NAME
 map, mapdemo – draw maps on various projections

SYNOPSIS
 map projection [ option ... ] mapdemo

DESCRIPTION
Map prepares on the standard output a map suitable for display by any plotting filter described in plot(1). A menu of projections is produced in response to an unknown projection. Mapdemo is a short course in mapping.

The default data for map are world shorelines. Option –f accesses more detailed data classified by feature.
f [ feature ... ]
 Features are ranked 1 (default) to 4 from major to minor. Higher–numbered ranks include all lower–numbered ones. Features are shore[1–4]      seacoasts, lakes, and islands; option –f always shows shore1 ilake[1–2]      intermittent lakes river[1–4]      rivers iriver[1–3]     intermittent rivers canal[1–3]      3=irrigation canals glacier iceshelf[12] reef saltpan[12] country[1–3]    2=disputed boundaries, 3=indefinite boundaries state          states and provinces (US and Canada only)
In other options coordinates are in degrees, with north latitude and west longitude counted as positive.
l S N E W
 Set the southern and northern latitude and the eastern and western longitude limits. Missing arguments are filled out from the list –90, 90, –180, 180, or lesser limits suitable to the projection at hand. –
k S N E W
 Set the scale as if for a map with limits –l S N E W . Do not consider any –l or –w option in setting scale. –
o lat lon rot
 Orient the map in a nonstandard position. Imagine a transparent gridded sphere around the globe. Turn the overlay about the North Pole so that the Prime Meridian (longitude 0) of the overlay coincides with meridian lon on the globe. Then tilt the North Pole of the overlay along its Prime Meridian to latitude lat on the globe. Finally again turn the overlay about its `North Pole' so that its Prime Meridian coincides with the previous position of meridian rot. Project the map in the standard form appropriate to the overlay, but presenting information from the underlying globe. Missing arguments are filled out from the list 90, 0, 0. In the absence of –o, the orientation is 90, 0, m, where m is the middle of the longitude range. –
w S N E W
 Window the map by the specified latitudes and longitudes in the tilted, rotated coordinate system. Missing arguments are filled out from the list –90, 90, –180, 180. (It is wise to give an encompassing –l option with –w. Otherwise for small windows computing time varies inversely with area!) –
d n   For speed, plot only every nth point.
r    Reverse left and right (good for star charts and inside–out views).
v    Verso. Switch to a normally suppressed sheet of the map, such as the back side of the earth in orthographic projection.
s1
–s2
Superpose; outputs for a –s1 map (no closing) and a –s2 map (no opening) may be concatenated.
g dlat dlon res
 Grid spacings are dlat, dlon. Zero spacing means no grid. Missing dlat is taken to be zero. Missing dlon is taken the same as dlat. Grid lines are drawn to a resolution of res (2° or less by default). In the absence of –g, grid spacing is 10°. –
p lat lon extent
 Position the point lat, lon at the center of the plotting area. Scale the map so that the height (and width) of the nominal plotting area is extent times the size of one degree of latitude at the center. By default maps are scaled and positioned to fit within the plotting area. An extent overrides option –k. –
c x y rot
 After all other positioning and scaling operations have been performed, rotate the image rot degrees counterclockwise about the center and move the center to position x, y, where the nominal plotting area is –1≤x≤1, –1≤y≤1. Missing arguments are taken to be 0. –x Allow the map to extend outside the nominal plotting area. –
m [ file ... ]
 Use map data from named files. If no files are named, omit map data. Names that do not exist as pathnames are looked up in a standard directory, which contains, in addition to the data for –f, world      World Data Bank I (default) states     US map from Census Bureau counties   US map from Census Bureau The environment variables MAP and MAPDIR change the default map and default directory. –
b [lat0 lon0 lat1 lon1... ]
 Suppress the drawing of the normal boundary (defined by options –l and –w). Coordinates, if present, define the vertices of a polygon to which the map is clipped. If only two vertices are given, they are taken to be the diagonal of a rectangle. To draw the polygon, give its vertices as a –u track. –
t file ...
 The files contain lists of points, given as latitude–longitude pairs in degrees. If the first file is named –, the standard input is taken instead. The points of each list are plotted as connected `tracks'. Points in a track file may be followed by label strings. A label breaks the track. A label may be prefixed by ", :, or ! and is terminated by a newline. An unprefixed string or a string prefixed with " is displayed at the designated point. The first word of a : or ! string names a special symbol (see option –y). An optional numerical second word is a scale factor for the size of the symbol, 1 by default. A : symbol is aligned with its top to the north; a ! symbol is aligned vertically on the page. –
u file ...
 Same as –t, except the tracks are unbroken lines. (–t tracks appear as dot–dashed lines if the plotting filter supports them.) –
y file
 The file contains plot(6)–style data for : or ! labels in –t or –u files. Each symbol is defined by a comment :name then a sequence of m and v commands. Coordinates (0,0) fall on the plotting point. Default scaling is as if the nominal plotting range were ra –1 –1 1 1; ra commands in file change the scaling.

Projections
Equatorial projections centered on the Prime Meridian (longitude 0). Parallels are straight horizontal lines.

mercator         equally spaced straight meridians, conformal, straight compass courses
sinusoidal       equally spaced parallels, equal–area, same as bonne 0.
cylequalarea lat0   equally spaced straight meridians, equal–area, true scale on lat0
cylindrical      central projection on tangent cylinder
rectangular lat0   equally spaced parallels, equally spaced straight meridians, true scale on lat0
gall lat0          parallels spaced stereographically on prime meridian, equally spaced straight meridians, true scale on lat0
mollweide        (homalographic) equal–area, hemisphere is a circle
 gilbert() sphere conformally mapped on hemisphere and viewed orthographically
gilbert          globe mapped conformally on hemisphere, viewed orthographically

Azimuthal projections centered on the North Pole. Parallels are concentric circles. Meridians are equally spaced radial lines.

azequidistant     equally spaced parallels, true distances from pole
azequalarea      equal–area
gnomonic         central projection on tangent plane, straight great circles
perspective dist   viewed along earth's axis dist earth radii from center of earth
orthographic      viewed from infinity
stereographic     conformal, projected from opposite pole
laueradius = tan(2×colatitude), used in X–ray crystallography
fisheye n         stereographic seen from just inside medium with refractive index n
newyorker rradius = log(colatitude/r): New Yorker map from viewing pedestal of radius r degrees

Polar conic projections symmetric about the Prime Meridian. Parallels are segments of concentric circles. Except in the Bonne projection, meridians are equally spaced radial lines orthogonal to the parallels.

conic lat0         central projection on cone tangent at lat0
simpleconic lat0 lat1
 equally spaced parallels, true scale on lat0 and lat1
lambert lat0 lat1    conformal, true scale on lat0 and lat1
albers lat0 lat1     equal–area, true scale on lat0 and lat1
bonne lat0         equally spaced parallels, equal–area, parallel lat0 developed from tangent cone

Projections with bilateral symmetry about the Prime Meridian and the equator.

polyconic        parallels developed from tangent cones, equally spaced along Prime Meridian
aitoff           equal–area projection of globe onto 2–to–1 ellipse, based on azequalarea
lagrange         conformal, maps whole sphere into a circle
bicentric lon0     points plotted at true azimuth from two centers on the equator at longitudes ±lon0, great circles are straight lines (a stretched gnomonic )
elliptic lon0      points plotted at true distance from two centers on the equator at longitudes ±lon0
globular         hemisphere is circle, circular arc meridians equally spaced on equator, circular arc parallels equally spaced on 0– and 90–degree meridians
vandergrinten     sphere is circle, meridians as in globular, circular arc parallels resemble mercator

Doubly periodic conformal projections.

guyou            W and E hemispheres are square
square           world is square with Poles at diagonally opposite corners
tetra            map on tetrahedron with edge tangent to Prime Meridian at S Pole, unfolded into equilateral triangle
hex              world is hexagon centered on N Pole, N and S hemispheres are equilateral triangles

Miscellaneous projections.

harrison dist angleoblique perspective from above the North Pole, dist earth radii from center of earth, looking along the Date Line angle degrees off vertical
trapezoidal lat0 lat1
 equally spaced parallels, straight meridians equally spaced along parallels, true scale at lat0 and lat1 on Prime Meridian lune(lat,angle) conformal, polar cap above latitude lat maps to convex lune with given angle at 90°E and 90°W
Retroazimuthal projections. At every point the angle between vertical and a straight line to `Mecca', latitude lat0 on the prime meridian, is the true bearing of Mecca.

mecca lat0         equally spaced vertical meridians
homing lat0        distances to Mecca are true

Maps based on the spheroid. Of geodetic quality, these projections do not make sense for tilted orientations. For descriptions, see corresponding maps above.

sp_mercator
sp_albers
lat0 lat1

EXAMPLES
map perspective 1.025 –o 40.75 74
 A view looking down on New York from 100 miles (0.025 of the 4000–mile earth radius) up. The job can be done faster by limiting the map so as not to `plot' the invisible part of the world: map perspective 1.025 –o 40.75 74 –l 20 60 30 100. A circular border can be forced by adding option –w 77.33. (Latitude 77.33° falls just inside a polar cap of opening angle arccos(1/1.025) = 12.6804°.)
map mercator –o 49.25 –106 180
 An `equatorial' map of the earth centered on New York. The pole of the map is placed 90° away (40.75+49.25=90) on the other side of the earth. A 180° twist around the pole of the map arranges that the `Prime Meridian' of the map runs from the pole of the map over the North Pole to New York instead of down the back side of the earth. The same effect can be had from    map mercator –o 130.75 74
map albers 28 45 –l 20 50 60 130 –m states
 A customary curved–latitude map of the United States.
map harrison 2 30 –l –90 90 120 240 –o 90 0 0
 A fan view covering 60° on either side of the Date Line, as seen from one earth radius above the North Pole gazing at the earth's limb, which is 30° off vertical. The –o option overrides the default –o 90 0 180, which would rotate the scene to behind the observer.

FILES
 /lib/map/[1–4]??   World Data Bank II, for –f /lib/map/*         maps for –m /lib/map/*.x       map indexes /bin/aux/mapd      Map driver program

SOURCE
 /sys/src/cmd/map