ η(θ)−pr (or γ(θ)≥

pn − pr), the customer chooses new products. Otherwise, the customer chooses remanufactured

products. Let n and r denote again the percent of customers that purchase new and remanufactured

products respectively. We have

n(pn, pr) =

∫ 1

γ−1(pn−pr)

dF (θ) = 1−F (γ−1(pn − pr)) (6)

r(pn, pr) =

∫ γ−1(pn−pr)

η−1(pr)

dF (θ) = F (γ−1(pn − pr))−F (η−1(pr)) (7)

The lower limit in the integration in Equation (7) is η−1(pr) because the customer chooses remanu-

factured products only if his utility exceeds the price for remanufactured products, that is η(θ)≥ pr.

Observe also that for the equation to be valid we need to impose η−1(pr)≤ γ−1(pn − pr) or, equiv-

alently, pr ≤ η(pn). That is, the price of the remanufactured product must be lower than the value

the last consumer that has positive surplus for the new product (the one with utility exactly pn)

places on the remanufactured product in order to have a positive remanufacturing market. When

pr = η(pn) the size of the remanufacturing market is 0, representing the case when the firm offers

only the new product.

Similarly, the lower limit in the integration in Equation (6) has to be greater than or equal to

the price of new products pn for the customers to extract positive utility from the new products.

We omit that requirement since the current lower limit of integration γ−1(pn−pr) is always greater

than or equal to pn under our conditions:

pr ≤ η(pn)→ pn − pr > pn − η(pn)→ γ−1(pn − pr)≥ pn.

The profit maximization problem for the firm can then be written as follows.

Problem B

max
pn,pr

Π(pn, pr) = (pn − cn)n(pn, pr) + (pr − cr)r(pn, pr)

= (pn − cn)[1−F (γ−1(pn − pr))]+ (pr − cr)[F (γ−1(pn − pr))−F (η−1(pr))]

= [(pn − pr)− (cn − cr)][1−F (γ−1(pn − pr))]+ (pr − cr)[1−F (η−1(pr))]
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Figure 1 Reformulation

subject to the constraints pr ≤ η(pn), 0≤ pn ≤ 1, and 0≤ pr ≤ 1. The last expression of the objective

function suggests a reformulation to simplify the problem. Define θΔ = γ−1(pn − pr), θr = η−1(pr)

and cΔ = cn − cr. If the function η (or γ) is not strictly increasing, we can still use this trans-

formation by defining η−1(pr) = min{θ : η(θ) ≥ pr} (or γ−1(pn − pr) = min{θ : γ(θ) ≥ pn − pr}.

Observe that θΔ represents the utility of a customer that obtains the same surplus from, and is

thus indifferent between, new and remanufactured products. Figure 1 provides an illustration of

the graphical interpretation of the new variables. The percent of customers that purchase new and

remanufactured products after the variable substitution is as follows:

n = 1−F (θΔ) (8)

r = F (θΔ)−F (θr) (9)

Customers with utility for new products higher than or equal to θΔ purchase new products. Cus-

tomers with utility for new products higher than or equal to θr but lower than θΔ purchase

remanufactured products.

The problem can then be formulated using these new variables:

Problem B
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max
θΔ,θr

Π(θΔ, θr) = [γ(θΔ)− cΔ][1−F (θΔ)]+ [η(θr)− cr][1−F (θr)]

s.t. 0≤ θr ≤ θΔ ≤ 1 (10)

We denote the optimal solution by Π∗ and the optimal decision variables by θ∗
Δ, θ∗

r , p∗
n, p∗

r, n∗ and

r∗.

In this formulation, the maximization can be performed separately on each of the variables,

θΔ and θr. If the constraint is violated, then it is optimal to only offer new products. Observe

that the second term in the objective function is identical to the objective in Problem R. If the

unconstrained maximizers θ∗
Δ and θ∗

r satisfy the constraint θ∗
Δ ≥ θ∗

r , then θ∗
r = θR, p∗

r = pR, and the

total market size in Problem B is the same as that in Problem R, that is, 1−F (θR).

3. Model Analysis

In this section, we derive necessary and sufficient conditions under which it is optimal for the firm

to offer both new and remanufactured products.

3.1 Assumptions

First, let’s discuss the assumptions we make in our analysis. In order for the problem to be of

interest, we impose the following conditions on the parameters: cn < 1, cr < η(1), and cΔ < γ(1).

Clearly, for the firm to obtain profits from new products, we must have cn < 1, and to obtain

profits from remanufacturing products cr < η(1). For the firm to offer a mixture of the two, we

must also require γ(1) > cΔ, since otherwise θ − η(θ) = γ(θ) ≤ γ(1) ≤ cn − cr ⇒ the difference in

cost is larger than the loss in value associated with the remanufactured product in the eyes of

all consumers and thus offering only the remanufactured product would be optimal. Observe that

this option is problematic in practice because the monopoly firm needs to build an inventory of

remanufacturable products through the sell of new products. In general we should require r < qn

where q is the portion of new products that make their way back to the firm and are suitable for

remanufacturing (see Ferrer (1996)). This, however, is beyond the scope of our single period model.

The condition γ(1) < cΔ is analogous to the condition in Theorem 1 of Ferrer (1996) under which

only remanufactured products should be offered.
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We assume that F (θ) is strictly increasing and has an increasing hazard rate. That is, F ′(θ)

1−F (θ)

is increasing in θ. This is true for a great variety of distributions including Uniform, Normal

(as well as truncated Normal at zero), Exponential, Gamma (with shape parameter s ≥ 1), Beta

(with parameters (r, s) being both ≥ 1), and Weibull distribution (with shape parameter s ≥ 1)

as indicated by Yao, Chen and Yan (2006). For illustration we will consider the consumer profile

F (θ) = 1− (1− θ)κ used in Debo et al (2005).

From now onwards, we also assume that η(θ) is increasing, differentiable and η′(θ)

η(θ)−cr
is decreasing

in θ. This is clearly satisfied when η(θ) is also concave in θ, since we have that η(θ) − cr is

increasing in θ and η′(θ) is decreasing in θ. In addition, we assume that γ(θ) is increasing and

γ′(θ)

γ(θ)−cΔ
is decreasing in θ, over the range of interest (where γ(θ) = θ − η(θ) > cΔ in order to have

positive offering of new products). This condition is satisfied by all the practical examples we have

constructed. In what follows, we consider both concave and convex functions that satisfy the stated

conditions.

3.2 Optimal Solution

To characterize the optimal solutions to Problems N and B, we calculate the necessary first-order

conditions and show that they are also sufficient for optimality by proving that the objective

functions are unimodal.

For Problem N , the first-order condition is:

[1−F (pN)]− (pN − cn)F ′(pN) = 0

That is

1−F (pN)

F ′(pN)
= pN − cn (11)

The economic interpretation is as follows. The optimal price pN is the point at which the percent

decrease in demand ( F ′(pN )

1−F (pN )
×100) per percent increase in profit margin ( 1

pN−cn
×100) is equal to

1.

For Problem B, the first-order conditions are:

γ′(θΔ)[1−F (θΔ)]− [γ(θΔ)− cΔ]F ′(θΔ) = 0
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η′(θr)[1−F (θr)]− [η(θr)− cr]F
′(θr) = 0

That is

F ′(θΔ)

1−F (θΔ)
=

γ′(θΔ)

γ(θΔ)− cΔ

(12)

F ′(θr)

1−F (θr)
=

η′(θr)

η(θr)− cr

(13)

These two conditions have a similar economic interpretation. The second necessary condition (13)

states that the optimal price for the remanufactured product, p∗
r = η(θ∗

r), is such that the percent

decrease in total demand in the system F ′(θr)

η′(θr)(1−F (θr))
×100 per percent increase in the profit margin

of the remanufactured products 1
η(θr)−cr

× 100 is equal to 1. Interestingly, this occurs at the point

θ∗
r where the marginal decrease in demand F ′(θr)

(1−F (θr))
is equal to the marginal increase in relative

utility surplus (i.e., utility minus cost), η′(θr)

η(θr)−cr
. The first condition (12) requires that the optimal

price difference p∗
n − p∗

r = γ(θ∗
Δ) be such that the percent decrease in demand for new products

F ′(θΔ)

γ′(θ∗
Δ

)(1−F (θΔ))
× 100 per percent increase in the profit margin difference 1

γ(θΔ)−cΔ
× 100 be equal to

1. (The profit margin difference is (pn − cn)− (pr − cr) = pn − pr − cΔ = γ(θΔ)− cΔ.) Optimality

occurs at the point θ∗
Δ where the marginal decrease in demand is equal to the marginal increase in

the difference in utility surplus of new versus remanufactured products γ′(θΔ)

γ(θΔ)−cΔ
.

Let’s now show that the objective functions are unimodal. The first-order derivative of [η(θr)−

cr][1−F (θr)] is

η′(θ)F ′(θ)

(
1−F (θ)

F ′(θ)
−

η(θ)− cr

η′(θ)

)

Under the assumptions previously discussed, this derivative is positive to the left of the solution

to the first order condition (13), say θ∗
r , and negative to the right. So the objective function

[η(θr)− cr][1−F (θr)] is increasing to the left of θ∗
r and decreasing to the right. A similar argument

follows for the function [γ(θΔ)− cΔ][1−F (θΔ)] as well. Both functions are unimodal and thus the

necessary conditions become sufficient for optimality.

We are now ready to characterize the relationship between the optimal solutions to the two

models. Observe that:
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Figure 2 The Optimal Solution

1. If

η(pN)− cr

η′(pN)
> pN − cn

and consequently γ(pN )−cΔ
γ′(pN )

< pN − cn, we must have θ∗
r < pN to satisfy the first-order condition

(13) under our assumptions, as shown in Figure 2. Similarly, we must have θ∗
Δ > pN to satisfy the

first-order condition (12). The unconstrained maximizers θ∗
Δ and θ∗

r satisfy the constraint θΔ > θr

since θ∗
Δ > pN > θ∗

r . In this case, it is easy to show that Π∗ > ΠN .

2. If

η(pN)− cr

η′(pN)
= pN − cn

and consequently γ(pN )−cΔ
γ′(pN )

= pN − cn, we have θ∗
Δ = θ∗

r = pN and Π∗ = ΠN∗.

3. If

η(pN)− cr

η′(pN)
< pN − cn

and consequently γ(pN )−cΔ
γ′(pN )

> pN − cn, the unconstrained maximizers θ∗
Δ < pN < θ∗

r . The solution

violates the constraint θΔ ≥ θr. Given the unimodality of the objective function in θΔ and θr, the

constrained optimal solution will be found at a point such that θΔ = θr; therefore only new products

will be offered, and thus θ∗
Δ = θ∗

r = pN and Π∗ = ΠN .
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In conclusion, whether or not to offer both new and remanufactured products depends on the

relationship between η(pN )−cr

η′(pN )
and pN − cn. We now use this result to characterize the threshold for

the remanufacturing cost below which it is optimal to offer both products to the market.

3.3 Results

From the first-order condition (11) for Problem N, we have

cn = pN −
1−F (pN)

F ′(pN)
(14)

Using this equation and the fact that F has an increasing failure rate, it is easy to see that as the

cost of producing the product, cn, increases, the optimal price, pN , strictly increases and the profit

margin, pN −cn, decreases (strictly if F has strictly increasing failure rate). Define G(θ) = θ− 1−F (θ)

F ′(θ)
.

We have cn = G(pN), and consequently, pN = G−1(cn). Note that G is a strictly increasing function.

Similarly, the first-order conditions (12) and (13) under our assumptions on F , η and γ, lead us

to the following properties of the optimal prices and market sizes.

Theorem 1 The optimal solution to Problem B satisfies the following properties:

• As the remanufacturing cost cr increases, θ∗
r and thus p∗

r increase, θ∗
Δ and thus p∗

n−p∗
r decrease,

and therefore the sales of remanufactured products, F (θ∗
Δ) − F (θ∗

r), decrease while those for new

products, 1−F (θ∗
Δ), increase.

• As the new product cost cn increases, θ∗
r and thus p∗

r remain the same, θ∗
Δ and thus p∗

n − p∗
r

increases, and therefore p∗
n and the sales of remanufactured products increase while the sales of new

products decrease. The total sales from both products, 1−F (θ∗
r), remain the same.

• As the cost difference cΔ = cn− cr increases, θ∗
Δ and thus p∗

n−p∗
r increase and the sales of new

products decreases.

• The optimal sales of new products 1 − F (θ∗
Δ) will not vary as long as the cost difference cΔ

remains the same, even if both cr and cn increase, up to a point where θ∗
r = θ∗

Δ, when it is no

longer optimal to offer remanufactured products to the market and the sales of new products become

1−F (pN), which is declining in cn.
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Theorem 1 implies that if θ∗
r < θ∗

Δ then this relationship will always continue to hold as we

increase cn. On the other hand, the difference θ∗
Δ − θ∗

r will decrease as cr increases up to the point

where θ∗
Δ = θ∗

r , after which the firm no longer offers remanufactured products. Using the relationship

between the optimal solutions to Problems B and N established in the previous section, that

threshold value of the remanufacturing cost is given by

η(pN)− cr

η′(pN)
= pN − cn. (15)

Thus, we have

cr = η(pN)− η′(pN)(pN − cn) (16)

Substituting pN with G−1(cn), we have a threshold on the remanufacturing cost cr as a function

of the cost of producing a new product:

c0
r(cn)≡ η(G−1(cn))− η′(G−1(cn))(G−1(cn)− cn) (17)

Observe that c0
r is increasing in cn, as a consequence of Theorem 1.

Theorem 2 There is a threshold c0
r for the remanufacturing cost cr, as given in Equation (17),

such that the firm optimally offers both new and remanufactured products if and only if cr < c0
r.

This threshold, c0
r, is increasing in the cost cn of manufacturing the new product and the difference

cn − c0
r is increasing in cn.

Proof. It only remains to show that the difference cn − c0
r is increasing in cn. We do this using the

properties in Theorem 1. We use superindex i = 1,2 to distinguish the parameters and solutions

associated with the two sets of costs. Suppose to the contrary that there exists 0≤ c1
n < c2

n ≤ 1 such

that c1
n − c01

r > c2
n − c02

r . Note that, by definition of the threshold, for those remanufacturing costs,

c0i
r , and new product costs, ci

n, for i = 1,2, we must have θi∗
Δ = θi∗

r = pNi. Observe also that since

c1
Δ = c1

n − c01
r > c2

n − c02
r = c2

Δ, Theorem 1 implies that θ1∗
Δ ≥ θ2∗

Δ . At the same time, observe that pN

is strictly increasing in cn and therefore pN1 < pN2. Consequently, we have θ1∗
r = pN1 < pN2 = θ2∗

r =
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θ2∗
Δ ≤ θ1∗

Δ . This contradicts the fact that at the threshold the equality θ1∗
Δ = θ1∗

r must be satisfied.

Observe that in Theorem 1, the behavior of the optimal price for new products, pn, as cr increases

is not clear. In the Online Appendix we prove the following.

Proposition 1 For Fκ = 1− (1− θ)κ and cr < c0
r:

• if η is concave, pn decreases in cr and thus pn ≥ pN ,

• if η is convex, pn increases in cr and thus pn ≤ pN ,

• if η is linear, pn does not depend on cr and thus pn = pN .

Furthermore, this behavior holds locally, i.e. for cr < c0
r and sufficiently close to it, for any general

utility function F , and a relative utility function η that is continuously double differentiable.

Using the threshold in Theorem 2 we can now study the impact of the consumer utility functions

on the attractiveness of remanufacturing, which we interpret as the maximum cost of producing a

remanufactured product that renders remanufacturing economically viable.

First, let’s consider the linear consumer profile studied in Ferrer (1996) and Debo et al. (2005).

Corollary 1 If η(θ) is linear, i.e., η(θ) = δθ, then remanufacturing is economically viable if and

only if cr < δcn.

Proof. It suffices to substitute η(θ) = δθ in equation (16).

The Corollary matches the results in Theorem 1 of Ferrer (1996) and Proposition 2 of Debo

et al. (2005) applied to the particular setting under consideration. In this case, whether or not

remanufacturing is profitable does not depend on the distribution of consumer utilities F (θ).

Corollary 2 If η(θ) is convex, a necessary condition for remanufacturing to be economically viable

is cr ≤ η′(pN)cn.

Proof. Since η is increasing and convex on [0,1], we have that η(θ)≤ η′(θ)θ for all θ. It suffices to

substitute η(pN )≤ η′(pN)pN in equation (16) to find that the threshold must satisfy c0
r < η′(pN)cn.
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The above two corollaries show that when the value associated with the remanufacturing product

is linear or convex in the utility of the new product, the remanufacturing cost has to be, in general,

well below the new product manufacturing cost in order for remanufacturing to be profitable. A

parallel argument shows that in the case of concave η the remanufacturing cost threshold satisfies

c0
r ≥ η′(pN)cn. The question remains as to whether the remanufacturing cost can ever exceed the

manufacturing cost. We explore this issue in the example below and in the following section.

As a first step, we study the impact of the characteristics of the market valuation for the new

product. For that purpose, we consider consumer utilities given by the family of cumulative distri-

bution functions Fκ(θ) = 1− (1−θ)κ, where higher values of κ correspond to higher concentrations

on the low end of the market (Debo et al. (2005)).

Corollary 3 If the consumer profile is given by a utility function Fκ(θ) = 1 − (1 − θ)κ for the

new product and a relative valuation η(θ) for the remanufactured product that is increasing and

concave, then the threshold remanufacturing cost c0
r that makes remanufacturing economically viable

decreases as κ increases (i.e., as the consumer profile has a higher concentration in the low end of

the market).

Proof.

G(pN) = pN −
1−F (pN)

F ′(pN)
= pN − (1− pN)/κ =

(κ +1)pN − 1

κ

c0
r = η(G−1(cn))− η′(G−1(cn))(G−1(cn)− cn) = η(

κcn +1

κ +1
)− η′(

κcn +1

κ +1
)(

1− cn

κ +1
)

Taking derivative with respect to κ,

δc0
r

δκ
= η′′(

κcn +1

κ +1
)
(1− cn)2

(κ +1)3
< 0,

shows that the remanufacturing threshold decreases with κ.

An analogous argument shows that when η is convex the threshold c0
r increases with κ.

To understand the magnitude of this threshold relative to the cost of new products, cn, consider

the following example.
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Example:

Let F (θ) = 1− (1− θ)κ and η(θ) = (1− θ/m)θ (see Figure 6). Then

c0
r = cn −

1

m

[
c2

n −

(
1− cn

κ +1

)2
]

If cr < c0
r, it’s beneficial to offer both new and remanufactured products. Otherwise, the optimal

solution is to offer new products only. Observe that cn < c0
r if and only if c2

n <
(

1−cn

κ+1

)2

, that is, if

and only if cn < 1
κ+2

. Thus, when the cost of manufacturing the new product is below that value,

it is optimal to offer remanufactured products even when the cost of remanufacturing is greater

than the cost of producing new items.

As pointed out in Debo et al. (2005), while most of the previous operations literature on reman-

ufacturing assumes that pure production cost savings cn − cr drive remanufacturing activities

(Klausner et al. (1998), Savaşkan et al. (2004) and Ferrer (1996)), the consumer profile given by

F and η is key in assessing the value of remanufacturing. Furthermore, this example shows that

remanufacturing can be economically attractive even when the marginal cost of remanufacturing

exceeds that of producing a new unit. In this case, it is customer segmentation alone that drives the

benefits of remanufacturing. The higher the κ (i.e. the higher the concentration of consumers in the

low end of the market) the lower the production cost, cn, required for this to happen. Finally note

that the threshold on the production cost that makes cn < c0
r does not depend on the parameter

m of the relative utility function, but the magnitude of the allowed cost difference c0
r − cn does.

This finding leads to our next research question. Given that it may be optimal to offer relatively

high cost remanufactured products to the market, should we sell new products as remanufactured

when our supply of remanufacturable products is not sufficient to achieve the optimal levels? In

the next section we study the market segmentation problem when new products can be used to

substitute remanufactured products. The advantages of substituting a specific product by a higher

level product have been previously studied in inventory control settings (Bassok et al. (1999) and

Baymdir et al. (2003, 2005), and in the service sector (Netessine et al. (2000)).
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4. Substitution

In this section we investigate the option of offering new products as substitutes for remanufactured

ones when there is a limited supply of the latter. In practice, these could be products manufactured

with a minimal, symbolic amount of used components; we will refer to them as new throughout

this section. To retain the advantages achieved by segmenting the customer base, the substitute

products will be labeled and sold as “remanufactured” and be no different from the genuinely

remanufactured products in the customer eyes. Furthermore, such a practice could enhance the

value consumers place in the remanufactured product and result in a further increase of the overall

profits of the firm.

In the previous sections, we implicitly assume that there is ample supply of remanufacturable

products. Let QR be the number of remanufacturable products available. If the supply of remanu-

facturable products is sufficient, the amount of remanufactured products sold is F (θ∗
Δ)−F (θ∗

r) < QR

where θ∗
Δ and θ∗

r are the optimal solutions to Problem B. Otherwise, the amount of remanufactured

products sold must be equal to QR and the profit maximization problem needs to incorporate the

supply constraint F (θΔ)−F (θr) = QR. In this case, the firm also has the option to offer some new

products as substitutes for remanufactured products.

When the substitution strategy is implemented, all available remanufactured products will be

sold and, in addition, some new products may be sold under the “remanufactured” label. The

profit maximization problem for the firm, after the reformulation introduced in Section 2.2, can be

written as

Problem S

max
θΔ,θr

γ(θΔ)[1−F (θΔ)]+ [η(θr)− cn][1−F (θr)]+ cΔQR (18)

s.t. F (θΔ)−F (θr)≥QR (19)

0≤ θr ≤ θΔ ≤ 1

In Problem S, the term cΔQR is constant. We can drop it when seeking the optimal solution.

Thus, the problem reduces to Problem B with cr = cn, and thus cΔ = 0, with the additional
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constraint (19). If the optimal solution to the corresponding Problem B, (θ∗
r , θ

∗
Δ), satisfies the

constraint, i.e., F (θ∗
Δ)−F (θ∗

r) > QR, then it is optimal to offer F (θ∗
Δ)−F (θ∗

r)−QR new units as

remanufactured to complement the available ones. Otherwise, no new units should be offered as

remanufactured. Observe that Problem B, with cn = cr, dictates the total number F (θ∗
Δ)−F (θ∗

r) of

products to offer under the “remanufactured” label, independently of how many remanufacturable

products are available or the original remanufacturing cost. That number may very well be under

QR (due to the higher production cost associated with the new but labeled “remanufactured”

products), in which case QR remanufactured units are offered and no substitution of new units for

remanufactured ones occurs.

The question of whether to offer new products as substitutes for remanufactured products is

thus equivalent to the question of whether to offer both new and remanufactured products when

the production costs are the same for new and remanufactured products. This can be decided by

comparing cn with the threshold c0
r derived in Section 3. Let c0

n denote the solution to the equation

cn = c0
r(cn) = η(G−1(cn))− η′(G−1(cn))(G−1(cn)− cn) (20)

Recall that cn − c0
r is an increasing function of cn as shown in the previous section. Consequently,

we have that cn ≤ c0
r if and only if cn ≤ c0

n. Thus, if cn < c0
n then it is optimal to offer new products

as substitutes for remanufactured ones. Otherwise, the firm should not offer new products as

substitutes for remanufactured ones. Observe that c0
r is a function of cn while c0

n is a constant

value.

Let r∗(cn) be the total sales of remanufactured products when the unit cost of remanufacturing

is cn. Similarly, in the following discussion we emphasize the dependence of the optimal variables

on cn by explicitly writing them as functions of cn, when necessary.

Theorem 3 There is a threshold for the production cost of new products c0
n as given by the solution

to Equation (20) such that if cn < c0
n, then it’s optimal for the firm to offer new products as

substitutes for remanufactured ones to bring the total of remanufactured products available to the
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market up to the optimal offering in a supply unconstrained problem with cr = cn; otherwise, it’s

optimal not to make use of the substitution option. That is, new products will be used as substitutes

for remanufactured products if and only if cn < c0
n and QR < r∗(cn); in that case, r∗(cn)−QR units

will be substituted.

Note again that whether or not to offer the new products as remanufactured depends on the number

of genuine remanufactured products (with cost cr < cn) available. If that amount is beyond the

optimal quantity of remanufactured products to offer if the remanufacturing cost were equal to cn,

then substitution will not take effect.

Theorem 1 shows that as the remanufacturing cost cr decreases the company will reduce the

number of new products offered and increase that of remanufactured ones. It is thus expected to

result in reduced disposal volumes of end of life products. In the presence of profitable substitu-

tion, however, the optimal number of new units produced to be sold under both categories, new

and remanufactured, increases as the number of available remanufacturable products decreases,

resulting in an increase in production of new units of up to (1−F (θ∗
r)− (1−F (pN)) (positive since

θ∗
r < pN < θ∗

Δ is necessary for substitution to be viable, where recall that (θ∗
r , θ

∗
Δ) is the optimal

solution to Problem B with cr = cn). Consequently, the offering of remanufactured products could

have the unexpected effect of increasing the production of new products due to substitution. Fur-

thermore, Corollary 4 below shows that the lower the cn, the larger the amount of substitution

that will take place, thus increasing the volume of new products manufactured.

Using the first and last properties in Theorem 1 together with the fact that the solution to

Problem S is identical to that of Problem B for cΔ = 0, we get the following result. For simplicity

of exposition, we assume that there are no returned products available for remanufacture.

Corollary 4 As cn < c0
n increases, the optimal number of new units to offer to the market at price

p∗
n, 1 − F (θ∗

Δ), and the price difference p∗
n − p∗

r remain the same, while the optimal number of

new units to sell as remanufactured decreases, the price charged for ‘remanufactured’ products p∗
r

increases, and the optimal price for new products p∗
n increases.
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Corollary 4 shows that the number of new units to offer to the market does not change as cn

increases to c0
n. Therefore, it must be equal to the number of new components to offer when the

firm only carries new products and the cost of production is c0
n. That is, when the firm offers

remanufactured products with no cost advantage, the number of new units to offer at price p∗
n(cn)

is 1−F (pN(c0
n)), regardless of the production cost cn < c0

n.

In the next section we determine the functional form of the relative utility function that leads

to the highest benefits associated with remanufacturing and, as a byproduct, with substitution.

The computational section complements this analysis with the study of various other forms of the

relative utility function.

5. Maximum Benefits from Customer Segmentation

In this section, we identify the form of the relative utility function η(θ) for the lower quality

(remanufactured) product that leads to highest benefits from customer segmentation regardless of

the form of the utility function for new products.

Proposition 2 For given prices of new and remanufactured products, (pn, pr), pn > pr, the maxi-

mum profit obtained through market segmentation in Problem B is achieved when the relative utility

function for remanufactured products is of the form:

η∗(θ) =

{
θ, if 0≤ θ < pr;
pr, otherwise.

(21)

Mathematically, the proposition shows that maxη Π(γ−1(pn − pr), η
−1(pr)), where Π represents

the objective function in Problem B, is achieved by the given function η∗.

Proof.

Since (pn, pr) are given, maximizing the objective in Problem B is equivalent to maximizing the

overall market size, 1− F (θr), and the market size charged with the extra premium, 1 − F (θΔ).

Consequently, our problem reduces to finding the function η that minimizes θr and θΔ, where recall

that η(θr) = pr and γ(θΔ) = pn − pr.
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Observe that θr ≥ η(θr) = pr. Thus, the minimum feasible value of θr is pr. This minimum is

achieved for the given relative utility η∗.

In addition, observe that θΔ ≥ pn, since the customers with valuation higher than θΔ buy the

higher premium product. Therefore, the minimum possible value of θΔ = γ−1(pn − pr) is pn. The

relative utility function η∗ achieves this minimum value, since η∗(pn) = pr and thus γ∗(pn) =

pn − η∗(pn) = pn − pr.

We have shown that the function η∗ leads to the minimum possible values of θr and θΔ, and

thus to the highest market sizes and profits associated with a pair of prices (pn, pr).

As a result, an upper bound on the benefits of customer segmentation is given by the solution

to the pricing problem using relative utility function η∗, which reduces to:

Problem UB

max
pn≥pr

(pn − pr − cΔ)(1−F (pn)) + (pr − cr)(1−F (pr)) (22)

This is intuitive; the best case occurs when customers can be perfectly segmented. Under η∗, there

is no cannibalization of high-premium consumers switching to the lower quality product and low-

end consumers have an equal preference for both products. Our analysis shows that this naive

upper bound is tight, that is, achievable when consumer preferences are captured by the relative

utility function η∗.

The solution to Problem UB provides a benchmark to the profits possible through customer seg-

mentation. If the utility function F for the currently offered product is well known, this benchmark

can be used to make a first rough assessment of the value of considering to offer an alternative

product geared to the low-end of the market. If the possible profits are sufficiently high, then

market research is needed to estimate the relative utility function and get an accurate picture of

the business case. The closer the shape of the actual relative utility is to that of η∗, the higher the

profits to be expected from offering the second product.
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6. Computational Study

One of the major contributions of this paper is to show that in order for customer segmenta-

tion alone to drive the profits of remanufacturing, under no cost differences, the relative utility

function must be concave. In general, the threshold under which remanufacturing is viable is

c0
r = η(G−1(cn))− η′(G−1(cn))(G−1(cn)− cn), strongly dependent on the functions η and F (since

G is uniquely linked to F ), which highlights the important role played by the consumer profile.

To further understand the impact of the consumer profile, namely the utility distribution function

F (θ) and the relative utility function for remanufactured products η(θ), on the benefit of offering

both new and remanufactured products and on the benefit of offering new products as substitutes

for remanufactured products, we carry out an extensive computational study.

6.1 Impact of the Utility Distribution Function

We start by analyzing the impact of the utility distribution function F (θ) on the effectiveness of

the substitution option. For this purpose, we consider utility distribution functions F (θ) of the

form F (θ) = 1− (1− θ)κ for varying κ, κ = {0.1,0.2, · · · ,3.9,4.0} (see Figure 3) and no available

remanufactured products, i.e., QR = 0. This is equivalent to considering Problem B with cr = cn.

In this case, all the “remanufactured” products sold are actually new products. This provides an

upper bound on the benefit obtained from the substitution option since the maximum amount of

new products would be offered as substitutes for remanufactured products when appropriate.

We first calculate the maximum possible profit improvement by solving Problem UB (see Section

5). Figure 4 illustrates the relative profit improvement, that is ΠUB−ΠN

ΠN × 100, as a function of κ.

The percent profit gain is identical for all values of the production cost cn (thus omitted in the

figure) and increases in a concave fashion as κ increases, that is, as consumers are more concentrated

on the low-end of the market. The major take-away from this study is the fact that customer

segmentation alone, under no cost differences in the two products, can result in up to a 40% profit

improvement.

Let’s now fix the relative utility function for remanufactured products to η(θ) = (1− θ/3)θ. The

production cost for new products is cn = {0.05,0.1, · · · ,0.35,0.4}. Recall that the largest cn for
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Figure 4 Potential Relative Profit Gains through Customer Segmentation

which substitution is profitable is c0
n = 1/(κ+2), as calculated in the example at the end of Section

3. Consequently, for most of the set κ = {0.1,0.2, · · · ,3.9,4.0}, the substitution option is not viable

beyond cn = 0.4; the largest κ that makes the substitution option viable with cn = 0.4 is κ = 0.5.

Thus, we make 0.05≤ cn ≤ 0.4 so that we focus on comparing solutions for which the substitution

option is viable.

Figure 5 illustrates the relative profit increase achieved through the substitution option. As
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cn increases, the relative profit improvement declines. This is consistent with intuition. As the

production cost for new products increases, it becomes less advantageous to offer the substitution

option because the profit margin of the “remanufactured” products decreases while their price

increases making them affordable only to consumers that place a lower relative value on them.

On the other hand, observe that the relative profit gain first increases, and then decreases, as

κ increases. How much additional profit the substitution option brings in really depends on the

ability to segment the market. We would like to reach out to the low-end customers by offering

remanufactured products and at the same time extract a fat premium from high-end customers by

keeping them purchasing new products. It is only when κ is at the medium level (when the utility

function is close to uniform) that the market can be segmented adequately and thus it is in this

case that the firm will reap the largest profit from the substitution option. These results reinforce

the findings of Debo et al. (2005), where substitution is not allowed and the relative utility is linear.

Please refer to the online Appendix for more details on the computational results.

6.2 Impact of the Relative Utility Function

To further investigate the impact of the consumer profile, and in particular the relative utility for

remanufactured products, on the decision of whether or not to offer both new and remanufactured
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products, we study the solutions to Problem B and Problem N with a relative utility function of the

form η(θ) = (1−θ/m)θ with m = {2,3,4,5}. Figure 6 shows the utility function for remanufactured

products. As m increases, η(θ) approaches the utility for new products, θ. The difference in the ratio

θ/η(θ) for high-end versus low-end consumers decreases as m increases. The utility distribution

function is set to F (θ) = 1 − (1 − θ)3 and the unit production cost for new products to cn = 0.3

for all the cases studied in this section. The unit production cost for remanufactured products

is cr = {0.01,0.02, · · · ,0.39,0.4}. Figure 7 gives the relative profit improvement obtained through

remanufacturing, ΠB−ΠN

ΠN ×100. As expected, when the remanufacturing cost cr increases, the gains

from offering both products decrease. When the remanufacturing cost cr is small, the larger the

value of m, the higher the relative profit improvement. However, beyond a certain value of cr,

the lower values of m lead to higher relative profit improvements. (When comparing m = 2 and

m = 3, this threshold value of cr is out of the range [0.01, 0.4]). The intuition behind this behavior

is as follows. When cr is small, the major driver for remanufacturing profits is the lower cost

of the remanufactured products; the higher the m, the higher the value consumers place on the

remanufactured product and the firm can charge a higher price for these products. When cr is

large, on the other hand, customer segmentation becomes the driver of the profit gains. Since lower

values of m represent a more disparate relative valuation of the remanufactured product between

low and high end consumers, the firm can segment the market more effectively. This results in

a proportionally higher profit. Observe that in Figure 7, the curves for each m start at different

levels of cr because the requirement γ(1) > cn − cr is imposed to prevent the optimality of offering

solely remanufactured products. We refer the reader to the online Appendix for further details on

the market sizes and prices for new and remanufactured products in the optimal solutions, and for

the study of other relative utility functions.

7. Conclusions and Extensions

In this paper we have characterized, under mild conditions, a threshold for the remanufacturing

cost under which offering remanufacturing products is profitable, and focused on analyzing its
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Figure 7 Relative Profit Increase as a Function of Remanufacturing Cost

dependence on the consumer profile. In particular, we show that it is viable to offer remanufactured

products even when their production cost is higher than that of new products in some situations.

While this can never happen when the consumer profile is linear or convex, it leads to a significant

increase in profits for intuitively plausible concave profiles. Furthermore, we identify the form of

the relative utility function that leads to highest profits from customer segmentation and thus

provides a tight upper bound on the potential profits (as high as 40%) that can be reaped through
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the substitution option.

These results also apply to the market segmentation problem faced by retailers offering merely

identical products under different brand labels. This is the case, for instance, of supermarkets

offering virtually the same product under the national name brand and their own supermarket

brand. Our analysis shows how this strategy may make sense even if the cost to acquire the product

with their label on it is higher than that of acquiring it under the national name brand. Similarly,

it applies to the problem arising in pharmaceutical and other companies considering whether or

not to offer a generic version of a successful drug or product.

In all these applications, it would be important to extend the analysis to competitive settings.

Competition in remanufacturing operations has been studied in Majumder and Groenevelt (2001),

Debo et al. (2005), Ferrer and Swaminathan. The impact of the shape of the relative utility function,

however, has not been addressed. As our current paper shows, it is a critical factor and thus its

effect in competitive settings needs to be understood.

Some of our results have important policy implications. When substitution of new for remanufac-

tured products is profitable and the availability of remanufacturable products limited, the offering

of remanufactured products leads to an increase in the total production of new products (see The-

orem 3). The lower the production cost, the larger the increase. This effect suggests that policies

aimed at reducing disposal volume by promoting the sell of remanufactured products or providing

subsidies to reduce remanufacturing costs may have a negative environmental impact unless the

stream of returned products is sufficiently large. See also Baker et al. (2006) where we show that

increasing the information available on the quality of the returned product, through information

acquisition technologies such as data-logging devices or RFID, can have the undesired effect of

reducing the fraction of units that will be remanufactured. For their joint market segmentation and

technology selection setting, Debo et al. (2005) show that new product sales may either increase

or decrease as the remanufacturing cost is reduced, also pointing to the potentially negative effect

of remanufacturing subsidies. In conclusion, new policy should focus mainly on facilitating prod-

uct recovery operations to guarantee an ample supply of remanufacturable products, rather than
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subsidizing the actual remanufacturing step.

The most notable extension to make our models more accurate representations of reality is the

consideration of the heterogeneity in customer tastes for remanufactured products within those that

value the new product equally. That is, η(θ) should be a distribution and not a single value. Many

other extensions are also worthwhile. In particular, considering multiple periods in a finite or infinite

horizon setting and the interaction between sales in one period and availability of remanufacturable

products in future periods is important. The excellent analysis of the joint determination of the

investment in product remanufacturability and the prices over an infinite horizon, in Debo et al.

(2005) could be extended in view of our results to determine the impact of the remanufactured

product valuation η and to identify when new products should be offered as “remanufactured.”

Ferrer and Swaminathan (2006) consider finite and infinite horizon models, in both monopoly and

competitive settings, but they assume that lower-cost remanufactured products are sold at the

same price as new products; the major decision then is the quantity of each to offer at a single

price.

Finally, this paper highlights the need for marketing research on consumer preferences in order

to identify the form of the willingness to pay or utility functions for different industries.
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Appendix A: Behavior of pn vs. cr

In this section we explore how the optimal price at which to offer new products, pn, changes as the unit

cost of remanufacturing, cr, increases. From Theorem 1, we know that increasing cr results in an increase

in the optimal price for remanufactured products (pr) and the amount of new products sold, and a decrease

in the difference in prices (pn − pr), the amount of remanufactured products sold and the total market size.

The effect on the optimal price for new products, however, is not clear. Here we show that it depends on

the specific consumer profile (F, η). Furthermore, we prove that if F is of the form F (θ) = 1− (1− θ)k then,

as cr increases, the optimal price for new products decreases when η is concave, increases when η is convex,

and remains constant for a linear consumer profile.

This result also allows us to determine how the price of new products is affected by the offering of the

remanufactured product. As shown in the paper, when cr hits the boundary c0

r
, the remanufactured product

is no longer profitable and hence, the problem reduces to the case where only new products are offered; that

is, pn = pN for cr = c0

r
and pn converges to pN as cr < c0

r
increases. Thus, for F (θ) = 1− (1− θ)k we have that

for cr < c0

r
:

1. if η(θ) is concave, pn decreases to pN , and thus pn ≥ pN ,

2. if η(θ) is convex, pn increases to pN , and thus pn ≤ pN .

When the consumer profile is linear the price for the new products is always identical to that charged when

remanufactured products are not offered, i.e., pn = pN .

In the following sections, we assume all first and second order derivatives exist.

A.1 General F (θ) and η(θ)

At the point (θ∗

Δ
, θ∗

r
) of maximum firm profit, the first order and second order optimality conditions must

be satisfied. That is, {
γ′(θ∗

Δ
) [1−F (θ∗

Δ
)]− [γ(θ∗

Δ
)− cΔ]F ′(θ∗

Δ
) = 0

η′(θ∗

r
) [1−F (θ∗

r
)]− [η(θ∗

r
)− cr]F

′(θ∗

r
) = 0

(23)

and {
γ′′(θ∗

Δ
) [1−F (θ∗

Δ
)]− 2γ′(θ∗

Δ
)F ′(θ∗

Δ
)− [γ(θ∗

Δ
)− cΔ]F ′′(θ∗

Δ
)≤ 0

η′′(θ∗

r
) [1−F (θ∗

r
)]− 2η′(θ∗

r
)F ′(θ∗

r
)− [η(θ∗

r
)− cr]F

′′(θ∗

r
)≤ 0

(24)

Taking the first order derivative of Eq. (23) with regard to cr and rearranging the terms, we have⎧⎨
⎩

∂θ
∗

Δ

∂cr

=
F

′
(θ

∗

Δ
)

γ′′(θ∗

Δ
)[1−F (θ∗

Δ
)]−2γ′(θ∗

Δ
)F ′(θ∗

Δ
)−[γ(θ∗

Δ
)−cΔ]F ′′(θ∗

Δ
)

∂θ
∗

r

∂cr

=
−F

′
(θ

∗

r
)

η′′(θ∗

r
)[1−F (θ∗

r
)]−2η′(θ∗

r
)F ′(θ∗

r
)−[η(θ∗

r
)−cr]F ′′(θ∗

r
)

(25)
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Therefore,

∂pn

∂cr

=
∂[η(θ∗

r
)+ γ(θ∗

Δ
)]

∂cr

= η′(θ∗

r
)
∂θ∗

r

∂cr

+ γ′(θ∗

Δ
)
∂θ∗

Δ

∂cr

=
1

{γ′′(θ∗

Δ
) [1−F (θ∗

Δ
)]− 2γ′(θ∗

Δ
)F ′(θ∗

Δ
)− [γ(θ∗

Δ
)− cΔ]F ′′(θ∗

Δ
)}

×
1

{η′′(θ∗

r
) [1−F (θ∗

r
)]− 2η′(θ∗

r
)F ′(θ∗

r
)− [η(θ∗

r
)− cr]F ′′(θ∗

r
)}

×

{
1−F (θ∗

r
)

F ′(θ∗

r
)

[
η′′(θ∗

r
)

η′(θ∗

r
)
−

F ′′(θ∗

r
)

F ′(θ∗

r
)

]
−

1−F (θ∗

Δ
)

F ′(θ∗

Δ
)

[
γ′′(θ∗

Δ
)

γ′(θ∗

Δ
)
−

F ′′(θ∗

Δ
)

F ′(θ∗

Δ
)

]}
(26)

From Eq. (24), we know that the product of the first two terms in Eq. (26) is positive and hence, the sign

depends solely on the third term, which in turn depends on the local information of F and η at the optimal

solution.

Observe that at the point cr = c0

r
, we have that η(θ∗

r
) = η(θ∗

Δ
) = pN and the third term in equation (26)

simplifies to: {
1−F (pN)

F ′

[
η′′(pN )

η′(pN )
−

γ′′(pN)

γ′(pN)

]}
(27)

Recall that γ′′ =−η′′ and that both γ and η are increasing. Thus, at cr = c0

r
, the derivative is positive for η

concave and negative for η convex. Consequently, in the neighborhood of c0

r
, that is, for cr < c0

r
sufficiently

close to c0

r
, we have that:

• if η is concave, pn decreases in cr and thus pn ≥ pN ,

• if η is convex, pn increases in cr and thus pn ≤ pN ,

• if η is linear, pn does not depend on cr and thus pn = pN .

We are now ready to show that this local behavior of pn with respect to cr, valid in the neighborhood of

c0

r
, holds globally for the consumer utility function Fκ used to illustrate our results.

A.2 Arbitrary η(θ) with F (θ) = 1− (1− θ)k

For this specific form of F (θ), we have {
1−F (θ

∗

Δ
)

F ′(θ∗

Δ
)

=
1−θ

∗

Δ

k

1−F (θ
∗

r
)

F ′(θ∗

r
)

=
1−θ

∗

r

k

(28)

and Eq. (26) reduces to

1

k

∂pn

∂cr

=

η
′′
(θ

∗

r
)(1−θ

∗

r
)

η′(θ∗

r
)

−
γ
′′
(θ

∗

Δ
)(1−θ

∗

Δ
)

γ′(θ∗

Δ
)[

γ′′(θ∗

Δ
)(1−θ∗

Δ
)

γ′(θ∗

Δ
)

− (k + 1)
][

η′′(θ∗

r
)(1−θ∗

r
)

η′(θ∗

r
)

− (k + 1)
]

=

η
′′
(θ

∗

r
)(1−θ

∗

r
)

η′(θ∗

r
)

+
η
′′
(θ

∗

Δ
)(1−θ

∗

Δ
)

γ′(θ∗

Δ
)[

γ′′(θ∗

Δ
)(1−θ∗

Δ
)

γ′(θ∗

Δ
)

− (k + 1)
][

η′′(θ∗

r
)(1−θ∗

r
)

η′(θ∗

r
)

− (k + 1)
] (29)
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(Note the fact γ′′(θ) =−η′′(θ))

The denominator is actually the product of the RHS of the two equations in Eq. (24), and hence, always

positive. Therefore, it is clear that

1. If η(θ) is concave, pn decreases as cr increases.

2. If η(θ) is convex, pn increases as cr increases.

3. If η(θ) is linear, pn does not change as cr increases.
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Appendix B: Further Computational Study

Here we provide additional details on our computational study.

B.1 Impact of the Utility Distribution Function

We start by providing more detail on the results presented in Section 6.1. Figure 8 and Figure 9 show the

amount of customers who purchase new and remanufactured products respectively in the optimal solution

for the given relative utility function, η(θ) = (1− θ/3)θ. Figure 10 and Figure 11 present the corresponding

optimal product prices, illustrating the behavior described in Corollary 4. In Figure 8, given the utility

function Fκ(θ), the volume of customers who purchase the new products remains the same as cn increases,

as shown in Corollary 4. Observe nonetheless that for the larger cn, substitution will only be viable when

the utility function Fk represents consumers highly concentrated on the high end of the market, i.e., for low

values of κ. The curve for each cn starts at the same point, κ = 0.1, but ends at the circle indicated with

its corresponding cn value. When κ is small, most of the customers are concentrated in the high end of the

utility range and value new products highly. If the “remanufactured” product is offered, there is not much

of a market for it and it will erode some of the higher-profit new product sales. As a result, sales barely

increase and the relative profit gained from the substitution option is small. On the other hand, when κ is

large, most of the customers are concentrated in the low end of the utility range, which means most of them

place low value on the new products and have a relatively higher outlook for the remanufactured ones. If the

“remanufactured” product is offered, the market size will increase at the cost of having a good portion of

high-premium customers switch to the lower-margin product. The firm fails to seize the higher profit margins

for the new product. The relative profit gained from the substitution option is not large in this case either.

For medium values of κ, the utility function is close to uniform reflecting a very diverse market. The market

can be segmented more adequately and thus higher benefits will be obtained from the substitution option.

Utility distribution functions of the form F (θ) = 1− (1− θ)κ represent situations where customer utilities

of new products are concentrated at either the high or the low ends of the market, or equally distributed

across the utility spectrum. To further investigate the impact of the utility distribution, we consider a new

form of the utility distribution where customer utilities for new products are concentrated on both ends

of the market: F (θ) = (1− b/3)θ− b(1− 2θ)3/6 + b/6 where b = {1/3,1/2,1,4/3,3/2}. Figure 12 shows the

density function f(θ) of these utility distributions. As b increases, the distribution becomes more polarized.

The distribution function of this form does not have an increasing hazard rate. But we can still derive the
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Figure 8 Proportion of customers that purchase new products, where for each κ the number is the same

regardless of the value of cn and each circle indicates the maximum point beyond which substituting is no long

profitable for the cn listed besides
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Figure 9 Proportion of customers that purchase remanufactured products

optimal solutions based on the first-order conditions. All the other parameters are kept the same. Figure 13

illustrates the benefits from the substitution option. The x axis is the parameter b in the utility distribution

function F (θ). The y axis is relative profit improvement as defined above. Once again, the relative profit gains

decrease as cn increases. Moreover, this relative profit gains tend to decrease as b increases for a relatively
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Figure 10 New product price as a function of κ and cn
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Figure 11 Remanufactured product price as a function of κ and cn

low production cost cn because with the more evenly spread product valuations for low b the remanufactured

product will capture a larger portion of the market. Volume is the driver here. As the utility distribution

becomes more polarized, however, more customers are concentrated on either the low or high end of the

market. This is useful when cn is high because the larger concentration of high-end, little price-sensitive

consumers allows for better segmenting of the high end of the market with steeper premiums. The prices of

new and remanufactured products are higher than 0.42 in all the cases, and go up as b increases.
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Figure 13 Relative Profit Improvement (QR = 0)

B.2 Impact of the Relative Utility Function

For the cases run in Section 6.2, Figure 14, Figure 15, Figure 16, and Figure 17, provide the optimal market

sizes and prices for new and remanufactured products in the optimal solutions.

In the relative utility functions, η(θ) = (1−θ/m)θ, studied thus far, the relative utility for remanufactured

products is very close to the utility for new products for small values of θ; that is, the ratio of the utility of

remanufactured products over the utility of new products, η(θ)/θ, is very close to 1 in this case, suggesting



Jin, Muriel, and Lu: Profitability of Remanufactured Products

Management Science 00(0), pp. 000–000, c© 0000 INFORMS 41

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

cr

n

m = 2

m = 3

m = 4
m = 5
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

cr

r

m = 2

m = 3

m = 4

m = 5

Figure 15 Proportion of customers that purchase remanufactured products

that low-end customers place almost the same values for new and remanufactured products. In Section 5

we saw that this was a desirable characteristic of the relative utility. Customers, however, may not behave

this way; they may value the new and remanufactured products pretty differently over the entire range. To

study the impact of such consumer behavior, we test our model on this form of the relative utility: η(θ) =

a(1− θ/3)θ where a = {0.55,0.65, · · · ,1.00}. Observe that with these functions the ratio of remanufactured

to new product utilities, η(θ)/θ, is always kept below the value a. Figure 18 shows this utility function for
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Figure 16 Price of new products
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Figure 17 Price of remanufactured products

remanufactured products. As a increases, η(θ) becomes closer to the utility for new products, θ. All the

other parameters are kept the same. Figure 19 gives the relative profit improvement as a varies. The profit

gains increase as a increases, since customers place a higher utility value on the remanufactured product,

and they decrease at a similar rate for all a as the remanufacturing cost cr increases. The threshold cost at

which remanufacturing stops being viable thus decreases as a decreases, making the substitution strategy

unprofitable for all except the three highest levels of a.
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Figure 18 Utility Function for Remanufactured Products η(θ) = a(1− θ/3)θ
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Figure 19 Relative Profit Improvement


